¢ Disk = First state we’ve seen that doesn’t go away

* File systems: traditionally hardest part of 0OS
- More papers on FSes than any other single topic

* Main tasks of file system:
- Don’t go away (ever)
- Associate bytes with name (files) .
- Associate names with each other (directories) normgFl)%gg Processor speed: 2x/18mo

- Can implement file systems on disk, over network, in memory, in
non-volatile ram (NVRAM), on tape, w/ paper.

- We'll focus on disk and generalize later

- So: Where all important state ultimately resides

¢ Slow (milliseconds access vs. nanoseconds for memory)

Disk access time: 7% /yr

year
* Today: files, directories, and a bit of performance * Huge (100-1,000x bigger than memory)

- How to organize large collection of ad hoc information?
- File System: Hierarchical directories, Metadata, Search

1/38 2/38

¢ Disk reads/writes in terms of sectors, not bytes

MLC NAND - Read/write single sector or adjacent groups
Disk Flash DRAM ‘
Smallest write sector sector byte @
Atomic write sector sector byte/word
Random read 8ms 3-10 ps 50 ns * How to write a single byte? “Read-modify-write”
Random write 8 ms 9-11 us* 50 ns

. - Read in sector containing the byte
Sequential read 200 MB/s 550-2500 MB/s | > 10 GB/s - Modify that byte
Sequential write | 200 MB/s | 520-1500 MB/s* | > 10 GB/s ythatby

Cost $0.05/GB $0.16-0.34/GB $4/GiB - Write entire sector back to disk :-:

Volatile - Key: if cached, don’t need to read in
* Sector = unit of atomicity. [- |

- Sector write done completely, even if crash in middle
(disk saves up enough momentum to complete)

Persistence Non-volatile Non-volatile

*Flash write performance degrades over time

e Larger atomic units have to be synthesized by 0OS
3/38 4/38

Some useful trends Files: named bytes on disk

* Disk bandwidth and cost/bit improving exponentially
- Similar to CPU speed, memory size, etc. * File abstraction:
Seek time and rotational delay improving very slowly - User’s view: named sequence of bytes
. 3
- Why? require moving physical object (disk arm) ___.
foo.c int main E_-
* Disk accesses a huge system bottleneck & getting worse E "
- Bandwidth increase lets system (pre-)fetch large chunks for about - FS’sview: collection of disk blocks
the same cost as small chunk. - File system’s job: translate name & offset to disk blocks:
- Trade bandwidth for latency if you can get lots of related stuff. {file, offset}—>—>disk address
¢ Desktop memory size increasing faster than typical workloads . .
- More and more of workload fits in file cache * File operations:

- Disk traffic changes: mostly writes and new data - Create afile, delete afile

* Memory and CPU resources increasing - Read from file, write to file
- Use memory and CPU to make better decisions e Want: operations to have as few disk accesses as possible &
- Complex prefetching to support more 10 patterns have minimal space overhead (group related things)

- Delay data placement decisions reduce random |0
5/38 6/38

What’s hard about grouping blocks?

¢ Like page tables, file system metadata are simply data
structures used to construct mappings

- Page table: map virtual page # to physical page #

23— Pagetable |———33

- File metadata: map byte offset to disk block address

512—>—>8003121

- Directory: map name to disk address or file #

foo.c————| directory |————44

7/38

Some working intuitions

* FS performance dominated by # of disk accesses
- Say each access costs ~10 milliseconds
- Touch the disk 100 extra times =1 second
- Cando a billion ALU ops in same time!
* Access cost dominated by movement, not transfer:
seek time + rotational delay + # bytes/disk-bw

- 1sector: 5ms +4ms + 545 (~ 512 B/(100 MB/s)) ~ 9ms
- 50 sectors: 5ms +4ms +.25ms =9.25ms
- Can get 50x the data for only ~3% more overhead!

* Observations that might be helpful:
- All blocks in file tend to be used together, sequentially
- Allfiles in a directory tend to be used together
- All names in a directory tend to be used together

9/38

Problem: how to track file’s data

¢ Disk management:
- Need to keep track of where file contents are on disk
- Must be able to use this to map byte offset to disk block
- Structure tracking a file’s sectors is called an index node or inode
- Inodes must be stored on disk, too

e Things to keep in mind while designing file structure:
- Most files are small
- Much of the disk is allocated to large files
- Many of the I/O operations are made to large files

- Want good sequential and good random access
(what do these require?)

1/38

FSvs.VM

¢ In both settings, want location transparency
- Application shouldn’t care about particular disk blocks or physical
memory locations
¢ In some ways, FS has easier job than than VM:
- CPU time to do FS mappings not a big deal (= no TLB)
- Page tables deal with sparse address spaces and random access,
files often denser (0. . . filesize — 1), ~sequentially accessed
¢ In some ways FS’s problem is harder:

- Each layer of translation = potential disk access

- Space a huge premium! (But disk is huge?!?!) Reason?
Cache space never enough; amount of data you can get in one
fetch never enough

- Range very extreme: Many files <10 KB, some files many GB

8/38

Common addressing patterns

* Sequential:
- File data processed in sequential order
- By far the most common mode
- Example: editor writes out new file, compiler reads in file, etc

* Random access:

- Address any block in file directly without passing through
predecessors

- Examples: data set for demand paging, databases
* Keyed access
- Search for block with particular values

- Examples: associative data base, index
- Usually not provided by 0S

10/38

Straw man: contiguous allocation

e “Extent-based”: allocate files like segmented memory

- When creating a file, make the user pre-specify its length and
allocate all space at once

- Inode contents: location and size
what happens if

file c needs 2
/t sectors???
file a (base=1,len=3) file b (base=5,len=2)

* Example: IBM 0S/360

* Pros?

e Cons? (Think of corresponding VM scheme)

12/38

Straw man: contiguous allocation Straw man #2: Linked files

* Basically a linked list on disk.

o “Extent-based”: allocate files like segmented memory - Keep a linked list of all free blocks
- When creating a file, make the user pre-specify its length and - Inode contents: a pointer to file’s first block
allocate all space at once - In each block, keep a pointer to the next one

- Inode contents: location and size how do you find

he last block in a?

v

what happens if |

AR

| file ¢ needs 2 |
L2 | sectors??? e]
file a (base=1,len=3) file b (base=5,len=2) file a (base=1) file b (base=5)
* Examples (sort-of): Alto, TOPS-10, DOS FAT

* Example: IBM 0S/360 « Pros?
* Pros?

- Simple, fast access, both sequential and random e Cons?
e Cons? (Think of corresponding VM scheme)

- External fragmentation

12/38 13/38

Straw man #2: Linked files Example: DOS FS (simplified)

* Basically a linked list on disk.

- Keep a linked list of all free blocks * Linked files with key optimization: puts links in fixed-size
- Inode contents: a pointer to file’s first block “file allocation table” (FAT) rather than in the blocks.
- In each block, keep a pointer to the next one Directory (5) FAT (16-bit entries)
how do you find il 0| free filea
v he last block in a? b: 2 1| eof
L LI, 1 [6]
P 2 1
file a (base=1) file b (base=5) 3| eof
* Examples (sort-of): Alto, TOPS-10, DOS FAT 4] 3 file b
* Pros? 5| eof II
- Easy dynamic growth & sequential access, no fragmentation 6 4
e Cons?
- Linked lists on disk a bad idea because of access times e Still do pointer chasing, but can cache entire FAT so can be
- Random very slow (e.g., traverse whole file to find last block) cheap compared to disk access
- Pointers take up room in block, skewing alignment
13/38 14/38
FAT discussion FAT discussion
* Entry size =16 bits e Entry size =16 bits
- What’s the maximum size of the FAT? - What’s the maximum size of the FAT? 65,536 entries
- Given a 512 byte block, what’s the maximum size of FS? - Given a 512 byte block, what’s the maximum size of FS? 32 MiB
- One solution: go to bigger blocks. Pros? Cons? - One solution: go to bigger blocks. Pros? Cons?
* Space overhead of FAT is trivial: * Space overhead of FAT is trivial:
- 2 bytes / 512 byte block = ~ 0.4% (Compare to Unix) - 2 bytes / 512 byte block = ~ 0.4% (Compare to Unix)
* Reliability: how to protect against errors? * Reliability: how to protect against errors?
- Create duplicate copies of FAT on disk - Create duplicate copies of FAT on disk
- State duplication a very common theme in reliability - State duplication a very common theme in reliability
* Bootstrapping: where is root directory? * Bootstrapping: where is root directory?
- Fixed location on disk: | FAT| (opt) FAT |roo'r dirl | - Fixed location on disk: | FATl (opt) FAT Ir‘oo‘r dir-l |

15/38 15/38

Another approach: Indexed files Another approach: Indexed files

e Each file has an array holding all of its block pointers
- Just like a page table, so will have similar issues
- Max file size fixed by array’s size (static or dynamic?)
- Allocate array to hold file’s block pointers on file creation
- Allocate actual blocks on demand using free list

e Each file has an array holding all of its block pointers
- Just like a page table, so will have similar issues
- Max file size fixed by array’s size (static or dynamic?)
- Allocate array to hold file’s block pointers on file creation
- Allocate actual blocks on demand using free list

ey ey

* Pros? file a file b

* Cons?

Indexed files Multi-level indexed files (old BSD FS)

* Issues same as in page tables
LI TITI T T I T TITTT]+«—2"20 entries!

2732 file size / 4K blocks

- Large possible file size = lots of unused entries
- Large actual size? table needs large contiguous disk chunk

e Solve identically: small regions with index array, this array
with another array, ... Downside?

16/38

17/38

* Pros?

file a

file b

- Both sequential and random access easy

e Cons?

- Mapping table requires large chunk of contiguous space
...Same problem we were trying to solve initially

16/38

* Solve problem of first block access slow

¢ inode =14 block pointers + “stuff”

data blocks Indirect block

stuff

Ptr 1 1

—btr2 ¢t
pir 3 1

ptr 4

ptr 13

pir 14

N

Pir
ptr 2 11—

or 128

— /_,|:|Indir'ecf blks
[e

ptr2 — |

S I
pir 128 Double indirect block

18/38

Old BSD FS discussion More about inodes

* Inodes are stored in a fixed-size array
- Size of array fixed when disk is initialized; can’t be changed
- Livesin known location, originally at one side of disk:

* Pros:
- Simple, easy to build, fast access to small files
- Maximum file length fixed, but large.

e Cons:
- What is the worst case # of accesses?
- What is the worst-case space overhead? (e.g., 13 block file)

* An empirical problem:

- Because you allocate blocks by taking them off unordered freelist,

metadata and data get strewn across disk

19/38

B ——

Inode array| file blocks ... e

Now is smeared across it (why?)

AN

\

z

s 7

S

- Theindex of an inode in the inode array called an i-number
- Internally, the OS refers to files by inumber

- Whenfile is opened, inode brought in memory

- Written back when modified and file closed or time elapses

AN
\\\~’//j

20/38

e Approach 1: Single directory for entire system

- Put directory at known location on disk

Problem: - Directory contains (name, inumber) pairs
- “Spend all day generating data, come back the next morning, want - If one user uses a name, no one else can
to use it.” - F. Corbatd, on why files/dirs invented

- Many ancient personal computers work this way

Approach 0: Users remember where on disk their files are « Approach 2: Single directory for each user

- E.g., like remembering your social security or bank account # - still clumsy, and 1s on 10,000 files is a real pain

Yuck. People want human digestible names
- We use directories to map names to file blocks

e Approach 3: Hierarchical name spaces
- Allow directory to map names to files or other dirs
Next: What is in a directory and why? - File system forms a tree (or graph, if links allowed)

- Large name spaces tend to be hierarchical (ip addresses, domain
names, scoping in programming languages, etc.)

21/38 22/38

Used since CTSS (1960s) afs bin cdrom dev sbin tmp * Bootstrapping: Where do you start looking?
- Root directory always inode #2 (0 and 1 historically reserved)

- Unix picked up and used really nicely awk chmod chown

* Directories stored on disk just like regular files * Special names:
- Special inode type byte set to directory <hame inodeis - Rootdirectory: “/”
- User’s can read just like any other file <afs ’ 1021> - Current directory: .
. . ’ - Parent directory: “..”
- Only special syscalls can write (why?) <tmp, 1020>
_ Inodes at fixed disk location <bin,1022> * Some special names are provided by shell, not FS:
. . . <cdrom, 4123> - User’s home directory: “~”
- File pointed to by the index may be <dev.1001>

another directory o011 - Globbing: “foo.*” expands to all files starting “foo.

- Makes FS into hierarchical tree (what ¢ Using the given names, only need two operations to navigate
needed to make a DAG?) : the entire name space:
* Simple, plus speeding up file ops speeds up dir ops! - cd name: move into (change context to) directory name
- 1s: enumerate all names in current directory (context)

23/38 24/38

Unix example: /a/b/c.c Default context: working directory

Name space Physical organization

° Cumbersome to constantly specify full path names

disk - In Unix, each process has a “current working directory” (cwd)

- File names not beginning with “/” are assumed to be relative to
cwd; otherwise translation happens as before

- Editorial: root, cwd should be regular fds (like stdin, stdout, ...)
with openat syscall instead of open

wun

¢ Shells track a default list of active contexts

What inode holds file for - A. search path” for programs you run' . '
@ b?cc? - Given asearch path A : B : C, a shell will check in A, then check in B,

then checkin C
- Can escape using explicit paths: “./foo”

c.c

e Example of locality

25/38 26/38

Hard and soft links (synonyms) Case study: speeding up FS

* More than one dir entry can refer to a given file « Original Unix FS: Simple and elegant:

- Unix stores count of pointers foo bar AR
(“hard links”) to inode \, / l inodes data blocks (512 bytes)
- To make: “1n foo bar” creates a inode #31279 I :
synonym (bar) for file foo refcount=2 superblock disk
* Soft/symbolic links = synonyms for names * Components:
- Point to a file (or dir) name, but object can be deleted from . - Data blocks
underneath it (or never even exist). B - Inodes (directories represented as files)
- Uniximplements like directories: inode has special .- - Hard links
“symlink” bit set and contains name of link target .-~ . .
Dy - Superblock. (specifies number of blks in FS, counts of max # of

1n -s /bar baz | oot e files, pointer to head of free list)

baz

—| refcount=1

* Problem: slow

- Only gets 20Kb/sec (2% of disk maximum) even for sequential disk
transfers!

- When the file system encounters a symbolic link it automatically
translates it (if possible).

27/38 28/38

A plethora of performance costs Problem: Internal fragmentation

* Blocks too small (512 bytes)
- File index too large

* Block size was too small in Unix FS

- Too many layers of mapping indirection * Why not just make block size bigger?

- Transfer rate low (get one block at time) Block size | space wasted | file bandwidth
* Poor clustering of related objects: 512 6.9% 2.6%

L 1024 11.8% 3.3%

- Consecutive file blocks not close together 2048 22.4% 6.4%

- Inodes far from data blocks 4096 45'6% 12 0%

- Inodes for directory not close together 1MB 9920% 97:2%

- Poor enumeration performance: e.g., “1s”, “grep foo *.c”
* Usability problems * Bigger block increases bandwidth, but how to deal with

- 14-character file names a pain wastage (“internal fragmentation”)?

- Can’t atomically update file in crash-proof way - Use idea from malloc: split unused portion.

Next: how FFS fixes these (to a degree) [McKusic]

29/38 30/38
Solution: fragments Clustering related objects in FFS
o BSD FFS: * Group sets of consecutive cylinders into “cylinder groups”
- Has large block size (4096 or 8192) f—— =
- Allow large blocks to be chopped into small ones (“fragments”) Cylinder group 1 F— -~
- Used for little files and pieces at the ends of files =
cylinder group 2 L — />
' /V L \ [—
' s =
file a ——

- Key: can access any block in a cylinder without performing a seek.
))) Next fastest place is adjacent cylinder.

- Variable sized Spl't'f of course - Tries to put everything related in same cylinder group

- Why does FFS use fixed-sized fragments (1024, 2048)? - Tries to put everything not related in different group

* Best way to eliminate internal fragmentation?

31/38 32/38

Clustering in FFS What does disk layout look like?

e Tries to put sequential blocks in adjacent sectors ¢ Each cylinder group basically a mini-Unix file system:

- (Access one block, probably access next) cylinder

roups
l superblocks
. . T A/ T T
filea file b
e Tries to keep inode in same cylinder as file data: /boPkkeeM
. . . Informati
- (If you look at inode, most likely will look at data too)

inodes data blocks

° How how to ensure there’s space for related stuff?

- Place different directories in different cylinder groups

- Keep a “free space reserve” so can allocate near existing things
e Tries to keep allinodes in a dir in same cylinder group - When file grows too big (1IMB) send its remainder to different

- Access one name, frequently access many, e.g., “1s -1” cylinder group.

33/38 34/38

Finding space for related objs Using a bitmap

e Usually keep entire bitmap in memory:
- 4G disk / 4K byte blocks. How big is map?

¢ Old Unix (& DOS): Linked list of free blocks
- Just take a block off of the head. Easy.
* Allocate block close to block x?
L I_LFI'S - Check for blocks near bmap [x/32]
head \\Z - If disk almost empty, will likely find one near

- As disk becomes full, search becomes more expensive and less
effective

- Bad: free list gets jumbled over time. Finding adjacent blocks hard
and slow

. . * Trade space for time (search time, file access time
* FFS: switch to bit-map of free blocks P (’)

- 1010101111111000001111111000101100

- Easier to find contiguous blocks.

- Small, so usually keep entire thing in memory

- Time to find free block increases if fewer free blocks

* Keep areserve (e.g, 10%) of disk always free, ideally
scattered across disk
- Don’t tell users (df can get to 110% full)
- Only root can allocate blocks once FS 100% full
- With 10% free, can almost always find one of them free

35/38 36/38
. e Obvious:
¢ Performance improvements: Bie fil h
- Bigfile cache
- Able to get 20-40% of disk bandwidth for large files E & ion delav if hol K
° .
- 10-20x original Unix file system! acI:. notrotat;on elay It get whole track.
- How to use?

- Better small file performance (why?)

Fact: transfer cost negligible.
- Recall: Can get 50x the data for only ~3% more overhead

Is this the best we can do? No.

* Block based rather than extent based - 1sector: 5ms +4ms + 5us (~ 512 B/(100 MB/s)) ~ 9ms
- Could have named contiguous blocks with single pointer and - 50 sectors: 5ms +4ms +.25ms = 9.25ms
length (Linux ext2fs, XFS) - How to use?
* Writes of metadata done synchronously e Fact: if transfer huge, seek + rotation negligible
- Really hurts small file performance - LFS: Hoard data, write out MB at a time

- Make asynchronous with write-ordering (“soft updates”) or
logging/journaling... more next lecture

- Play with semantics (/tmp file systems)

Next lecture:
- FFSin more detail
- More advanced, modern file systems
37/38 38/38

