File system fun

¢ File systems: traditionally hardest part of OS
- More papers on FSes than any other single topic

* Main tasks of file system:

Don’t go away (ever)
Associate bytes with name (files)
Associate names with each other (directories)

Can implement file systems on disk, over network, in memory, in
non-volatile ram (NVRAM), on tape, w/ paper.

We’ll focus on disk and generalize later

* Today: files, directories, and a bit of performance

1/38

Why disks are different

» Disk =First state we’ve seen that doesn’t go away

imemory

- So: Where all important state ultimately resides
* Slow (milliseconds access vs. nanoseconds for memory)

normallzeg Processor speed: 2 x/18mo
Disk access time: 7%/yr
\ year

* Huge (100—1,000x bigger than memory)
- How to organize large collection of ad hoc information?
- File System: Hierarchical directories, Metadata, Search

2/38

Disk vs. Memory

MLC NAND
Disk Flash DRAM
Smallest write sector sector byte
Atomic write sector sector byte/word
Random read 8 ms 3-10 ps 50 ns
Random write 8 ms 9-11 pus™ 50 ns

Sequential read 200 MB/s 550-2500 MB/s | >10GB/s
Sequential write | 200 MB/s | 520-1500 MB/s* | > 10 GB/s
Cost $0.05/GB $0.16-0.34/GB $4/GiB
Persistence Non-volatile Non-volatile Volatile

*Flash write performance degrades over time

3/38

* Disk reads/writes in terms of sectors, not bytes
- Read/write single sector or adjacent groups

* How to write a single byte? “Read-modify-write”
- Read in sector containing the byte |
- Modify that byte

- Write entire sector back to disk | - |

- Key: if cached, don’t need to read in

* Sector = unit of atomicity. |

- Sector write done completely, even if crash in middle
(disk saves up enough momentum to complete)

e Larger atomic units have to be synthesized by 0S
4/38

Some useful trends

* Disk bandwidth and cost/bit improving exponentially
- Similar to CPU speed, memory size, etc.
Seek time and rotational delay improving very slowly
- Why? require moving physical object (disk arm)
Disk accesses a huge system bottleneck & getting worse

- Bandwidth increase lets system (pre-)fetch large chunks for about
the same cost as small chunk.

- Trade bandwidth for latency if you can get lots of related stuff.
Desktop memory size increasing faster than typical workloads

- More and more of workload fits in file cache

- Disk traffic changes: mostly writes and new data
Memory and CPU resources increasing

- Use memory and CPU to make better decisions

- Complex prefetching to support more IO patterns

- Delay data placement decisions reduce random IO

5/38

Files: named bytes on disk

* File abstraction:
- User’s view: named sequence of bytes

foo.c—+int main()f ..

- FS’s view: collection of disk blocks
- File system’s job: translate name & offset to disk blocks:

{file, offset}—— FS —disk address

* File operations:

- Create afile, delete afile
- Read from file, write to file

* Want: operations to have as few disk accesses as possible &
have minimal space overhead (group related things)

6/38

What’s hard about grouping blocks?

* Like page tables, file system metadata are simply data
structures used to construct mappings

- Page table: map virtual page # to physical page #

23— Pagetable

— 33

- File metadata: map byte offset to disk block address

512—— | Unixinode

— 8003121

- Directory: map name to disk address or file #

foo.c————| directory

44
a4

7/38

FSvs.VM

* In both settings, want location transparency
- Application shouldn’t care about particular disk blocks or physical
memory locations
* In some ways, FS has easier job than than VM:

- CPU time to do FS mappings not a big deal (= no TLB)

- Page tables deal with sparse address spaces and random access,
files often denser (0. . . filesize — 1), ~sequentially accessed

* In some ways FS’s problem is harder:

- Each layer of translation = potential disk access

- Space a huge premium! (But disk is huge?!?!) Reason?
Cache space never enough; amount of data you can getin one
fetch never enough

- Range very extreme: Many files <10 KB, some files many GB

8/38

Some working intuitions

¢ FS performance dominated by # of disk accesses

- Say each access costs ~10 milliseconds

- Touch the disk 100 extra times = 1second

- Cando a billion ALU ops in same time!
* Access cost dominated by movement, not transfer:
seek time + rotational delay + # bytes/disk-bw

- 1sector: 5Sms+4ms +5us (= 512 B/(100 MB/s)) ~ 9ms
- 50 sectors: 5ms + 4ms +.25ms =9.25ms
- Can get 50x the data for only ~3% more overhead!

* Observations that might be helpful:

- All blocks in file tend to be used together, sequentially
- Allfiles in a directory tend to be used together
- All names in a directory tend to be used together

9/38

Common addressing patterns

* Sequential:

- File data processed in sequential order
- By far the most common mode
- Example: editor writes out new file, compiler reads in file, etc

e Random access:

- Address any block in file directly without passing through
predecessors

- Examples: data set for demand paging, databases
* Keyed access

- Search for block with particular values
- Examples: associative data base, index
- Usually not provided by OS

10/38

Problem: how to track file’s data

* Disk management:

Need to keep track of where file contents are on disk

Must be able to use this to map byte offset to disk block
Structure tracking a file’s sectors is called an index node or inode
Inodes must be stored on disk, too

* Things to keep in mind while designing file structure:

- Most files are small
Much of the disk is allocated to large files
Many of the I/0 operations are made to large files

Want good sequential and good random access
(what do these require?)

11/38

Straw man: contiguous allocation

“Extent-based”: allocate files like segmented memory

- When creating a file, make the user pre-specify its length and

allocate all space at once

- Inode contents: location and size

what happens if

x

file ¢ needs 2
sectors???

/
file a (base=1,len=3)

Example: IBM 0S/360
Pros?

file b (base=5,len=2)

Cons? (Think of corresponding VM scheme)

12/38

Straw man: contiguous allocation

“Extent-based”: allocate files like segmented memory
- When creating a file, make the user pre-specify its length and

allocate all space at once

- Inode contents: location and size

what happens if

x

file ¢ needs 2
sectors???

/
file a (base=1,len=3)

Example: IBM 0S/360
Pros?

file b (base=5,len=2)

- Simple, fast access, both sequential and random

Cons? (Think of corresponding VM scheme)

- External fragmentation

12/38

Straw man #2: Linked files

* Basically a linked list on disk.
- Keep a linked list of all free blocks
- Inode contents: a pointer to file’s first block
- Ineach block, keep a pointer to the next one

| how do you find

M the last block in a?

p.4 4
| E—

e =
file a (base=1) file b (base=b)

* Examples (sort-of): Alto, TOPS-10, DOS FAT
* Pros?

e Cons?

13/38

Straw man #2: Linked files

* Basically a linked list on disk.
- Keep a linked list of all free blocks
- Inode contents: a pointer to file’s first block
- Ineach block, keep a pointer to the next one

| how do you find

M the last block in a?

p.4 4
| E—

e =
file a (base=1) file b (base=b)

* Examples (sort-of): Alto, TOPS-10, DOS FAT
* Pros?
- Easy dynamic growth & sequential access, no fragmentation
* Cons?
- Linked lists on disk a bad idea because of access times
- Random very slow (e.g., traverse whole file to find last block)
- Pointers take up room in block, skewing alignment

13/38

Example: DOS FS (simplified)

* Linked files with key optimization: puts links in fixed-size
“file allocation table” (FAT) rather than in the blocks.

Directory (5) FAT (16-bit entries)

a: 6 0| free file a
b: 2 1| eof @ E @
2 1
3| eof
5| eof II
6| 4

¢ Still do pointer chasing, but can cache entire FAT so can be
cheap compared to disk access

14/38

FAT discussion

* Entry size =16 bits
- What’s the maximum size of the FAT?
- Given a 512 byte block, what’s the maximum size of FS?
- One solution: go to bigger blocks. Pros? Cons?
* Space overhead of FAT is trivial:
- 2 bytes / 512 byte block = ~ 0.4% (Compare to Unix)

* Reliability: how to protect against errors?

- Create duplicate copies of FAT on disk
- State duplication a very common theme in reliability

* Bootstrapping: where is root directory?

- Fixed location on disk: FAT| (opt) FAT |root dir

15/38

FAT discussion

* Entry size =16 bits
- What’s the maximum size of the FAT? 65,536 entries
- Given a 512 byte block, what’s the maximum size of FS? 32 MiB
- One solution: go to bigger blocks. Pros? Cons?
* Space overhead of FAT is trivial:
- 2 bytes / 512 byte block = ~ 0.4% (Compare to Unix)

* Reliability: how to protect against errors?

- Create duplicate copies of FAT on disk
- State duplication a very common theme in reliability

* Bootstrapping: where is root directory?

- Fixed location on disk: FAT| (opt) FAT |root dir

15/38

Another approach: Indexed files

* Each file has an array holding all of its block pointers

- Just like a page table, so will have similar issues

- Max file size fixed by array’s size (static or dynamic?)

- Allocate array to hold file’s block pointers on file creation
- Allocate actual blocks on demand using free list

[3 X

* Pros? file a file b

e Cons?

16/38

Another approach: Indexed files

* Each file has an array holding all of its block pointers

- Just like a page table, so will have similar issues

Max file size fixed by array’s size (static or dynamic?)
Allocate array to hold file’s block pointers on file creation
Allocate actual blocks on demand using free list

[3 X

* Pros? file a file b
- Both sequential and random access easy

e Cons?

- Mapping table requires large chunk of contiguous space
...Same problem we were trying to solve initially

16/38

Indexed files

* Issues same as in page tables
[ITITTITITITITITITTITITITI]«—2"20 entries!

q

4K blocks

2732 file size

- Large possible file size = lots of unused entries
- Large actual size? table needs large contiguous disk chunk

* Solve identically: small regions with index array, this array
with another array, ... Downside?

| o — — — ———

17/38

Multi-level indexed files (old BSD FS)

* Solve problem of first block access slow

* inode =14 block pointers + “stuff”

ptr 3
pir 4

pir 13

AR

pir 14

data blocks Tndirect M

stuff]
S —
Pir 1 1 ptr 2
2 4
—pir e otr 126

[]Indirect blks
Pir 1

ptr2 —— [|

ptr 128 Double indirect block

18/38

Old BSD FS discussion

* Pros:

- Simple, easy to build, fast access to small files

- Maximum file length fixed, but large.
e Cons:

- What is the worst case # of accesses?

- What is the worst-case space overhead? (e.g., 13 block file)
* An empirical problem:

- Because you allocate blocks by taking them off unordered freelist,
metadata and data get strewn across disk

19/38

More about inodes

* Inodes are stored in a fixed-size array
- Size of array fixed when disk is initialized; can’t be changed
- Lives in known location, originally at one side of disk:

/ —

Inode array| file blocks ...

Now is smeared across it (why?)
PaN I~ /\
Z \ 2

\

\ \
The index of an inode in the inode array called an i-number
Internally, the OS refers to files by inumber
When file is opened, inode brought in memory
Written back when modified and file closed or time elapses

s 7

20/38

Directories

Problem:

- “Spend all day generating data, come back the next morning, want
to useit.” - F. Corbatd, on why files/dirs invented

Approach 0: Users remember where on disk their files are
- E.g., like remembering your social security or bank account #

Yuck. People want human digestible names
- We use directories to map names to file blocks

Next: What is in a directory and why?

21/38

A short history of directories

* Approach 1: Single directory for entire system

- Put directory at known location on disk
- Directory contains (name, inumber) pairs
- If one user uses a name, no one else can
- Many ancient personal computers work this way

e Approach 2: Single directory for each user
- Still clumsy, and 1s on 10,000 files is a real pain

e Approach 3: Hierarchical name spaces

- Allow directory to map names to files or other dirs
- File system forms a tree (or graph, if links allowed)

- Large name spaces tend to be hierarchical (ip addresses, domain
names, scoping in programming languages, etc.)

22/38

Hierarchical Unix

» Used since CTSS (1960s) afs bin cdrom dev sbin tmp

- Unix picked up and used really nicely awk chmod chown

* Directories stored on disk just like regular files
- Special inode type byte set to directory

<name,inodet>

- User’s can read just like any other file <afs.1021>
- Only special syscalls can write (why?) <tmp, 1020>
- Inodes at fixed disk location <bin,1022>

. . . <cdrom,4123>
- File pointed to by the index may be <dev.1001>

another directory <sbin.1011>

- Makes FS into hierarchical tree (what
needed to make a DAG?)

* Simple, plus speeding up file ops speeds up dir ops!

23/38

* Bootstrapping: Where do you start looking?
- Root directory always inode #2 (0 and 1 historically reserved)

e Special names:
- Root directory: “/”

- Current directory: “.

- Parent directory: “..”

* Some special names are provided by shell, not FS:
- User’s home directory: “~”

- Globbing: “foo.*” expands to all files starting “foo.”

* Using the given names, only need two operations to navigate
the entire name space:

- cd name: move into (change context to) directory name
- 1s: enumerate all names in current directory (context)

24/38

Unix example: /a/b/c.c

c.c

wn

Physical organization

disk

\Inode table

What inode holds file for
a? b?c.c?

25/38

Default context: working directory

* Cumbersome to constantly specify full path names
- In Unix, each process has a “current working directory” (cwd)
- File names not beginning with “/” are assumed to be relative to
cwd; otherwise translation happens as before
- Editorial: root, cwd should be regular fds (like stdin, stdout, ...)
with openat syscall instead of open

e Shells track a default list of active contexts

- A “search path” for programs you run

- Given asearch path A : B : C, a shell will check in A, then check in B,
then checkin C

- Can escape using explicit paths: “./foo”

e Example of locality

26/38

Hard and soft links (synonyms)

* More than one dir entry can refer to a given file

- Unix stores count of pointers
(“hard links”) to inode

- To make: “1In foo bar” createsa
synonym (bar) for file foo

foo bar ..

N/

inode #31279
refcount=2

* Soft/symbolic links = synonyms for names

- Point to a file (or dir) name, but object can be deleted from

underneath it (or never even exist).

- Unix implements like directories: inode has special

“symlink” bit set and contains name of link target

ll/barll

1n -s /bar baz —| refcount =1

baz

- When the file system encounters a symbolic link it automatically

translates it (if possible).

27/38

Case study: speeding up FS

e Original Unix FS: Simple and elegant:

I inodes data blocks (512 bytes)

supler'block disk

e Components:
- Data blocks
- Inodes (directories represented as files)
- Hard links

- Superblock. (specifies number of blks in FS, counts of max # of
files, pointer to head of free list)

* Problem: slow

- Only gets 20Kb/sec (2% of disk maximum) even for sequential disk
transfers!
28/38

A plethora of performance costs

* Blocks too small (512 bytes)
- File index too large
- Too many layers of mapping indirection
- Transfer rate low (get one block at time)

* Poor clustering of related objects:

Consecutive file blocks not close together

Inodes far from data blocks

Inodes for directory not close together

Poor enumeration performance: e.g., “1s”, “grep foo *.c”

* Usability problems

- 14-character file names a pain
- Can’t atomically update file in crash-proof way

* Next: how FFS fixes these (to a degree) [McKusic]

29/38

http://www.scs.stanford.edu/20wi-cs140/sched/readings/ffs.pdf

Problem: Internal fragmentation

¢ Block size was too smallin Unix FS

* Why not just make block size bigger?

Block size
512

1024
2048
4096

1MB

space wasted
6.9%

11.8%

22.4%

45.6%
99.0%

file bandwidth
2.6%

3.3%

6.4%

12.0%

97.2%

* Bigger block increases bandwidth, but how to deal with

wastage (“internal fragmentation”)?
- Use idea from malloc: split unused portion.

30/38

Solution: fragments

* BSD FFS:

- Has large block size (4096 or 8192)
- Allow large blocks to be chopped into small ones (“fragments”)
- Used for little files and pieces at the ends of files

file a

* Best way to eliminate internal fragmentation?

- Variable sized splits of course
- Why does FFS use fixed-sized fragments (1024, 2048)?

31/38

Clustering related objects in FFS

* Group sets of consecutive cylinders into “cylinder groups”

Cylinder group 1

— —
X T~ N

o — —
— _— = \‘
~]l -

\\~—_-—’/

- Key: can access any block in a cylinder without performing a seek.
Next fastest place is adjacent cylinder.

- Tries to put everything related in same cylinder group
- Tries to put everything not related in different group

32/38

Clustering in FFS

* Tries to put sequential blocks in adjacent sectors
- (Access one block, probably access next)

file b

* Tries to keep inode in same cylinder as file data:
- (If you look at inode, most likely will look at data too)

file a

* Tries to keep all inodes in a dir in same cylinder group
- Access one name, frequently access many, e.g., “1s -1”"

33/38

What does disk layout look like?

* Each cylinder group basically a mini-Unix file system:

cylinder
roups

l%supzrblocks
\\\\\
I T 1 1

l‘\ﬁ;l
|
1

A
- inodes data blocks

* How how to ensure there’s space for related stuff?
- Place different directories in different cylinder groups
- Keep a “free space reserve” so can allocate near existing things

- When file grows too big (IMB) send its remainder to different
cylinder group.

34/38

Finding space for related objs

* Old Unix (& DOS): Linked list of free blocks
- Just take a block off of the head. Easy.

P :\\L* 44"’1 P
heat———AS=EL >/

- Bad: free list gets jumbled over time. Finding adjacent blocks hard
and slow

* FFS: switch to bit-map of free blocks
1010101111111000001111111000101100

Easier to find contiguous blocks.

Small, so usually keep entire thing in memory

Time to find free block increases if fewer free blocks

35/38

Using a bitmap

* Usually keep entire bitmap in memory:
- 4G disk / 4K byte blocks. How big is map?

* Allocate block close to block x?
- Check for blocks near bmap [x/32]
- If disk almost empty, will likely find one near
- As disk becomes full, search becomes more expensive and less
effective
* Trade space for time (search time, file access time)
* Keep areserve (e.g, 10%) of disk always free, ideally
scattered across disk
- Don’t tell users (df can get to 110% full)
- Only root can allocate blocks once FS 100% full
- With 10% free, can almost always find one of them free

36/38

So what did we gain?

* Performance improvements:

- Able to get 20-40% of disk bandwidth for large files
- 10-20x original Unix file system!
- Better small file performance (why?)

¢ |s this the best we can do? No.

* Block based rather than extent based
- Could have named contiguous blocks with single pointer and
length (Linux ext2fs, XFS)
* Writes of metadata done synchronously

- Really hurts small file performance

- Make asynchronous with write-ordering (“soft updates”) or
logging/journaling... more next lecture

- Play with semantics (/tmp file systems)

37/38

* Obvious:
- Bigfile cache
* Fact: no rotation delay if get whole track.
- How to use?
Fact: transfer cost negligible.
- Recall: Can get 50x the data for only ~3% more overhead
- 1sector: 5ms +4ms + 5us (~ 512 B/(100 MB/s)) ~ 9ms
- 50 sectors: 5ms + 4ms +.25ms = 9.25ms
- How to use?

Fact: if transfer huge, seek + rotation negligible
- LFS: Hoard data, write out MB at a time

Next lecture:
- FFSin more detail
- More advanced, modern file systems

38/38

http://www.stanford.edu/~ouster/cgi-bin/papers/lfs.pdf

