CS 140: Final Review

March 13, 2020

Plan of attack

High level view of all the topics cover In the class

e |dea: find out what you need to revisit

Focus more on the post midterm material

e Final will be cumulative

Chance to think about how all these pieces fit together

Topics

Processes and Threads

Virtual Memory Device I/O
Concurrency * File Systems
Synchronization e Security

Linking * Virtual Machines

Memory allocation

What is an Operating System?

 Layer between applications and hardware
* Allows hardware to be shared
 Makes hardware useful to the programmer
* Provides abstractions for applications

* Provides protection
 The view of the OS from the application

e The view from within the OS

Processes and Threads

e User abstraction for a collection of work that uses the CPU
A process iIs an instance of a single program

A thread is a single execution context
 One process can have multiple threads

 Threads within the same process have shared access to memory

Kennel-level vs User-level Threads

 Kernel-level threads
* Created using a sys-call (can be slow)
* Execution order (scheduling) determined by the kernel

e Synchronization primitive provided by the kernel

e User-level (green) threads
 Implemented in user space and layered on top of kernel-level threads

 Must wrap sys-calls that can cause the kernel-level thread to block

e Thread creation Is often faster

Scheduling Thread Execution

 Given a number of runnable threads/process, which should
we run?

* Considerations: throughput, response time, CPU utilization, etc.

 Scheduling Policies:
* First come first server
e Shortest job first
 Round robin
* Priority
« MLFQS (multi-level feedback queues)

Virtual Memory

Want each process to have illusion of a very large memory

Create mapping from Virtual to Physical memory
* Give each process a large virtual address space

 Dynamically assign virtual address regions to real physical memory

Current mapping held in a per process page table

MMU manages translation from virtual to physical memory on
each access using page table information

TLB caches page table information to make lookups faster

Currently unused virtual memory regions can be evicted

Concurrency

What is our execution model for interleaved threads of execution?

Sequential consistency

* the order in which things actually happen to the order in which they are written in your
code

* optimizing for faster code execution hard for both compiler and CPU
More relaxed consistency models used In practice

 Use atomics and fences to enforce cases where consistency is needed

Must to careful to handle races in concurrent programs
* Race conditions: Timing/ordering of thread exception shouldn’t affect correctness

* Data races: two threads shouldn’t simultaneous access the same memory region if
one of the accesses is a write

Synchronization

Want to ensure no races from concurrent execution

Use synchronization primitives
 Locks, semaphores, condition variables

e Need to be careful to avoid deadlocks

Use carefully designed concurrent algorithms with atomics

 Atomics use to enforce exclusive access to single variables and well as
define desired consistency semantics

Other related techniques
« RCU, FUTEX, Transactional memory

Linking

e Combine object files in to a run-able executable

 Compiler generates object file from single source file but doesn’t know the final location of
function and variables in other files

* Need to convert symbols (hnames of functions and variables) to memory addresses and patch
them up in the code

 Linker 2 pass execution
* Pass 1:
* Decide where each object file’s code and data will resided in memory
* Collection information about all locations of functions and variables (symbol table)
* Collection information about all the references that need to be updated (relocation table)

 Pass 2: Use the symbol table to patch all locations specified in the relocation table

* Linking can happen at link time (static linking) or load/run time (dynamic linking)

Memory Allocation

 Dynamically give programs arbitrary size chucks of memory

 The core fight: minimize fragmentation

* Allocation have different sizes and life-times leaving “holes” in the
memory space

* \arious allocation policies to try to mitigate

 Can use garbage collection in languages that control pointers

 Move live data to compact use of memory to free up contiguous blocks

Ways for OS (drivers) to do 10

 Special instructions (e.g. inb, outb)

 Communicates with devices using specified “port” numbers

Memory-mapped device registers

 Regular memory read/write interface except access go directly to a device’s
registers

Memory-mapped device memory

* Regular memory read/write interface except access go directly to a device’s
internal memory

e DMA (Direct Memory Access)

 CPU offloads read/write of main memory to device/DMA engine

File systems

Need a way to persist and organize data between restarts

Associates names with bytes on disk

 Want an organization and naming that humans can remember

Most file systems designed around disks

 Optimized for fast sequential access and slow random access

Need to handle unexpected crashes

File systems on Disk

How do you track the blocks associated with a file?

Contiguous allocation “extent-based”

 Know the started block location and the length
Linked files

e Each block contains the location of the next block
FAT (File Allocation Table)

o Like linked files but keep link information for all files in one (or two) blocks

Indexed Files

o Keep an index for each file (inode)

Files divided into blocks of 4 Kbytes

Blocks of each file managed with multi-
level arrays of block pointers

File descriptor (i-node) = 14 block
pointers, initially O ("no block")

* First 12 point to data blocks (direct blocks)

* Next entry points to an indirect block
(contains 1024 4-byte block pointers)

* Last entry points to a doubly-indirect block

Maximum file length is fixed, but large

Indirect blocks aren't allocated until
heeded

Muti-level iIndexed files

Doubly-Indirect Block Indirect Block

Data Block

Indirect Block

Data Block

Data Block

File Naming and Directories

Directory contains a mapping from name to an inode
Directories are just files with a specified format
Name to inode mapping can be name to file or name to directory

Multiple directories can contain file names that point to the same
inode (hard-links)

Names can also point to a string that resolves at time of access
(soft-links)

Handling Crashes

e Machine could shut down at literally any point

 Need to make sure that the file system is never corrupted

* Ok with (some) data loss

« NOT ok with corruption
 Possible solution: Fix corruption (fsck)
* After crash fsck can be run to try to fix disk corruption and clean up the disk

e Scans over the entire disk looking for orphaned files, leaked disk blocks, etc

* |ssue: need to make sure that no corruption can occur that is beyond repair

Minimizing Corruption

 Ordered Updates

* Ensure write are permitted back to disk in an order that is recoverable

e e.g. add the new inode before updating the directory
e Soft Updates

 Update order may create cycles
* Break cycles by temporarily roll back all changes that created the cycle
 Journaling

* Allow operations the act as though they are atomic

 Use a write-ahead log to persist the intent; replay the log if there is a crash

Networking

Allow two applications on different machines to communicate

OS provides abstraction for communication

 Handles packaging, sending, unpacking, and delivering of information

TCP implemented by the kernel to provide a “reliable pipe”
abstraction over an unreliable network

The user-level interface provided iIs called a socket

Endpoints are named by an IP-address and 16-bit port

Network Layering

Networking protocols are organized In layers

Application data wrapped in TCP layer

* Contains information for implementing reliable delivery

TCP packet wrapped in IP packet

e Contains information for routing packets between networks

IP packet wrapped in link layer protocol (typically ethernet)

* Contains information for delivering packets within a network

Layers are unwrapped to deliver data to the application

Networking Implementation

* mbuf used to store packet data
 Packets made up of multiple mbufs
 mbufs are basically linked-lists of small buffers

* Allows easy adding and removing of data from the ends

 protosw structure as abstract network protocol interface
 (Goal: abstract away differences between protocols
* |[n C++, might use virtual functions on a generic socket struct

 Here just put function pointers in protosw structure

Basic Security

« How do you limit access to resources (files, devices, etc.)?

 Access Control Lists
 Each “object” has an associated list of who has access

 OS checks that a user is on the list before granting access to the object
« Capabilities
 Each user (program) has a list of “objects” that it’s allowed to access

 OS checks that a user has the capability before granting access

Basic Security Issues

e setuid: how to allow partial privileges?

e e.g. what to allow the user to change their own password in the
password file but don’t want the allow reading the password file

e setuid allows a program to run at with the effective permissions of the
files owner

« TOCTOU (Time-of-check, Time-of-use) bug
e e.g. first check if you are allowed to execute, then execute

 Problem: attacker can change the state between the check and the
execution

e Solution: support method of doing the check and execution atomically

Advanced Security

* Discretionary Access Control (DAC)
e Prevents unauthorized access to resource

 Does NOT prevent authorized access from leaking information
 e.g. ACL

 Mandatory Access Control (MAC)

e Prevents both unauthorized access and unauthorized disclosure

* e.g. stop a infected virus scanner from leaking your data

Mandatory Access Control (MAC)

* A security level or label is a pair(c,s) where:
e c=classification — E.g., 1=unclassified,2=secret,3=topsecret
e s=category-set — E.g., Nuclear, Crypto

e (c1,s1) dominates (c2,s2) iff c1=c2 and s12s

 Subjects and objects are assigned security levels

 Prevent leaking classified by checking the dominates relationship

* e.g. kill any process that attempts to write to a with security level (c’,s’) if it has
already read from a file with security level (c,s) where (c,s) dominates (c’,s’)

* e.g. kill any process that tries to write to an unclassified memo after reading a
classified intelligence report

LOMAC (Low water Mark Access Control)

« LOMAC'’s goal: make MAC more palatable
 Concentrates on Integrity

 More important goal for many settings
 E.g., don’t want viruses tampering with all your file

 Security: Low-integrity subjects cannot write to high integrity objects

 Subjects are jobs (essentially processes)
* Each subject labeled with an integrity number (e.g., 1, 2)
* Higher numbers mean more integrity

* Subjects can be reclassified on observation of low-integrity data

* Objects (files, pipes, etc.) also labeled w. integrity level

Advanced Security Issue: Side Channels

 Even with access controls process can communicate In an
unauthorized manner

 Covert storage channels

e e.d., high program inherits file descriptor-Can pass 4-bytes of information
to low program in file offset

 Timing channels

e e.g. use high and low CPU utilization to single 1s and Os; monitor
progress of busy loop to detect CPU utilization

* In general, can only hope to bound bandwidth of covert
channels

Operating Systems vs Virtual Machines

 OS and Virtual Machine allow sharing of hardware with protections

 OS exposes hardware through a process abstraction

 Makes finite resources (memory, # CPU cores) appear much larger

* Abstracts hardware to makes applications portable

* Protects processes and users from one another
* Virtual machine hardware through a hardware abstraction
« Makes hardware resources appear larger or smaller

o Allows almost any software {OS + Apps} to run

* Protects {OS + Apps} from each other

Virtual Machine

 Thin layer of software that virtualizes the hardware

__

Virtual Machine Monitor (VMM)

I

Virtual Machines

e Benefits

o Software compatibility: any OS/App can run (even really old ones)

 Hardware sharing: allow multiple servers to run on the same hardware

 Ways to virtualize
 Complete Machine Simulation (too slow)
» Basics
* Binary Translation

e Hardware-assisted virtualization

VMM Basics

e CPU Virtualization

e (Guest OS to runs in user mode

 Trap to VMM when Guest OS does sensitive things

* Virtual Memory Virtualization
 Guest OS to controls Guest Virtual to Guest Physical Address mapping
VMM controls Guest Physical to Host Physical Mapping
« VMM uses “Shadow Page Table” mapping Guest Virtual to Host Physical
* |/O Device Virtualization

e Simulate device behavior

Virtual Machine Implementations

 Binary translation

 Dynamically rewrite code to replace sensitive instructions with jumps
into the VMM

 Most instructions are not sensitive so they can be translated identically

 Hardware-assisted virtualization
 Hardware supports “guest mode”
VMM transfers control to guest using new “vmrun” instruction

e Hardware defines VMCB control bits to tell the CPU which instructions
should cause guest mode to “EXIT”

Topics

Processes and Threads

Virtual Memory Device I/O
Concurrency * File Systems
Synchronization e Security

Linking * Virtual Machines

Memory allocation

Good luck!

