L dminsrvia) ouine

@ Malloc and fragmentation
* Midterm exam in class Wednesday

- Open notes + any freely available materials you print
- Bring printouts of lecture slides

- No electronic devices

- No textbook (exam not based on textbook)

- Covers first 10 lectures of course (including today)

@ Exploiting program behavior
© Allocator designs

. . . - MM ick
* Extra pre-midterm office hours (see web site) @ User-level MMU tricks

» Section for Project 3 Friday © Garbage collection

/40 2/4

Dynamic memory allocation Why is it hard?

e Almost every useful program uses it

- Gives wonderful functionality benefits o Satisfy arbitrary set of allocation and frees.

> Don’t have to statically specify complex data structures * Easy without free: set a pointer to the beginning of some big
> Can have data grow as a function of input size chunk of memory (“heap”) and increment on each allocation:
> Allows recursive procedures (stack growth)

- But, can have a huge impact on performance

heap (free memory)

. . allocation ¢
* Today: how to implement it _

- Lecture based on [Wilson]

current free position

¢ Problem: free creates holes (“fragmentation”)

Some interesting facts: .
‘ : Ing Result? Lots of free space but cannot satisfy request!

- Two or three line code change can have huge, non-obvious impact
on how well allocator works (examples to come)

- Proven: impossible to construct an "always good" allocator

- Surprising result: memory management still poorly understood

3/4 4/m
More abstractly What is fragmentation really?
freelist
¢ What an allocator must do? E—’E—’E—PE—)NULL ¢ Inability to use memory that is free
- Track which parts of memory in use, which parts are free e Two factors required for fragmentation
- Ideal: no wasted space, no time overhead 1. Different lifetimes—if adjacent objects die at different times, then
* What the allocator cannot do? fragmentation:

- Control order of the number and size of requested blocks
- Know the number, size, or lifetime of future allocations
- Move allocated regions (bad placement decisions permanent)

> If all objects die at the same time, then no fragmentation:

malloc(20)? 20 10 20 10 20

2. Different sizes: If all requests the same size, then no fragmentation

« The core fight: minimize fragmentation (that’s why no external fragmentation with paging):

- App frees blocks in any order, creating holes in “heap”
- Holes too small? cannot satisfy future requests

5/41 6/41

Important decisions Impossible to “solve” fragmentation

* Placement choice: where in free memory to put a requested

block?

- Freedom: can select any memory in the heap

- Ideal: put block where it won’t cause fragmentation later

(impossible in general: requires future knowledge)

» Split free blocks to satisfy smaller requests?

- Fights internal fragmentation

- Freedom: can choose any larger block to split

- One way: choose block with smallest remainder (best fit)

* Coalescing free blocks to yield larger blocks

20

10

30

- Freedom: when to coalesce (deferring can save work)

 ——

30

30

- Fights external fragmentation

Pathological examples Pathological examples

* Suppose heap currently has 7 20-byte chunks

20

20

20

20

20

20

20

- What’s a bad stream of frees and then allocates?

* Given a 128-byte limit on malloced space

- What’s a really bad combination of mallocs & frees?

* Next: two allocators (best fit, first fit) that, in practice, work
pretty well

- “pretty well” = ~20% fragmentation under many workloads

7/41

9/4

e If you read allocation papers to find the best allocator
- All discussions revolve around tradeoffs

- The reason? There cannot be a best allocator

e Theoretical result:
- For any possible allocation algorithm, there exist streams of

allocation and deallocation requests that defeat the allocator and

force it into severe fragmentation.

* How much fragmentation should we tolerate?
- Let M = bytes of live data, n,, = smallest allocation, nmax = largest -

How much gross memory required?

- Bad allocator: M - (Nmax/Nmin)

> E.g., only ever use a memory location for a single size
> E.g., make all allocations of size nmax regardless of requested size
- Good allocator: ~ M - log(Nmax/Nmin)

e Suppose heap currently has 7 20-byte chunks

20

20

20

20

20

20

20

- What’s a bad stream of frees and then allocates?
- Free every other chunk, then alloc 21 bytes

¢ Given a 128-byte limit on malloced space

- What’s a really bad combination of mallocs & frees?

* Next: two allocators (best fit, first fit) that, in practice, work
pretty well

- “pretty well” = ~20% fragmentation under many workloads

8/41

9/41

* Suppose heap currently has 7 20-byte chunks

20

20

20

20

20

20

20

- What’s a bad stream of frees and then allocates?
- Free every other chunk, then alloc 21 bytes

* Given a 128-byte limit on malloced space

- What’s a really bad combination of mallocs & frees?

- Malloc 128 1-byte chunks, free every other

- Malloc 32 2-byte chunks, free every other (1- & 2-byte) chunk
- Malloc 16 4-byte chunks, free every other chunk...

* Next: two allocators (best fit, first fit) that, in practice, work
pretty well

- “pretty well” = ~20% fragmentation under many workloads

9/4

¢ Strategy: minimize fragmentation by allocating space from
block that leaves smallest fragment

- Data structure: heap is a list of free blocks, each has a header

holding block size and a pointer to the next block

20

I

I
?

30

?

30

?

¥ 37

- Code: Search freelist for block closest in size to the request.

(Exact match is ideal)

- During free (usually) coalesce adjacent blocks

* Potential problem: Sawdust
- Remainder so small that over time left with “sawdust” everywhere

- Fortunately not a problem in practice

10/4

¢ Simple bad case: allocate n, m (n < m) in alternating orders,

free all the ns, then try to allocate ann + 1

* Example: start with 99 bytes of memory
- alloc19, 21,19, 21,19

19 21 19 21 19
- free19,19,19:
19 21 19 21 19

- alloc 207 Fails! (wasted space = 57 bytes)

* However, doesn’t seem to happen in practice

Subtle pathology: LIFO FF L FistfitNumnces

* Storage management example of subtle impact of simple

decisions
 LIFO first fit seems good:

- Put object on front of list (cheap), hope same size used again

(cheap + good locality)

* But, has big problems for simple allocation patterns:

- E.g., repeatedly intermix short-lived 2n-byte allocations, with

long-lived (n + 1)-byte allocations

n/4

- Each time large object freed, a small chunk will be quickly taken,
leaving useless fragment. Pathological fragmentation

e First fit sorted by address order, in practice:

13/41

- Blocks at front preferentially split, ones at back only split when no

larger one found before them

- Result? Seems to roughly sort free list by size
- So0? Makes first fit operationally similar to best fit: a first fit of a

sorted list = best fit!

* Problem: sawdust at beginning of the list

- Sorting of list forces a large requests to skip over many small

blocks. Need to use a scalable heap organization

* Suppose memory has free blocks: =

- If allocation ops are 10 then 20, best fit wins

- When is FF better than best fit?

- Suppose allocation ops are 8, 12, then 12 = first fit wins

15|

14/4

e Strategy: pick the first block that fits
- Data structure: free list, sorted LIFO, FIFO, or by address
- Code: scan list, take the first one
e LIFO: put free object on front of list.
- Simple, but causes higher fragmentation
- Potentially good for cache locality
e Address sort: order free blocks by address
- Makes coalescing easy (just check if next block is free)
- Also preserves empty/idle space (locality good when paging)
* FIFO: put free object at end of list
- Gives similar fragmentation as address sort, but unclear why

12/4

e First fit sorted by address order, in practice:

- Blocks at front preferentially split, ones at back only split when no
larger one found before them

- Result? Seems to roughly sort free list by size

- So? Makes first fit operationally similar to best fit: a first fit of a
sorted list = best fit!

* Problem: sawdust at beginning of the list

- Sorting of list forces a large requests to skip over many small
blocks. Need to use a scalable heap organization

* Suppose memory has free blocks: m‘ EI

- If allocation ops are 10 then 20, best fit wins
- When is FF better than best fit?

14/41

* Worst-fit:

- Strategy: fight against sawdust by splitting blocks to maximize
leftover size

- In real life seems to ensure that no large blocks around
* Next fit:

- Strategy: use first fit, but remember where we found the last thing
and start searching from there

- Seems like a good idea, but tends to break down entire list

¢ Buddy systems:
- Round up allocations to power of 2 to make management faster
- Result? Heavy internal fragmentation

15/41

¢ So far we’ve treated programs as black boxes.

© Malloc and fragmentation * Most real programs exhibit 1 or 2 (or all 3) of the following
patterns of alloc/dealloc:

-, . - Ramps: accumulate data monotonically over time
@ Exploiting program behavior 4

-ag)-)a /
>
© Allocator designs =

- Peaks: allocate many objects, use briefly, then free all

y

I

@ User-level MMU tricks 4
-g‘ \
© Garbage collection - Plateaus: allocate many objects, use for a long time
>
° 5
16/41 17/4

Pattern 1: ramps Pattern 2: peaks

a4

trace of gcc compllmg with full optimization

Bytes in use
\
\
\
Bytes in use

time
trace from an LRU simulator

« In a practical sense: ramp = no free! * Peaks: allocate many objects, use briefly, then free all
- Fragmentation a real danger

- What happens if peak allocated from contiguous memory?
- Interleave peak & ramp? Interleave two different peaks?

- Implication for fragmentation?
- What happens if you evaluate allocator with ramp programs only?

18/4 19/4

Exploiting peaks Pattern 3: Plateaus

* Peak phases: allocate a lot, then free everything

- Change allocation interface: allocate as before, but only support 9
free of everything all at once 2
- Called “arena allocation”, “obstack” (object stack), or -
alloca/procedure call (by compiler people) o
>

* Arena = a linked list of large chunks of memory a L~ ~——

- Advantages: alloc is a pointer increment, free is “free” -
No wasted space for tags or list pointers time

o trace of perl running a string processing script
64k
. * Plateaus: allocate many objects, use for a long time
“— free pointer . : .
- What happens if overlap with peak or different plateau?

20/4 21/41

* Segregation = reduced fragmentation:

- Allocated at same time ~ freed at same time 0 Malloc and fragmentation
- Different type ~ freed at different time
LTI I — I @ Exploiting program behavior

MM — F—(I T | © Allocator designs

* Implementation observations:

- Programs allocate a small number of different sizes @ User-level MMU tricks
- Fragmentation at peak usage more important than at low usage
- Most allocations small (< 10 words) (5] Garbage collection
- Work done with allocated memory increases with size
- Implications?
2/4 23/41

Slab allocation [Bonwick] Simple, fast segregated free lists

* Kernel allocates many instances of same structures . [
- E.g.,a1.7 kB task_struct for every process on system

Often want contiguous physical memory (for DMA)

Slab allocation optimizes for this case:
- Aslab is multiple pages of contiguous physical memory
- A cache contains one or more slabs
- Each cache stores only one kind of object (fixed size) * Array of free lists for small sizes, tree for larger

Each slab is full, empty, or partial - Place blocks of same size on same page
- Have count of allocated blocks: if goes to zero, can return page

* E.g.,need new task_struct?

- Lookiin the task struct cache * Pro: segregate sizes, no size tag, fast small alloc

- Ifthere is a partial slab, pick free task_struct in that e Con: worst case waste: 1 page per size even w/o free,
- Else, use empty, or may need to allocate new slab for cache After pessimal free: waste 1 page per object
¢ Advantages: speed, and no internal fragmentation * TCMalloc [Ghemawat] is a well-documented malloc like this
24/4 25/41

Typical space overheads Getting more space from OS

* On Unix, can use sbrk

Free list bookkeeping and alignment determine minimum - E.g, to activate a new zero-filled page:

allocatable size: stack /* add nbytes of valid virtual address space */
° i iciti H void *get_free_space(size_t nbytes) {
If not implicit in page, must store size of block void ap = Sbrk (abytes) ;
» Must store pointers to next and previous freelist element if (p == (void *) -1)
strk error("virtual memory exhausted");
L |12 +—| 16 > heap) return p;
T T 4 byte alignment: addr% 4=0
0x40£0 0x40fc r/o data
) + code
* Allocator doesn’t know types

- Must align memory to conservative boundary * For large allocations, sbrk a bad idea
- May want to give memory back to 0S

- Can’t with sbrk unless big chunk last thing allocated
- So allocate large chunk using mmap’s MAP_ANON

26/41 27/41

* Minimum allocation unit? Space overhead when allocated?

* Resuming after fault lets us emulate many things
@ Malloc and fragmentation - “All problems in CS can be solved by another layer of indirection”

@ Exploiting program behavior

* Example: sub-page protection

* To protect sub-page region in paging system:

© Allocator designs r/o

- Set entire page to most restrictive permission; record in PT

@ User-level MMU tricks

write —| r/o

— write fault

@ Garbage collection - Any access that violates permission will cause a fault
- Fault handler checks if page special, and if so, if access allowed
- Allowed? Emulate write (“tracing”), otherwise raise error

28/4

More fault resumption examples Not just for kernels

* Emulate accessed bits:
- Set page permissions to “invalid”.

29/41

- On any access will get a fault: Mark as accessed e User-level code can resume after faults, too. Recall:
* Avoid save/restore of floating point registers - mprotect - protects memory
- Make first FP operation cause fault so as to detect usage - sigaction - catches signal after page fault
* Emulate non-existent instructions: - Return from signal handler restarts faulting instruction
- Give inst an illegal opcode; OS fault handler detects and emulates Many applications detailed by [Appel & Li]

fake instruction
- - e Example: concurrent snapshotting of process

......... - Mark all of process’s memory read-only with mprotect

° RunOSontopofanotheros! N } /

- Slam OS into normal process

- When does something “privileged,” real 0S
gets woken up with a fault.

- If operation is allowed, do it or emulate it; otherwise kill guest
- IBM’s VM/370. Vmware (sort of)

30/41

Distributed shared memory Persistent stores
page table [Remo"r e Idea: Objects that persist across program invocations
machine(s)

- E.g., object-oriented database; useful for CAD/CAM type apps

>

N Achieve by memory-mapping a file

privileged - One thread starts writing all of memory to disk
- - Other thread keeps executing
- On fault - write that page to disk, make writable, resume

31/41

But only write changes to file at end if commit
- Use dirty bits to detect which pages must be written out

+—FF— - Oremulate dirty bits with mprotect/sigaction (using write faults)
* On 32-bit machine, store can be larger than memory
- Butsingle run of program won’t access > 4GB of objects
* Virtual memory allows us to go to memory or disk - Keep mapping of 32-bit memory pointers «+ 64-bit disk offsets

- But, can use the same idea to go anywhere! Even to another

- Use faults to bring in pages from disk as necessary

computer. Page across network rather than to disk. Faster, and - After reading page, translate pointers—known as swizzling

allows network of workstations (NOW)

32/4

33/41

@ Malloc and fragmentation

@ Exploiting program behavior

© Allocator designs

@ User-level MMU tricks

© Garbage collection

Concurrent garbage collection Heap overflow detection

34/4

* Idea: Stop & copy, but without the stop

Mutator thread runs program, collector concurrently does GC

* When collector invoked:

Protect from space & unscanned to space from mutator

Copy objects in registers into to space, resume mutator

All pointers in scanned to space point to to space

If mutator accesses unscanned area, fault, scan page, resume

scanned |unscanned
area area

1

6 é mutator faults
] on access

2 3|4 5

Heap overflow detection 2 Reference counting

e Seemingly simpler GC scheme:

from space

o spéce
(See [Appel & Li].)

36/41

* Mark page at end of heap inaccessible

mprotect (heap_limit, PAGE_SIZE, PROT_NONE);

Program will allocate memory beyond end of heap
Program will use memory and fault

Note: Depends on specifics of language
But many languages will touch allocated memory immediately

Invoke garbage collector

Must now put just allocated object into new heap

* Note: requires more than just resumption

Faulting instruction must be resumed
But must resume with different target virtual address
Doable on most architectures since GC updates registers

38/41

¢ In safe languages, runtime knows about all pointers

So can move an object if you change all the pointers

* What memory locations might a program access?

Any objects whose pointers are currently in registers
Recursively, any pointers in objects it might access
Anything else is unreachable, or garbage; memory can be re-used

* Example: stop-and-copy garbage collection

Memory full? Temporarily pause program, allocate new heap

Copy all objects pointed to by registers into new heap
> Mark old copied objects as copied, record new location

Start scanning through new heap. For each pointer:
> Copied already? Adjust pointer to new location
> Not copied? Then copy it and adjust pointer
Free old heap—program will never access it—and continue

35/41

* Many GCed languages need fast allocation

E.g., in lisp, constantly allocating cons cells
Allocation can be as often as every 50 instructions

* Fast allocation is just to bump a pointer

char *next_free;
char *heap_limit;

void *alloc (unsigned size) {
if (next_free + size > heap_limit) /* 1 */
invoke_garbage_collector (); /x 2 %/
char *ret = next_free;
next_free += size;
return ret;

}

e But would be even faster to eliminate lines 1 & 2!

37/41

Each object has “ref count” of pointers to it
Increment when pointer set to it

Decremented when pointer killed
(C++ destructors handy—c.f. shared_ptr)

void foo(bar c) {

bar a b;

a=c; // c.refcnt++

b= a; // a.refcnt++

a=0; // c.refcnt--

return; // b.refcnt--
}

ref count == 07 Free object

* Works well for hierarchical data structures

E.g., pages of physical memory

39/41

Reference counting pros/cons Ownership types

¢ Circular data structures always have ref count > 0
- No external pointers means lost memory e Another approach: avoid GC by exploiting type system

@ - Use ownership types, which prohibit copies

* You can move a value into a new variable (e.g., copy pointer)
- But then the original variable is no longer usable

@ @ * You can borrow a value by creating a pointer to it

- But must prove pointer will not outlive borrowed value
e Can do manually w/o PL support, but error-prone - And can’t use original unless both are read-only (to avoid races)
* Potentially more efficient than real GC
- No need to halt program to run collector
- Avoids weird unpredictable latencies
* Potentially less efficient than real GC
- With real GC, copying a pointer is cheap

- With refcounts, must update count each time & possibly take lock
(but C++11 std::move can avoid overhead)

Ownership types available now in Rust language
- First serious competitor to C/C++ for OSes, browser engines

C++11 does something similar but weaker with unique types
- std::unique_ptr, std: :unique_lock,...
- Can std::move but not copy these

40/41 a/x

