
Midterm Review
CS140 Winter 2020

Admin

● When is it?
○ Midterm in class Wednesday Feb 12

● What resources can I use?
○ Open note, can print lecture slides
○ No textbook or electronics

● How much of my grade does it count for?
○ 50% of overall grade is: max(midterm > 0 ? final : 0, (midterm + final)/2)

Content
● Processes & Threads
● Concurrency
● Scheduling
● Virtual Memory (HW/OS)
● Synchronization
● Linking
● Memory Allocation (Monday)

● Memory models
○ Sequential consistency

● Races
○ Implementing locks
○ Producer/consumer

● Design tradeoffs
○ Using the past to predict the future

● Uniprocessor vs. multiprocessor

Themes

Processes & Threads

Processes

● Process
○ An instance of a program running
○ Has its own view of the machine: address space, open files

● Process control block (PCB)
○ Stores information about the process, including:

■ State (running, ready, waiting)
■ Registers
■ Virtual memory mappings
■ Open files

○ struct thread in pintos

Processes

● Why?
○ Higher throughput*

○ Lower latency*

*potentially

Threads

● Thread
○ Schedulable execution context
○ Allows one process to use multiple CPUs
○ Lighter-weight than process

Kernel vs. User Threads

● Kernel threads
○ Pro: control

■ Scheduling
■ Priority

○ Con: heavy-weight
■ All operations go through kernel
■ More memory/features than needed

● User threads
○ Also known as “green threads”
○ Pro: more lightweight and flexible
○ Con: control

■ IO on one thread blocks all

1 user thread : 1 kernel thread

n user threads : 1 kernel thread n user threads : m kernel threads

Context Switching

● Context switch
○ Change which process is running

● How?
○ Save registers of current thread
○ Restore registers of next thread
○ Return into next thread

● When?
○ State change

■ Blocking call
■ Device interrupt (e.g. disk access completed, packet arrived on network)

○ Can preempt when kernel gets control*
■ Traps: system call, page fault, illegal instruction
■ Periodic timer interrupt

*unless non-preemptive (thread executes until blocking call)

Scheduling

Scheduling

● Problem
○ Given a list of runnable processes, which do we run?

● Goals
○ Throughput
○ Turnaround time
○ Response time
○ CPU utilization
○ Waiting time

● Context switch costs
○ CPU time in kernel
○ Indirect costs

Scheduling Algorithms

● First come first serve

● Shortest job first

● Round-robin
● Priority scheduling
● MLFQS (multilevel feedback queues)

Multiprocessor Scheduling

● Problem
○ Given a list of runnables processes, which do we run and which CPUs do we run them on?

● Considerations
○ Load balancing
○ Minimize direct/indirect costs

● Approaches
○ Affinity scheduling

■ Keep process on same CPU
○ Gang scheduling

■ Schedule related processes/threads together

Virtual Memory

Virtual Memory HW

● Problem
○ Want multiple processes to co-exist
○ How should processes interface with memory?

● Issues with using physical addresses
○ Protection
○ Transparency
○ Resource exhaustion

● Solution
○ Give each program its own virtual address space
○ Memory Management Unit (MMU)

■ translates between physical and virtual addresses

How to Map Memory

● Base + bound
○ Physical address = virtual address + base

● Segmentation
○ Divide memory into segments, each of which has a base + bound

● Demand Paging
○ Divide memory into small, equal-sized pages
○ Each process has its own page table

■ Multilevel
■ Translation Lookaside Buffer (TLB) caches recently used translations

○ Any process can have any page, idle pages stored on disk, paged in when used
○ Eviction?

■ Least recently used: use past to predict future

Considerations

● Fragmentation
○ Inability to use free memory
○ External fragmentation (e.g. segmentation)

■ Many small holes between memory segments
○ Internal fragmentation (e.g. paging)

■ Unused memory within allocated segments

● Speed
○ Disk much slower than memory
○ 80/20 rule

■ Hot 20 in memory = “working set”

● Local or global page allocation
● Thrashing

○ Working set can’t fit in memory

Concurrency

Memory Model

● Sequential consistency
○ As if all operations were executed in some sequential order
○ Downsides

■ Thwarts hardware/compiler optimizations (e.g. prefetching/reordering)
○ Requirements

■ Maintain program order on individual processors
■ Ensure write atomicity

Preventing Races

● Define critical section
● Requirements to fake SC?

○ Mutual exclusion
○ Progress
○ Bounded waiting

● How to meet requirements?
○ Synchronization primitives

■ Locks, semaphores, condition variables

● What if sharing data with interrupt handler?
○ Uniprocessor: disable interrupts
○ Multiprocessor: disable interrupts + spinlock

Synchronization

Memory System Properties

● Coherence
○ Concerns access to a single memory location

■ If A writes x=1 and B writes x=2, all processes should see the same ordering
○ MESI/MOESI multicore cache coherence

■ Modified, Exclusive, Shared, Invalid, Owned

● Consistency
○ Concerns ordering across multiple memory locations

■ If x=1,y=2, A reads x,y and B writes x=3,y=4, could A ever see x=1,y=4?
○ Sequential consistency matches our intuition

Considerations

● Amdahl’s law
○ Ultimate limit on parallel speedup if part of task must be sequential

● Necessary conditions for data race
○ Multiple threads access the same data
○ At least one of the accesses is a write

● There is no such thing as a benign data race
● Necessary conditions for deadlock

○ Limited access (mutual exclusion)
○ No preemption
○ Multiple independent requests (hold and wait)
○ Circularity in graph of requests

■ A holds mutex x, wants mutex y; B holds y, wants x

Memory Ordering and Fences

● What if we don’t need sequential consistency?
○ Weaker consistency models
○ Atomics, lock-free data structures, read-copy update, MCS spinlock, futex

● X-Y fence
○ operations of type X sequenced before the fence happen before operations of type Y sequenced

after the fence

Linking

Components of Memory

● Heap
○ Allocated and laid out at runtime by malloc

● Stack
○ Allocated at runtime, layout by compiler

● Global data/code
○ Allocated by compiler, layout by linker

● Mmapped regions
○ Managed by programmer or linker

Program Lifecycle

● Source code → program running
● Compiler/Assembler

○ Generates one object file for each source file (e.g. main.c → main.o)
■ References to other files are incomplete (e.g. printf is in stdio.o)

● Linker
○ Combines all object files into executable file

● OS Loader
○ Reads executables into memory

Linker

● Goal
○ Object files → executable

● How
○ Pass 1

■ Coalesce like segments
■ Construct global symbol table
■ Compute virtual address of each segment

○ Pass 2
■ Fix addresses of code and data using global symbol table

Object Files

Pass 1

Pass 2

Shared Libraries & Dynamic Linking

● Keep a single shared copy of common libraries in memory

Lazy Dynamic Linking

[Unsolicited] Advice

Advice

● Old exams won’t necessarily cover the same material or have the same format
● Understand core themes

○ Identify races in code
○ Identify pros/cons of new approaches
○ Given a workload, be able to select a good approach

● Notice what is/isn’t specified in a question (and state assumptions!)
○ Sequential consistency
○ Uniprocessor vs. multiprocessor

● Rely on notes for facts
○ Might be time-constrained
○ Create a cheat sheet instead of printing all lecture slides (or both?)

● Deep understanding of most material > cursory understanding of all

Good luck!

