Midterm Review

CS140 Winter 2020



Admin

e When is it?
o Midterm in class Wednesday Feb 12

e What resources can I use?

o Open note, can print lecture slides
o No textbook or electronics

e How much of my grade does it count for?
o 50% of overall grade is: max( midterm > @ ? final : @, (midterm + final)/2 )



Content

Processes & Threads
Concurrency

Scheduling

Virtual Memory (HW/OS)
Synchronization

Linking

Memory Allocation (Monday)

Themes

e Memory models
o  Sequential consistency
e Races
o  Implementing locks
o  Producer/consumer
e Design tradeoffs
o  Using the past to predict the future
e Uniprocessor vs. multiprocessor



Processes & Threads



Processes

e Process
o Aninstance of a program running
o Has its own view of the machine: address space, open files

e Process control block (PCB)

o  Stores information about the process, including;:
m State (running, ready, waiting)
m Registers
m Virtual memory mappings
m  Openfiles
o struct threadin pintos



Processes

e Why?
o Higher throughput*

emacs ——> wait for input——— wait for input———

gcc > ?

o Lower latency*

Running A then B requires 100 sec for B to complete

80s 20s
A > B >

Running A and B concurrently makes B finish faster
A— > >

B —_—

*potentially



Threads

Thread
o  Schedulable execution context
o  Allows one process to use multiple CPUs
o Lighter-weight than process

code data files code data files
registers stack registers |[| registers ||| registers
stack stack stack
thread —> <«— thread

single-threaded process

multithreaded process



Kernel vs. User Threads

e Kernel threads
o  Pro: control
m Scheduling

m Priority
o Con: heavy-weight <—kernel thread

m All operations go through kernel
m  More memory/features than needed

<«— user thread

1 user thread : 1 kernel thread

<«— user thread ; ;
<«— user thread
—

e User threads ;
o  Also known as “green threads”
o  Pro: more lightweight and flexible
o Con: control
m 1O on one thread blocks all o
emel threa <«— kernel thread

n user threads : 1 kernel thread n user threads : m kernel threads



Context Switching

e Context switch
. . ) . scheduler )
o  Change which process is running a\adtm'tted dispatch exiy
e How?

o  Save registers of current thread
o Restore registers of next thread

terminated

running

)

\

. \ / .
o  Return into next thread Iéc?n%lz\'lc?grf o (/ O or event wat
waiting

e When?

o State change

m  Blocking call

m Deviceinterrupt (e.g. disk access completed, packet arrived on network)
o Can preempt when kernel gets control*

m Traps: system call, page fault, illegal instruction

*unless non-preemptive (thread executes until blocking call)



Scheduling



Scheduling

Given a list of runnable processes, which do we run?

Problem
O
Goals
o  Throughput
o Turnaround time
o Response time
o CPU utilization
o Waiting time

Context switch costs

@)

(@)

CPU time in kernel
Indirect costs

grep

matrix
multiply

wait for
disk

wait for
disk

wait for
disk

I

\ wait for CPU /




Scheduling Algorithms

First come first serve

Shortest job first

24

27

30

P, | P3

P,

Round-robin
Priority scheduling
MLFQS (multilevel feedback queues)

30



Multiprocessor Scheduling

e Problem
o  Given a list of runnables processes, which do we run and which CPUs do we run them on?

e Considerations

o Load balancing
o  Minimize direct/indirect costs

e Approaches
o  Affinity scheduling
m Keep process on same CPU
o Gang scheduling
m  Schedule related processes/threads together



Virtual Memory



Virtual Memory HW

Problem

(@)

(@)

Want multiple processes to co-exist
How should processes interface with memory?

Issues with using physical addresses

o Protection
o Transparency
o Resource exhaustion
Solution
o  Give each program its own virtual address space
o Memory Management Unit (MMU)

translates between physical and virtual addresses

| No: to fault handler

virtual address
0x30408

Is address
legal?

virtual address
0x30408

» MMU

Is address
legal?

—* Yes: phys.

» MMU

addr 0x92408

memory

s memory




How to Map Memory

e Base + bound
o  Physical address = virtual address + base

e Segmentation
o Divide memory into segments, each of which has a base + bound

e Demand Paging
o Divide memory into small, equal-sized pages
o Each process has its own page table
m  Multilevel
m Translation Lookaside Buffer (TLB) caches recently used translations
o Any process can have any page, idle pages stored on disk, paged in when used
o Eviction?
m Least recently used: use past to predict future



Considerations

e Fragmentation
o Inability to use free memory
o External fragmentation (e.g. segmentation)
m  Many small holes between memory segments
o Internal fragmentation (e.g. paging)
m  Unused memory within allocated segments
e Speed
o  Disk much slower than memory
o 80/20 rule
m Hot 20 in memory = “working set”

e Local or global page allocation
e Thrashing

o  Working set can’t fit in memory



Concurrency



Memory Model

e Sequential consistency
o Asifall operations were executed in some sequential order
o Downsides
m Thwarts hardware/compiler optimizations (e.g. prefetching/reordering)
o Requirements
m Maintain program order on individual processors
m  Ensure write atomicity



Preventing Races

e Define critical section

e Requirements to fake SC?
o  Mutual exclusion
o  Progress
o Bounded waiting
e How to meet requirements?
o Synchronization primitives
m Locks, semaphores, condition variables
e What if sharing data with interrupt handler?

o  Uniprocessor: disable interrupts
o  Multiprocessor: disable interrupts + spinlock



Synchronization



Memory System Properties

e (Coherence
o  Concerns access to a single memory location
m If A writes x=1 and B writes x=2, all processes should see the same ordering
o  MESI/MOESI multicore cache coherence
m Modified, Exclusive, Shared, Invalid, Owned

e Consistency
o  Concerns ordering across multiple memory locations
m Ifx=1,y=2, Areads x,y and B writes x=3,y=4, could A ever see x=1,y=4?
o Sequential consistency matches our intuition



Considerations

e Amdahl’s law

o  Ultimate limit on parallel speedup if part of task must be sequential

e Necessary conditions for data race
o  Multiple threads access the same data
o At least one of the accesses is a write

e There is no such thing as a benign data race

e Necessary conditions for deadlock
o Limited access (mutual exclusion)
o No preemption
o  Multiple independent requests (hold and wait)
o Circularity in graph of requests
m A holds mutex x, wants mutex y; B holds y, wants x



Memory Ordering and Fences

e What if we don’t need sequential consistency?
o  Weaker consistency models
o  Atomics, lock-free data structures, read-copy update, MCS spinlock, futex

e X-Yfence

o operations of type X sequenced before the fence happen before operations of type Y sequenced

after the fence _
Acquire fence
Acq_rel fence ‘

[{ Load-Load Load-Store ]]

Store-Load l Store-Store J o

~
~

Release fence
Seq_cst fence



Linking



Components of Memory

e Heap kernel
o  Allocated and laid out at runtime by malloc ( stack

e Stack . _ «~l mmapped
o Allocated at runtime, layout by compiler yhamics «—— [ regions

e Global data/code heap

N7

o  Allocated by compiler, layout by linker

e Mmapped regions _ initialized data
o Managed by programmer or linker Staticy read-only data

uninitialized data (bss)

code (text)




Program Lifecycle

e Source code — program running

e Compiler/Assembler
o Generates one object file for each source file (e.g. main.c — main.o)
m References to other files are incomplete (e.g. printf is in stdio.o)

e Linker
o Combines all object files into executable file
e OS Loader

o Reads executables into memory



Linker

e Goal

o  Object files — executable
e How

o Passi

m Coalesce like segments
m Construct global symbol table
m Compute virtual address of each segment
o Pass2
m Fix addresses of code and data using global symbol table



Object Files

main.c

extern float sin();
extern printf(), scanf();

main() {
double x, result;
printf ("Type number: ");
scanf ("%f", &x);
result = sin(x);
printf("Sine is %f\n",
result);

“Store the final location of sin
at offset 60 in the text section”

main.o
0 | main: text section

30 | call printf
52 | call scanf
60 | call sin

86 | call printf

0| _sl: "Type number: " data section
14 | “s2: "sf"
17 | _s3: "Sine is %f\n"

main T[O0] Symbols
sl D[O]
“s2 D[14]

“s3 D[17]

relocation




Pass 1

6 Memory map: Symbol table:
Name File Sec Offset Addr
stdio.o data main main.o T 0 0
_sl main.o D 0 720
760 . _s2 main.o D 14 734
720 main.o data _s3 main.o D 17 737
printf stdio.o T 38 134
math.o text scanf stdio.o T 232 328
508 stdin stdio.o D 0 760
stdout stdio.o D 8 768
stdio.o text sin math.o T 0 508
96
main.o text
0




Pass 2

30

30

call 0

=

printf T[30]

==

printf: 134

¥

caﬂﬁ34

text section in main.o

relocation record in main.o

symbol table

text section in a.out



Shared Libraries & Dynamic Linking

0x080480

00
program

0x08048f
44
libc

main:

call printf
printf: re

ret

Static Libraries

0x080480

00
program

PLT
(r/o code)

6OT
(r/w
data)

0x400012
34
libc

main:

call printf 3
printf:

call GOT[5],

. &pﬂmf)

/

printf: o«

ret

Dynamic Shared Libraries

0x080480

00
program

PLT
(r/o code)

GOT
(r/w
data)

0x400012
34
libc

Keep a single shared copy of common libraries in memory

main:

call printf 3
printf:

call GOT([5] |

[5] difixup

printf: \

ret

Lazy Dynamic Linking

difixup:

GOTI[5] = &printf
call printf,




| Unsolicited] Advice



Advice

e Old exams won’t necessarily cover the same material or have the same format

e Understand core themes
o Identify races in code
o Identify pros/cons of new approaches
o  Given a workload, be able to select a good approach
e Notice what is/isn’t specified in a question (and state assumptions!)
o Sequential consistency
o  Uniprocessor vs. multiprocessor
e Rely on notes for facts
o  Might be time-constrained
o Create a cheat sheet instead of printing all lecture slides (or both?)

e Deep understanding of most material > cursory understanding of all



Good luck!



