Administrivia Processes

e Aprocess is an instance of a program running

» Sections Friday 1:30pm-2:20pm nextdoor in Gates BO1
- Please attend first section this Friday to learn about lab 1

Modern OSes run multiple processes simultaneously

Examples (can all run simultaneously):
Change of plan: sections every week - gcc file_A.c-compiler running on file A

Lab 1due Friday, Jan 24 at 12pm - gce file_B.c-compiler runningon file B
- emacs - text editor

- firefox — web browser

Ask cs140-staff for extension if you can’t finish
- Tell us where you are with the project,
- How much more you need to do, and
- How much longer you need to finish

Non-examples (implemented as one process):
- Multiple firefox windows or emacs frames (still one process)
* Why processes?
- Simplicity of programming
- Speed: Higher throughput, lower latency

No credit for late assignments w/o extension

1/44 2/44

* Multiple processes can increase CPU utilization
- Overlap one process’s computation with another’s wait

* Processes and parallelism have been a fact of life much
longer than OSes have been around
- E.g., say takes 1 worker 10 months to make 1 widget
gcc - Company may hire 100 workers to make 100 widgets
- Latency for first widget >> 1/10 month
- Throughput may be < 10 widgets per month
(if can’t perfectly parallelize task)
H 80s >B 205 - And 100 workers making 10,000 widgets may achieve > 10
widgets/month (e.g., if workers never idly wait for paint to dry)

emacs ——> wait for input——— wait for input———

* Multiple processes can reduce latency
- Running A then B requires 100 sec for B to complete

- Running A and B concurrently makes B finish faster

g * You will see these effects in you Pintos project group
—_— — >

- May block waiting for partner to complete task

B e — - Takes time to coordinate/explain/understand one another’s code
- Labs won’t take 1/3 time with three people

- But you will graduate faster than if you took only 1 class at a time

- Ais slower than if it had whole machine to itself,
but still < 100 sec unless both A and B completely CPU-bound

3/44 4/44
A process’s view of the world Inter-Process Communication
max o process A E pr:ces: A 31
e Each process has own view of machine I B | p— o’
- Its own address space - *(char *)0xc000
differentin P; & P, A1,
- Its own open files il
- Its own virtual CPU (through preemptive heap
multitasking) -
. . . data kernel E; kernel
e Simplifies programming model
- gee does not care that firefox is running et @ ®

0

. . . * How can processes interact in real time?
* Sometimes want interaction between processes

- Simplest is through files: emacs edits file, gcc compiles it
- More complicated: Shell/command, Window manager/app.

(a) By passing messages through the kernel
(b) By sharing a region of physical memory
(c) Through asynchronous signals or alerts

5/44 6/44

e Original UNIX paper is a great reference on core system calls

@ (UNIX-centric) User view of processes
® int fork (void);

- Create new process that is exact copy of current one
@ Kernel view of processes - Returns process ID of new process in “parent”
- Returns 0in “child”

e Threads ® int waitpid (int pid, int *stat, int opt);
- pid - process to wait for, or -1 for any

- stat - will contain exit value, or signal

- opt — usually O or WNOHANG

- Returns process ID or -1 0on error

@ Thread implementation details

7/44 8/44

Deleting processes Running programs

® int execve (char *prog, char *x*argv, char **envp) ;
- prog - full pathname of program to run
° void exit (int status); - argv - argument vector that gets passed to main
- Current process ceases to exist - envp - environment variables, e.g., PATH, HOME
- status shows up in waitpid (shifted)
- By convention, status of 0 is success, non-zero error

¢ Generally called through a wrapper functions

- int execvp (char *prog, char *xargv);

¢ int kill (int pid, int sig); Search PATH for prog, use current environment
- Sends signal sig to process pid - int execlp (char *prog, char *arg, ...);
- SIGTERM most common value, kills process by default List arguments one at a time, finish with NULL
(but application can catch it for “cleanup”) o Example: minish.c

- SIGKILL stronger, kills process always - Loop that reads a command, then executes it

* Warning: Pintos exec more like combined fork/exec

9/44 10/44

minish.c (simplified) Manipulating file descriptors

pid_t pid; char **av;

void doexec () { ¢ int dup2 (int oldfd, int newfd);
execvp (av[0], av); - Closes newtd, if it was a valid descriptor
ziiioil)(?v (o1 - Makes newfd an exact copy of oldfd
} - Two file descriptors will share same offset
(1seek on one will affect both)
é:r't;;’;la%n Loop: */ ° int fentl (int f£d, int cmd, ...) - misc fd configuration
parse_next_line_of_input (&av, stdin); - fentl (fd, F_SETFD, val) - sets close-on-exec flag
switch (pid = fork ()) { When val == 0, £d not inherited by spawned programs
Ca;:r;jli ("fork"): break: - fentl (fd, F_GETFL) - get misc fd flags
case 0: ’ ’ - fentl (£d, F_SETFL, val) - set misc fd flags
dei(;i)]{.if 05 e Example: redirsh.c
waitpid (pid, NULL, 0); break; - Loop that reads a command and executes it

- Recognizes command < input > output 2> errlog

/44 12/44

void doexec (void) { ® int pipe (int fds[2]);
int fd; . . .
if (infile) { /* non-NULL for "command < infile" */ - Returns two file descriptors in £ds [0] and fds[1]
if ((fd = open (infile, O_RDONLY)) < 0) { - Data written to fds [1] will be returned by read on £ds [0]
Ie’ili"im("l)(?nflle)? - When last copy of £ds[1] closed, £ds [0] will return EOF
} ’ - Returns 0 on success, -1 0on error
if (£d !'= 0) { o ; ;
dup? (£d, 0); Operations on pipes
close (fd); - read/write/close - as with files
} - When £ds[1] closed, read (fds [0]) returns O bytes
} - When £ds[0] closed, write (fds[1]):
/* ... do same for outfile—fd 1, errfile—fd 2 ... */ > Kills process with SIGPIPE

> Orif signal ignored, fails with EPIPE
execvp (av[0], av);

perror (av([0]); e Example: pipesh.c

exit (1); - Sets up pipeline commandl | command2 | command3 ...
}
13/44 14/ 44
pipesh.c (simplified) Multiple file descriptors
void doexec (void) { * What if you have multiple pipes to multiple processes?
while (outcmd) { . .
int pipefds[2]; pipe (pipefds); ® poll system call lets you know which fd you can read/write
switch (fork ()) { typedef struct pollfd {
case -1: int fd;
perror ("fork"); exit (1); short events; // OR of POLLIN, POLLOUT, POLLERR, ...
case O: short revents; // ready events returned by kernel
dup2 (pipefds[1], 1); g . .)
close (pipefds [01); close (pipefds 1nn; int poll(struct pollfd *pfds, int nfds, int timeout);
outcmd = NULL; . . .
break; * Also put pipes/sockets into non-blocking mode
default: if ((n = fentl (s.fd_, F_GETFL)) == -
dup2 (pipefds[0], 0); || fentl (s.fd_, F_SETFL, n | O_NONBLOCK) == -1)
close (pipefds[0]); close (pipefds[1]); perror ("O_NONBLOCK") ;
parse_command_line (&av, &outcmd, outcmd);
break; - Returns errno EGAIN instead of waiting for data
} ¥ - Does not work for normal files (see aio for that)
. 'In practice, more efficient to use epol11 on linux or kqueue on *BSD
15/44 16/ 44
* Most calls to fork followed by execve * login - checks username/password, runs user shell
* Could also combine into one spawn system call - Runs with administrative privileges
(like Pintos exec) - Lowers privileges to user before exec’ing shell
« Occasionally useful to fork one process - Note doesn’t need fork to run shell, just execve
- Unix dump utility backs up file system to tape ¢ chroot - change root directory
- If tape fills up, must restart at some logical point - Useful for setting/debugging different OS image in a subdirectory
- Implemented by forking to revert to old state if tape ends * Some more linux-specific examples
* Real win is simplicity of interface - systemd-nspawn - runs program in container-like environment
- Tons of things you might want to do to child: Manipulate file - ip netns - runs program with different network namespace
descriptors, alter namespace, manipulate process limits... - unshare - decouple namespaces from parent and exec program

- Yet fork requires no arguments at all

17/44 18/44

* Without fork, needs tons of different options for new process
* Example: Windows CreateProcess system call

- Also CreateProcessAsUser, CreateProcessWithLogonW,
CreateProcessWithTokenW,...

BOOL WINAPI CreateProcess(

_In_opt_ LPCTSTR lpApplicationName,

_Inout_opt_ LPTSTR lpCommandLine,

_In_opt_ LPSECURITY_ATTRIBUTES lpProcessAttributes,
_In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,
In BOOL bInheritHandles,

In DWORD dwCreationFlags,

_In_opt_ LPVOID lpEnvironment,

_In_opt_ LPCTSTR 1pCurrentDirectory,

In LPSTARTUPINFO lpStartupInfo,
Out LPPROCESS_INFORMATION lpProcessInformation
)3

19/44

Implementing processes Process states

* Keep a data structure for each process

- Process Control Block (PCB) Process state
- Called proc in Unix, task_struct in Linux, Process ID
and just struct thread in Pintos User id, etc.

* Tracks state of the process
- Running, ready (runnable), waiting, etc.

Program counter

¢ Includes information necessary to run Registers
- Registers, virtual memory mappings, etc. Address space
- Open files (including memory mapped files) (VM data structs)
* Various other data about the process
- Credentials (user/group ID), signal mask, Open files

controlling terminal, priority, accounting
statistics, whether being debugged, which PCB
system call binary emulation in use, ...

21/44

Scheduling Scheduling policy

How to pick which process to run

Scan process table for first runnable?
- Expensive. Weird priorities (small pids do better)
- Divide into runnable and blocked processes
FIFO?
- Put threads on back of list, pull them from front:

head ¢—> t) «— b > t; «— tg
A

tail ¢

- Pintos does this—see ready_list in thread.c
® Priority?
- Give some threads a better shot at the CPU

23/44

@ (UNIX-centric) User view of processes
@ Kernel view of processes
© Threads

@ Thread implementation details

20/44

scheduler

dispatch terminated

running
interrupt //O or event wait

® Process can be in one of several states
- new & terminated at beginning & end of life
- running - currently executing (or will execute on kernel return)
- ready - can run, but kernel has chosen different process to run
- waiting - needs async event (e.g., disk operation) to proceed

* Which process should kernel run?
- if 0 runnable, run idle loop (or halt CPU), if 1 runnable, run it
- if >1runnable, must make scheduling decision

1/0 or event
completion

22/44

* Want to balance multiple goals

- Fairness - don’t starve processes

- Priority - reflect relative importance of procs

- Deadlines - must do X (play audio) by certain time
- Throughput - want good overall performance

- Efficiency - minimize overhead of scheduler itself

* No universal policy

- Many variables, can’t optimize for all
- Conflicting goals (e.g., throughput or priority vs. fairness)

* We will spend a whole lecture on this topic

24/44

e Can preempt a process when kernel gets control

Running process can vector control to kernel

- System call, page fault, illegal instruction, etc.
- May put current process to sleep—e.g., read from disk

- May make other process runnable—e.g., fork, write to pipe

Periodic timer interrupt

- If running process used up quantum, schedule another

Device interrupt
- Disk request completed, or packet arrived on network
- Previously waiting process becomes runnable
- Schedule if higher priority than current running proc.

Changing running process is called a context switch

¢ Very machine dependent. Typical things include:

Save program counter and integer registers (always)
Save floating point or other special registers

Save condition codes

Change virtual address translations

* Non-negligible cost

- Save/restore floating point registers expensive
> Optimization: only save if process used floating point

- May require flushing TLB (memory translation hardware)
> HW Optimization 1: don’t flush kernel’s own data from TLB

- Usually causes more cache misses (switch working sets)

> HW Optimization 2: use tag to avoid flushing any data

| code || data || files |

| code || data || files |

registers stack

thread —> ;

T T
registers ||| registers |[| registers

stack

stack

stack

:

:

g_

r— thread

single-threaded process

multithreaded process

e Athread is a schedulable execution context
- Program counter, stack, registers, ...
e Simple programs use one thread per process
* But can also have multi-threaded programs

- Multiple threads running in same process’s address space

25/44

27/44

29/44

process P, operating system process P,

interrupt or system call

executing ﬂ
T save state into PCB,
.
.

reload state from PCB;

ridle interrupt or system call executing

save state into PCB;

J reload state from PCB,,
executing I

idle

idle

26/44

@ (UNIX-centric) User view of processes
@ Kernel view of processes
©® Threads

@ Thread implementation details

28/44

* Most popular abstraction for concurrency
- Lighter-weight abstraction than processes
- All threads in one process share memory, file descriptors, etc.

¢ Allows one process to use multiple CPUs or cores

¢ Allows program to overlap I/O and computation
- Same benefit as OS running emacs & gcc simultaneously
- E.g., threaded web server services clients simultaneously:

for (5;) {
fd = accept_client ();
thread_create (service_client, &fd);

}
e Most kernels have threads, too
- Typically at least one kernel thread for every process

- Switch kernel threads when preempting process

30/44

Limitations of kernel-level threads Alternative: User threads

tid thread_create (void (*fn) (void *), void *);
- Create a new thread, run £n with arg

void thread_exit ();
- Destroy current thread

void thread_join (tid thread);
- Wait for thread thread to exit

Plus lots of support for synchronization [in 3 weeks]
See [Birell] for good introduction

Can have preemptive or non-preemptive threads

- Preemptive causes more race conditions
- Non-preemptive can’t take advantage of multiple CPUs
- Before prevalence of multicore, most kernels non-preemptive

Every thread operation must go through kernel

- create, exit, join, synchronize, or switch for any reason

- On my laptop: syscall takes 100 cycles, fn call 5 cycles

- Result: threads 10x-30x slower when implemented in kernel
One-size fits all thread implementation

- Kernel threads must please all people

- Maybe pay for fancy features (priority, etc.) you don’t need
General heavy-weight memory requirements

- E.g., requires a fixed-size stack within kernel
- Other data structures designed for heavier-weight processes

Allocate a new stack for each thread_create
Keep a queue of runnable threads
Replace networking system calls (read/write/etc.)
- If operation would block, switch and run different thread
Schedule periodic timer signal (setitimer)
- Switch to another thread on timer signals (preemption)

Multi-threaded web server example

- Thread calls read to get data from remote web browser

- “Fake” read function makes read syscall in non-blocking mode
- No data? schedule another thread

- Ontimer or when idle check which connections have new data

31/44

33/44

35/44

<«— user thread

gy
066 b

e Canimplement thread_create as a system call

¢ To add thread_create to an OS that doesn’t have it:

- Start with process abstraction in kernel

- thread_create like process creation with features stripped out
> Keep same address space, file table, etc., in new process
> rfork/clone syscalls actually allow individual control

e Faster than a process, but still very heavy weight

32/44

b

<«— kernel thread

* Implement as user-level library (a.k.a. green threads)
- One kernel thread per process

- thread_create, thread_exit, etc., just library functions)
34/44

@ (UNIX-centric) User view of processes
@ Kernel view of processes
© Threads

@ Thread implementation details

36/44

Background: calling conventions Background: procedure calls

Procedure call

* Registers divided into 2 groups . .
) Call save active caller registers
- Functions free to clobber caller-saved regs areuments h K
(%eax [return val], %edx, & %ecx on x86) & push arguments to stac
- But must restore callee-saved ones to return addr call foo (pushes pc) \ '
original value upon return (on x86, %ebx, f save needed callee registers
%esi, hedi, plus %ebp and %esp) fp old frame ptr ...do stuff...
« sp register always base of stack Ca::ee?;:::sed restore callee saved registers
- Frame pointer (fp) isold sp g . ! / Jjump baCk to Ca“lng functlon
. . . restore stack+caller regs.
* Local variables stored in registers and ;‘:gi‘r’:; &
on stack sp ¢ Caller must save some state across function call
¢ Fu"Ct'O(;‘ argumtla(nts go in caller-saved - Return address, caller-saved registers
regs ‘an on'stac e Other state does not need to be saved
- With 32-bit x86, all arguments on stack - Callee-saved regs, global variables, stack pointer
37/44 38/44

 Pintos implements user processes on top of its own threads pushl %ebx; pushl kebp # Save callee-saved regs
. R pushl %esi; pushl %edi
- Same technique can be used to implement user-level threads, too

. mov thread_stack_ofs, %edx # %edx = offset of stack field
* Per-thread state in thread control block structure 4 in thread struct
struct thread { movl 20(%esp), %eax # %eax = cur
1 %esp, (%eax,%edx,1 # ->stack = ¥
uint8_t *stack; /* Saved stack pointer. */ movl %esp, (heax,%edx,1) cur-zstac hesp
s movl 24(%esp), %ecx # %ecx = next
}; movl (%ecx,%edx,1), %esp # %esp = next->stack
uint32_t thread_stack_ofs = offsetof(struct thread, stack);
))) popl %edi; popl %esi # Restore calle-saved regs
¢ Cdeclaration for asm thread-switch function: popl %ebp; popl %ebx
- struct thread *switch_threads (struct thread *cur, ret # Resume execution
struct thread *next);
¢ Also thread initialization function to create new stack: * This is actual code from Pintos switch.S (slightly
- void thread_create (const char *name, reformatted)
thread_func *function, void *aux); - See Thread Switching in documentation
39/44 40/44
1386 switch_threads 1386 switch_threads
current next current next
stack stack stack stack
next next next next
current current current current
, return addr | | returnaddr return addr | | returnaddr
hesp
hebx %hebx %ebx
%ebp %ebp %ebp
hesi %hesi %hesi
%hedi , %hedi hedi
hesp
e Thisis actual code from Pintos switch.S (slightly e This is actual code from Pintos switch.S (slightly
reformatted) reformatted)
- See Thread Switching in documentation - See Thread Switching in documentation

40/44 40/44

i386 switch_threads i386 switch_threads

current next current next
stack stack stack stack
next next next next

current current current current

return addr return addr return addr return addr Y
heS
%hebx %hebx %hebx P
%ebp %ebp %ebp callee-saved
%hesi %hesi Yesi registers
restored
%hedi %edi %hedi
%hesp
e This is actual code from Pintos switch.S (slightly ¢ This is actual code from Pintos switch.S (slightly
reformatted) reformatted)
- See Thread Switching in documentation - See Thread Switching in documentation
40/44 40/44

Limitations of user-level threads User threads on kernel threads

¢ Auser-level thread library can do the same thing as Pintos ; ;‘_ .

e Can’t take advantage of multiple CPUs or cores

* A blocking system call blocks all threads

- Can use 0_NONBLOCK to avoid blocking on network connections
- But doesn’t work for disk (e.g., even aio doesn’t work for metadata)

- So one uncached disk read/synchronous write blocks all threads
<«— kernel thread

* A page fault blocks all threads
e User threads implemented on kernel threads

* Possible deadlock if one thread blocks on another .
- Multiple kernel-level threads per process

- May block entire process and make no progress - thread_create, thread_exit still library functions as before
- [More on deadlock in future lectures.]

* Sometimes called n : m threading

- Have n user threads per m kernel threads

(Simple user-level threads are n : 1, kernel threads 1 : 1)
41/44 42/44

* Threads best implemented as a library
¢ Many of same problems as n : 1threads - But kernel threads not best interface on which to do this
- Blocked threads, deadlock, ...

e Better kernel interfaces have been suggested

* Hard to keep same # ktrheads as available CPUs - See Scheduler Activations [Anderson et al.]
- Kernel knows how many CPUs available - Maybe too complex to implement on existing OSes (some have
- Kernel knows which kernel-level threads are blocked added then removed such features)
- But tries to hide these things from applications for transparency « Standard threads still fine for most purposes

- So user-level thread scheduler might think a thread is running

while underlying kernel thread is blocked - Use kernel threads if I/O concurrency main goal

- Use n : mthreads for highly concurrent (e.g,. scientific
e Kernel doesn’t know relative importance of threads applications) with many thread switches

- Mlght preempt kthread in which “brary holds impol’tant lock e But concurrency greatly increases complexity
- More on that in concurrency, synchronization lectures...

43/44 44/44

minish.c Mon Jan 06 11:15:43 2020

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/wait.h>

char **av;
int avsize;

void
avreserve (int n)

{

int oldavsize = avsize;

if (avsize > n + 1)

return;
avsize = 2 * (oldavsize + 1);
if (avsize <= n)
avsize = n + 1;
av = realloc (av, avsize * sizeof (*av));

while (oldavsize < avsize)
av[oldavsize++] = NULL;
}

void
parseline (char *1line)

{

char *a;

int n;

for (n = 0; n < avsize; n++)
av[n] = NULL;

a = strtok (line, "™ \t\r\n");

for (n = 0; a; n++) {
avreserve (n);
av[n] = a;

a = strtok (NULL, "™ \t\r\n");

}

void
doexec (void)
{

execvp (av[0], av);
perror (av[0]);
exit (1);

}

int

main (void)

{
char buf[512];
char *line;
int pid;

avreserve (10);

for (;;) |
write (2, "$ ", 2);

if (! (line = fgets (buf, sizeof (buf),

write (2, "EOF\n", 4);

stdin)))

{

minish.c Mon Jan 06 11:15:43 2020

exit (0);
}
parseline (line);
if (lav[O0])
continue;

switch (pid = fork ()) {
case —-1:
perror ("fork");
break;
case 0O:
doexec ();
break;
default:
waitpid (pid, NULL, O0);
break;
}

redirsh.c

#include
#include
#include
#include
#include
#include
#include

Mon Jan

<stdio.h>
<unistd.h>
<stdlib.h>
<string.h>
<fcntl.h>
<sys/types.h>
<sys/wait.h>

**av;
*infile;
char *outfile;
char *errfile;
int avsize;

char
char

void
avreserve

{

int oldavsize

(int n)

avsize;
if (avsize > n + 1)
return;

avsize 2 %
if (avsize <= n)
avsize n + 1;
av realloc (av, avsize *
while (oldavsize < avsize)
av|[oldavsize++] NULL;

}

void
parseline
{
char *a;
int nj;

(char *1line)

outfile errfile
0; n < avsize;

NULL;

infile =
for (n
av([n]

strtok
(n 0;
(al0]

infile

a
for
if

(line,

a; n++) {

P l<l)

all] 2 a + 1

else if (a[0] == ’'>")
outfile all] 2 a + 1

else 1if (a[0]
errfile al2]

else {
avreserve
av[n] a;

== 4 ’

? a+ 2

(n);

}
a strtok (NULL,

}
void

doexec

{
int fd;

(void)

if (infile) {
if ((fd open (infile,
perror (infile);

exit (1);

&& all]

(oldavsize + 1);

sizeof

NULL;

n++)

\t\r\n");

strtok

strtok

strtok

\t\r\n");

O_RDONLY))

06 11:15:43 2020

(*av));

(NULL,

(NULL,

’>’)

(NULL,

< 0)

{

"

\t\r\n");
\t\r\n");

\t\r\n");

redirsh.c Mon Jan 06 11:15:43 2020

}

if (£d !'= 0) {
dup2 (fd, 0);
close (fd);

}

if (outfile) {

if ((fd = open (outfile, O_WRONLY |O_CREAT |O_TRUNC,

perror (outfile);
exit (1);

}

if (£d !'= 1) {
dup2 (fd, 1);
close (fd);

}

if (errfile) {

if ((fd = open (errfile, O_WRONLY |O_CREAT|O_TRUNC,

perror (outfile);
exit (1);

}

if (£d !'= 2) {
dup2 (fd, 2);
close (fd);

execvp (av[0], av);
perror (av[0]);
exit (1);

}

int

main (void)

{
char buf[512];
char *line;
int pid;

avreserve (10);

for (;;) |

write (2, "$ ", 2);

if (! (line = fgets (buf, sizeof (buf),
write (2, "EOF\n", 4);
exit (0);

}

parseline (line);

if (lav[O0])
continue;

switch (pid = fork ()) {
case —-1:
perror ("fork");
break;
case 0O:
doexec ();
break;
default:
waitpid (pid, NULL, 0);
break;

}

stdin)))

{

redirsh.c Mon Jan 06 11:15:43 2020
}

pipesh.c Mon Jan 06 11:15:43 2020
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/wait.h>
char **av;

char *infile;

char *outfile;

char *errfile;

char *outcmd;

int avsize;

void

avreserve (int n)

{

int oldavsize =

if (avsize > n + 1)
return;
avsize = 2 * (oldavsize + 1);
if (avsize <= n)
avsize = n + 1;
av = realloc (av, avsize * sizeof (*av));
while (oldavsize < avsize)
av|[oldavsize++] = NULL;
}
void
parseline (char *line)
{
char *a;
int nj;
outcmd = infile = outfile = errfile = NULL;
for (n = 0; n < avsize; n++)
av[n] = NULL;
a = strtok (line, "™ \t\r\n");
for (n = 0; a; n++) {
if (a[0] == ’'<")
infile = a[l] ? a + 1 strtok (NULL,
else if (a[0] == ’'>")
outfile = af[l] 2?2 a + 1 strtok (NULL,
else if (a[0] == "|") {
if (laflll)
outcmd = strtok (NULL, "");
else {
outcmd = a + 1;
a = strtok (NULL, "");
while (a > outcmd && 'a[-1])
*__a 4 I,.
}
}
else if (a[0] == "2’ && a[l] == ">")
errfile = a[2] ? a + 2 strtok (NULL,
else {
avreserve (n);
av[n] = a;
}
a = strtok (NULL, " \t\r\n");

avsize;

\t\r\n");
\t\r\n");

\t\r\n");

pipesh.c Mon Jan 06 11:15:43 2020 2
}

void
doexec (void)

{
int fd;

while (outcmd) {
int pipefds([2];

if (outfile) {
fprintf (stderr, "syntax error: > in pipe writer\n");
exit (1);

}

if (pipe (pipefds) < 0) {
perror ("pipe");
exit (0);

}

switch (fork ()) {
case —-1:
perror ("fork");
exit (1);
case O:
if (pipefds([l] !'= 1) {
dup2 (pipefds[l], 1);
close (pipefds[1l]);
}
close (pipefds[0]);
outcmd = NULL;
break;
default:
if (pipefds[0] != 0) {
dup2 (pipefds[0], 0);
close (pipefds[0]);
}
close (pipefds[1l]);
parseline (outcmd);
if (infile) {
fprintf (stderr, "syntax error: < in pipe reader\n");
exit (1);
}

break;

}

if (infile) {

if ((fd = open (infile, O_RDONLY)) < 0) {
perror (infile);
exit (1);

}

if (£d !'= 0) {
dup2 (fd, 0);
close (fd);

}

if (outfile) {
if ((fd = open (outfile, O_WRONLY|O_CREAT|O_TRUNC, 0666)) < 0) {
perror (outfile);
exit (1);
}
if (£d !'= 1) {
dup2 (fd, 1);

pipesh.c Mon Jan 06 11:15:43 2020

}

close (fd);

}

if (errfile) {

if ((fd = open (errfile, O_WRONLY |O_CREAT|O_TRUNC,

perror (errfile);
exit (1);

}

if (f£d !'= 2) {
dup2 (fd, 2);
close (£fd);

execvp (av([0], av);
perror (av[0]);
exit (1);

int
main (void)

{

char buf[512];
char *line;
int pid;

avreserve (10);

for (;;) |

write (2, "$ ", 2);

if (! (line = fgets (buf, sizeof (buf),
write (2, "EOF\n", 4);
exit (0);

}

parseline (line);

if (lav[0])
continue;

switch (pid = fork ()) {
case —-1:
perror ("fork");
break;
case 0O:
doexec ();
break;
default:
waitpid (pid, NULL, 0);
break;

}

stdin)))

{

