View access control as a matrix Two ways to slice the matrix

Objects
File1 [File2 |File 3 ... |Filen
- ¢ Along columns:
User 1 [read |write |- - read &
- Kernel stores list of who can access object along with object

User 2 |write |write |write |- - - Most systems you’ve used probably do this
Subjects - Examples: Unix file permissions, Access Control Lists (ACLs)

User 3 |- - - read |read

¢ Along rows:
- Capability systems do this
- More on these later...

User |read |write |read |write |read
m

* Subjects (processes/users) access objects (e.g., files)

* Each cell of matrix has allowed permissions
1/44 2/44

e Each process has a User ID & one or more group IDs

© Unix protection * System stores with each file:
- User who owns the file and group file is in

@ uni itv hol - Permissions for user, any one in file group, and other
nix security holes
e Shown by output of 1s -1 command:

user group other owner group
AN AN AN AN~
- rw- rw- r-- dm cs140 ... index.html

- Each group of three letters specifies a subset of
read, write, and execute permissions

- User permissions apply to processes with same user ID
- Else, group permissions apply to processes in same group
- Else, other permissions apply

© Capability-based protection

@ Microarchitectural attacks

3/44 4/44
Unix continued Non-file permissions in Unix

* Directories have permission bits, too

- Need write permission on a directory to create or delete a file
- Execute permission means ability to use pathnames in the

* Many devices show up in file system
- E.g., /dev/tty1 permissions just like for files

directory, separate from read permission which allows listing * Other access controls not represented in file system
* Special user root (UID 0) has all privileges ¢ E.g., must usually be root to do the following:
- E.g., Read/write any file, change owners of files - Bind any TCP or UDP port number less than 1024
- Required for administration (backup, creating new users, etc.) - Change the current process’s user or group ID
« Example: - Mount or unmount most file systems

- Create device nodes (such as /dev/tty1) in the file system
- Change the owner of afile
- Set the time-of-day clock; halt or reboot machine

- drwxr-xr-x 56 root wheel 4096 Apr 4 10:08 /etc
- Directory writable only by root, readable by everyone
- Means non-root users cannot directly delete files in /etc

5/44 6/44

* Unix users typically stored in files in /etc

Files passwd, group, and often shadow Or master . passwd

* For each user, files contain:

- Otherinformation, such as user’s full name, login shell, etc.

Textual username (e.g., “dm”, or “root”)
Numeric user ID, and group ID(s)
One-way hash of user’s password: {salt, H(salt, passwd)}

® /usr/bin/loginruns as root

Reads username & password from terminal
Looks up username in /etc/passwd, etc.

Computes H(salt, typed password) & checks that it matches
If matches, sets group ID & user ID corresponding to username

Execute user’s shell with execve system call

* Examples

- ping (historically) - uses raw IP sockets to send/receive ICMP

passwd - changes user’s password
su - acquire new user ID (given correct password)
sudo - run one command as root

* Have to be very careful when writing setuid code

- Attackers can run setuid programs any time (no need to wait for

- Attacker controls many aspects of program’s environment

root to run a vulnerable job)

* Example attacks when running a setuid program

- Close fd 2 before running program—may accidentally send error

* When can process A send a signal to process B with kill?

Change PATH or IFS if setuid prog calls system(3)
Set maximum file size to zero (if app rebuilds DB)

message into protected file

Allow if sender and receiver have same effective UID

But need ability to kill processes you launch even if suid
So allow if real UIDs match, as well

Can also send SIGCONT w/o UID match if in same session

* Debugger system call ptrace

Lets one process modify another’s memory

Setuid gives a program more privilege than invoking user
So don’t let a process ptrace a more privileged process
E.g., Require sender to match real & effective UID of target
Also disable/ignore setuid if ptraced target calls exec
Exception: root can ptrace anyone

7/44

9/44

1/44

* Some legitimate actions require more privs than UID

- E.g., how should users change their passwords?
- Stored in root-owned /etc/passwd & /etc/shadow files

e Solution: Setuid/setgid programs
- Run with privileges of file’s owner or group
- Each process has real and effective UID/GID
- real is user who launched setuid program
- effective is owner/group of file, used in access checks
- Actual rules and interfaces somewhat complicated [Chen]

e Shown as “s” in file listings

- -rws--x--x 1 root root 52528 Oct 29 08:54 /bin/passwd
- Obviously need to own file to set the setuid bit
- Need to own file and be in group to set setgid bit

8/44

* Ping needs raw network access, not ability to delete all files
e Linux subdivides root’s privileges into ~ 40 capabilities, e.g.:
- cap_net_admin - configure network interfaces (IP address, etc.)

- cap_net_raw - use raw sockets (bypassing UDP/TCP)

- cap_sys_boot - reboot; cap_sys_time - adjust system clock
Usually root gets all, but behavior can be modified by
“securebits” (see prctl(2))

e Capabilities don’t survive execve unless bits are set in both
thread & inode (exception: ambient capabilities)

* “Effective” bit in inode acts like setuid for capability
$ 1s -al /usr/bin/ping
-rwxr-xr-x 1 root root 61168 Nov 15 23:57 /usr/bin/ping
$ getcap /usr/bin/ping

/usr/bin/ping = cap_net_rawt+ep
* See also: getcap(8), setcap(8), capsh(1)

10/ 44

@ Unix protection
@ Unix security holes
© Capability-based protection

@ Microarchitectural attacks

12/44

find/rm

Even without root or setuid, attackers can trick root owned
processes into doing things...

Example: Want to clear unused files in /tmp

Every night, automatically run this command as root:
find /tmp -atime +3 -exec rm -f -- {} \;
find identifies files not accessed in 3 days
- executes rm, replacing {} with file name

m -f -- path deletes file path
- Note “--” prevents path from being parsed as option

What’s wrong here?

13/44

Attacker

mkdir (“/tmp/badetc”)
creat (“/tmp/badetc/passwd”)

readdir (“/tmp”) — “badetc”
Istat (“/tmp/badetc”) — DIRECTORY
readdir (“/tmp/badetc”) — “passwd”

rename (“/tmp/badetc” — “/tmp/x”)

symlink (“/etc”, “/tmp/badetc”)

unlink (“/tmp/badetc/passwd”)

xterm command xterm command

Time-of-check-to-time-of-use [TOCTTOU] bug
- find checks that /tmp/badetc is not symlink
- But meaning of file name changes before it is used

14/44

Provides a terminal window in X-windows
Used to run with setuid root privileges

- Requires kernel pseudo-terminal (pty) device

- Required root privs to change ownership of pty to user

- Also writes protected utmp/wtmp files to record users
Had feature to log terminal session to file

if (access (logfile, W_0K) < 0)
return ERROR;

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);
VAT Vi

xternm is root, but shouldn’t log to file user can’t write

access call avoids dangerous security hole
- Does permission check with real, not effective UID

15/44

find/rm Attacker

mkdir (“/tmp/badetc”)

creat (“/tmp/badetc/passud”)
readdir (“/tmp”) — “badetc”
Istat (“/tmp/badetc”) — DIRECTORY
readdir (“/tmp/badetc”) — “passwd”

unlink (“/tmp/badetc/passwd”)

14/44

* Provides a terminal window in X-windows

e Used to run with setuid root privileges
- Requires kernel pseudo-terminal (pty) device
- Required root privs to change ownership of pty to user
- Also writes protected utmp/wtmp files to record users

¢ Had feature to log terminal session to file

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666) ;
VAT Vi

* What’s wrong here?

15/44

* Provides a terminal window in X-windows
® Used to run with setuid root privileges
- Requires kernel pseudo-terminal (pty) device
- Required root privs to change ownership of pty to user
- Also writes protected utmp/wtmp files to record users
Had feature to log terminal session to file

if (access (logfile, W_0K) < 0)
return ERROR;

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);
/x oL %/
* xtermis root, but shouldn’t log to file user can’t write

® access call avoids dangerous security hole
- Does permission check with real, not effective UID
- Wrong: Another TOCTTOU bug

15/44

xterm Attacker

creat (“/tmp/log”)
access (“/tmp/1log”) — OK
unlink (“/tmp/1og”)

symlink (“/tmp/log” — “/etc/passwd”)

open (“/tmp/log”)

e Attacker changes /tmp/log between check and use
- xterm unwittingly overwrites /etc/passwd
- Another TOCTTOU bug

* OpenBSD man page: “CAVEATS: access() is a potential
security hole and should never be used.”

SSH configuration files Trick question: ptrace bug

* SSH1.2.12 client ran as root for several reasons:

- Needed to bind TCP port under 1024 (privileged operation)
- Needed to read client private key (for host authentication)

* Also needed to read & write files owned by user

- Read configuration file “/.ssh/config
- Record server keys in ~/.ssh/known_hosts

* Software structured to avoid TOCTTOU bugs:

- First bind socket & read root-owned secret key file
- Second drop all privileges—set real, & effective UIDs to user
- Only then access user files

- ldea: avoid using any user-controlled arguments/files until you
have no more privileges than the user

- What might still have gone wrong?

A Linux security hole

* Some programs acquire then release privileges
- E.g., su user is setuid root, becomes user if password correct

e Consider the following:

- Aand B unprivileged processes owned by attacker

- Aptraces B (works even with Yama, as B could be child of A)
- Aexecutes “su user” to its own identity

- With effective UID (EUID) 0, su asks for password & waits

- While A's EUID is 0, B execs su root
(B’s exec honors setuid—not disabled—since A’s EUID is 0)

- Atypes password, gets shell, and is attached to su root
- Can manipulate su root’s memory to get root shell

16/44

18/44

20/44

e Use new APIs that are relative to an opened directory fd

- openat, renameat, unlinkat, symlinkat, faccessat

- fchown, fchownat, fchmod, fchmodat, fstat, fstatat

- 0_NOFOLLOW flag to open avoids symbolic links in last component
- But can still have TOCTTOU problems with hardlinks

¢ Lock resources, though most systems only lock files (and

locks are typically advisory)

* Wrap groups of operations in OS transactions

- Microsoft supports for transactions on Windows Vista and newer
CreateTransaction, CommitTransaction, RollbackTransaction

- Afew research projects for POSIX [Valor] [TxOS]

17/44

Actually do have more privileges than user!
- Bound privileged port and read host private key
Dropping privs allows user to “debug” SSH

- Depends on OS, but at the time several had ptrace
implementations that made SSH vulnerable

Once in debugger

- Could use privileged port to connect anywhere
- Could read secret host key from memory
- Could overwrite local user name to get privs of other user

The fix: restructure into 3 processes!
- Perhaps overkill, but really wanted to avoid problems

Today some linux distros restrict ptrace with Yama

19/44

Previous examples show two limitations of Unix

Many OS security policies subjective not objective
- When can you signal/debug process? Re-bind network port?
- Rules for non-file operations somewhat incoherent
- Even some file rules weird (creating hard links to files)
Correct code is much harder to write than incorrect

- Delete file without traversing symbolic link
- Read SSH configuration file (requires 3 processes??)
- Write mailbox owned by user in dir owned by root/mail

Don’t just blame the application writers
- Must also blame the interfaces they program to

21/44

@ Unix protection

- This time it’s not Unix

@ Unix security holes

e Setting: A multi-user time sharing system

* Wanted Fortran compiler to keep statistics

- Modified compiler /sysx/fort to record stats in /sysx/stat

© Capability-based protection

/sysx (kind of like Unix setuid)

@ Microarchitectural attacks

22/44

A confused deputy Recall access control matrix

° What’s wrong here?

- Gave compiler “home files license”—allows writing to anything in

23/44

o Attacker could overwrite any files in /sysx Objects
- System billing records kept in /sysx/bill got wiped - - - -
- Probably command like fort -o /sysx/bill file.f File 1 |File 2 |File 3 File n
e |s this a bug in the compiler fort? User 1 [read |write |- - read
- Original implementors did not anticipate extra rights User 2 i i i
- Can’t blame them for unchecked output file Ser< wnte write write - .
. . Subjects
* Compiler is a “confused deputy”) User 3 |- - - read |read
- Inherits privileges from invoking user (e.g., read file.f)
- Also inherits privileges from home files license
- Which master is it serving on any given system call? User |read |write |read |write |read
- OS doesn’t know if it just sees open ("/sysx/bill", ...) m

24/44

Capabilities Hydra [Wulf]

e Slicing matrix along rows yields capabilities

- E.g., For each process, store a list of objects it can access
- Process explicitly invokes particular capabilities

Can help avoid confused deputy problem

- E.g., Must give compiler an argument that both specifies the
output file and conveys the capability to write the file
(think about passing a file descriptor, not a file name)

- So compiler uses no ambient authority to write file

caller
* Three general approaches to capabilities:
- Hardware enforced (Tagged architectures like M-machine)
- Kernel-enforced (Hydra, KeyKOS)
- Self-authenticating capabilities (like Amoeba)

Good history in [Levy]

26/44

0S enforced object modularity with capabilities
- Could only call object methods with a capability

Augmentation let methods manipulate objects
- Amethod executes with the capability list of the object, not the

Template methods take capabilities from caller
- So method can access objects specified by caller

25/44

Machine & programing environment built at CMU in ’70s

27/44

KeyKOS [Bomberger] Unique features of KeyKOS

e Capability system developed in the early 1980s
- Inspired many later systems: EROS, Coyotos

* Goal: Extreme security, reliability, and availability
e Structured as a “nanokernel”

- Kernel proper only 20,000 likes of C, 100KB footprint
- Avoids many problems with traditional kernels
- Traditional OS interfaces implemented outside the kernel
(including binary compatibility with existing OSes)
* Basicidea: No privileges other than capabilities

- Means kernel provides purely objective security mechanism
- As objective as pointers to objects in 00 languages

- In fact, partition system into many processes akin to objects

KeyKOS capabilities Capability details

* Refered to as “keys” for short

* Types of keys:
- devices - Low-level hardware access
- pages - Persistent page of memory (can be mapped)
- nodes - Container for 16 capabilities
- segments - Pages & segments glued together with nodes
- meters - right to consume CPU time
- domains - a thread context
* Anyone possessing a key can grant it to others

- But creating a key is a privileged operation
- E.g., requires “prime meter” to divide it into submeters

* “One kernel per process” architecture

- Hard to crash kernel

- Even harder to crash system
e Aprocess’s kernel is its keeper

- Unmodified Unix binary makes Unix syscall

- Invalid KeyKOS syscall, transfers control to Unix keeper
» Of course, kernels need to share state

- Use shared segment for process and file tables

28/44

30/44

32/44

e Single-level store

- Everything is persistent: memory, processes, ...
- System periodically checkpoints its entire state

- After power outage, everything comes back up as it was
(may just lose the last few characters you typed)

o “Stateless” kernel design only caches information
- All kernel state reconstructible from persistent data

e Simplifies kernel and makes it more robust

- Kernel never runs out of space in memory allocation
- No message queues, etc. in kernel
- Run out of memory? Just checkpoint system

29/44

Each domain has a number of key “slots”:

- 16 general-purpose key slots

- address slot - contains segment with process VM
- meter slot - contains key for CPU time

- keeper slot - contains key for exceptions

e Segments also have an associated keeper
- Process that gets invoked on invalid reference

Meter keeper (allows creative scheduling policies)

Calls generate return key for calling domain
- (Not required—other forms of message don’t do this)

31/44

KeyNIX: UNIX on KeyKOS KeyNIX overview

Device System

File System

Btree
Domain

Inode
Domain

Device
Driver
Domain

Device
Driver
Domain

Device
Driver
Domain

Inode
Domain
Inode
Domain
Segment
Keeper

Device
Table
Domain

Process
UNIX

an
Open File Keeper

Table Queue
Domain

Address Space
Segment

Timer
Domain

33/44

e Every access must be accompanied by a capability

* Everyfileis a different process - For each object, OS stores random check value
- Elegant, and fault isolated - Capability is: {Object, Rights, MAC(check, Rights)}
- Small files can live in a node, not a segment (MAC = cryptographic Message Authentication Code)
- Makes the namei () function very expensive e OS gives processes capabilities
* Pipesrequire queues - Process creating resource gets full access rights
- This turned out to be complicated and inefficient - Can ask OS to generate capability with restricted rights
- Interaction with signals complicated » Makes sharing very easy in distributed systems
¢ Other OS features perform very well, though * To revoke rights, must change check value
- E.g., forkis six times faster than Mach 2.5 - Need some way for everyone else to reacquire capabilities

¢ Hard to control propagation
34/44 35/44

* Adistributed OS, based on capabilities of form:
- server port, object ID, rights, check

¢ IPC performance a losing battle with CPU makers

- CPUs optimized for “common” code, not context switches
* Any server can listen on any machine - Capability systems usually involve many IPCs
- Server port is hash of secret

¢ Capability model never fully took off as kernel API
- Kernel won’t let you listen if you don’t know secret

- Requires changes throughout application software

* Many types of object have capabilities - Call capabilities “file descriptors” or “Java pointers” and people
- Files, directories, processes, devices, servers (E.g., X windows) will use them

- But discipline of pure capability system challenging so far

- People sometimes quip that capabilities are an OS concept of the
future and always will be

Separate file and directory servers

- Canimplement your own file server, or store other object types in
directories, which is cool .
© But real systems do use capabilities

- Firefox security based on language-level object capabilities
- FreeBSD now ships with Capsicum, making capabilities available

Check is like a secret password for the object

- Server records check value for capabilities with all rights
- Restricted capability’s check is hash of old check, rights

36/44 37/44

e Capability APl in FreeBSD 9 € Unix protection

® cap_enter enters a process into capability mode

* APIs can be used to restrict file descriptor permissions @ Unix security holes

¢ Limit read, write, ioctls, etc.

* Used by various base system binaries © Capability-based protection
* Supported by a growing number of applications

* Patches exist to use Capsicum for Chrome’s sandboxing O Microarchitectural attacks

38/44 39/44

Cache timing attacks Speculative execution key to performance

char *buf; unsigned char *arrayl, *array2;
int arrayl_size, array2_size;

int
victim (int secret_byte) void
{ lookup (int input)
return buf [secret_byte*64]; {
} if (input < arrayl_size)
return array2[arrayl[input] * 4096
* Accessing memory based on secret data can leak the data } y2[arrayl [input] !

e Approach 1: Flush/Evict + Reload
- Share buf with victim process (shared lib or deduplication)
- Flush buf from cache (c1f1lush instruction, or overflow capacity)

- After victimtime reads of buf, fast line tells you secret_byte - Squash incorrectly predicted instructions by reverting registers

* Approach 2: Prime + Probe - But can’t revert cache state, only registers
- No shared memory, but attacker primes cache with its own buffer « Example: intel Haswell

- Victim’s buf access evicts one of attacker’s cache lines
- Slow cache line (+ cache mapping) reveals secret data

e CPU predicts branches to mask memory latency
- E.g., predict input < array_size even if array1_size not cached
- Wait to get array1_size from memory before retiring instructions

- Specutatively executes up to 192 micro-ops
- Indexes branch target buffer by bottom 31 bits of branch address

40/44 41/44

Spectre attack [Kocher] Many more variants of Spectre

unsigned char *arrayl, *array2;

int arrayl_size, array2_size; « Attack on JavaScript JIT
void - Malicious JavaScript reads secrets outside of JavaScript sandbox
‘{’iCtim (int input) » eBPF compiles packet filters in kernel (e.g., for tcpdump)
if (input < arrayl_size) - Can generate code to reveal arbitrary kernel memory
) return array2[arrayl[input] * 4096] « Can even use victim code that’s not supposed to be executed

- Mistrain branch predictor on indirect branch
- Speculatively execute arbitrary “spectre gadget” in victim process
- Same cache impact even if gadget execution entirely squashed

* Say attacker supplies input, wants to read array1 [input]
- input can exceed bounds, reference any byte in address space

* Ensure array1 cached, but arrayi_size and array2 uncached - Has been used to leak host memory from inside virtual machine
* Flush+reload attack on array2 now reveals array1 [input] e Use other speculation channels
- CPU will likely predict branch taken (don’t usually overflow) - E.g., CPU predicts that previous store does not conflict with a load

- Speculatively load from array?2 before seeing array1l_size
- Reloaded cache line reveals array1 [input]

42/44 43/44
Mitigation

* Replace array bounds checks with index masking (used by
Chrome)

- return array2[arrayl[input&Oxffff] * 4096]
- Limits distance of bounds violation

* Place JavaScript sandbox in separate address space
* XOR pointers with type-dependent poison values (in JITs)

* Make CPUs a bit better about leaking state through side
channels

* Insert “gratuitous” memory barriers to prevent speculation
on sensitive data

¢ Unfortunately general solution still an open problem

44/44

