
CS 140 Project 2: User Programs
January 24, 2020

Today’s Topics
● Overview

● Project 2 Requirements
○ Process Termination Messages

○ Argument Passing

○ System Calls

○ Denying Writes to Executables

● Getting Started

Project Overview
● Allow user programs to run on top of Pintos

○ Interact with OS via system calls

○ More than one process can run at a time

○ Each process has one thread (no multi-threaded processes)

● Protect kernel from user programs

● Test your solution by running user programs
○ Free to modify kernel code however you like

Project Overview
Reference Implementation:

threads/thread.c | 13
threads/thread.h | 26 +
userprog/exception.c | 8
userprog/process.c | 247 ++++++++++++++--
userprog/syscall.c | 468 ++++++++++++++++++++++++++++++-
userprog/syscall.h | 1
6 files changed, 725 insertions(+), 38 deletions(-)

● Most changes in userprog/process.c and userprog/syscall.c.

● Need to get familiar with a few other files (covered later).

Default File System in Pintos
● Simple file system implementation provided to help you

○ No need to modify (that’s Project 4)

○ Get familiar with functions defined in filesys.h and file.h

● Be careful about the limitations!
○ E.g., the file system is not thread-safe

○ Details in Section 3.1.2

Virtual Memory Layout
● Virtual memory divided into two regions

○ User virtual memory: [0, PHYS_BASE)

○ Kernel virtual memory: [PHYS_BASE, 4GB)

● User virtual memory is per-process
○ Switch virtual address space during context switch

● Kernel virtual memory is global
○ Always mapped to contiguous memory starting from

physical address 0

 4GB +----------------------------------+
 | |
 | kernel virtual memory |
 | |
 PHYS_BASE +----------------------------------+
 | user stack |
 | | |
 | | |
 | V |
 | grows downward |
 | |
 | |
 | |
 | grows upward |
 | ^ |
 | | |
 | | |
 +----------------------------------+
 | uninitialized data segment (BSS) |
 +----------------------------------+
 | initialized data segment |
 +----------------------------------+
 | code segment |
 0x08048000 +----------------------------------+
 | |
 | |
 0 +----------------------------------+

Accessing User Memory
● Kernel must validate pointers provided by a user program

○ E.g., null pointers, pointers to unmapped/kernel virtual memory

○ Terminate the offending process and free its resources

● Two approaches to implement
○ Approach 1: check is_user_vaddr() and mapped (hint: userprog/pagedir.h)

○ Approach 2: check is_user_vaddr(); dereference and handle page fault

○ Details in Section 3.1.5

80x86 Calling Convention
● How to make a normal function call? (Details omitted)

○ Caller pushes arguments on the stack one by one, from right to left

○ Caller pushes the return address and jumps to the first line of the callee

○ Callee executes and takes arguments above the stack pointer

○ Details in Section 3.5 and Lecture 2 slides

● Also applicable to scenarios beyond normal function calls
○ Program startup

○ System call

http://www.scs.stanford.edu/20wi-cs140/notes/processes.pdf

Today’s Topics
● Overview

● Project 2 Requirements
○ Process Termination Messages

○ Argument Passing

○ System Calls

○ Denying Writes to Executables

● Getting Started

Process Termination Messages
● printf(“%s: exit(%d)\n”, process_name, exit_code)

○ Print the message whenever a user process terminates

○ Do not print command-line arguments

○ Do not print when a kernel thread terminates

○ Do not print when the halt system call is invoked

Passing Arguments to New Process
● Extend process_execute() to parse command arguments

○ process_execute(“grep foo bar”) should run grep with two args

○ Helper functions in lib/string.h

● Set up the stack for the program entry function _start()
○ Signature: void _start(int argc, char* argv[])

○ Push C strings referenced by the elements of argv

○ Push argv[i] in reverse order (argv[0] last)

○ Push argv (the address of argv[0]) and then argc

○ Push a fake “return address” (required by 80x86 calling convention)

○ Details in Section 3.5.1 [Program Startup Details]

Example: “/bin/ls -l foo bar”
PHYS_BASE = 0xc0000000

Example: “/bin/ls -l foo bar”
PHYS_BASE = 0xc0000000

Example: “/bin/ls -l foo bar”
PHYS_BASE = 0xc0000000

System Calls
● Implement system call dispatcher (i.e., syscall_handler())

○ Read system call number and args; dispatch to specific handler

○ Details in Section 3.5.2

○ Validate everything user provides (e.g., syscall numbers, arguments, pointers)

● Implement 13 system call handlers in userprog/syscall.c
○ System call numbers defined in lib/syscall-nr.h

○ Some system call requires considerably more work than others (e.g. wait)

● Synchronization
○ Any number of user processes can make system calls at once

○ The provided file system is not thread-safe

Denying Writes to Executables
● Deny writes to files in use as executable

○ Unpredictable results to change and run code concurrently

○ Especially important once virtual memory is implemented in project 3

● file_deny/allow_write(): disable/enable writes to open files
○ Keep the executable file open until the process terminates

Today’s Topics
● Overview

● Project 2 Requirements
○ Process Termination Messages

○ Argument Passing

○ System Calls

○ Denying Writes to Executables

● Getting Started

Getting Started
● You can build on top of Project 1 or start fresh

○ No code from project 1 will be required

● File system setup
○ User programs must be loaded from this file system (not your host file system)

○ Create a simulated disk with a file system partition

○ Copy files into/from this file system

○ Details in Section 3.1.2

Suggested Order of Implementation
● Bypass argument passing

○ In setup_stack(), change *esp = PHYS_BASE; to *esp = PHYS_BASE - 12;

○ Run test programs with no command-line arguments

● Safe user memory access
○ All system calls need to access user memory

● System call infrastructure
○ Read syscall numbers and args, dispatch to the correct handler

Suggested Order of Implementation
● The exit system call

○ Every user program calls exit (sometimes implicitly)

● The write system call to console
○ User program can use printf() to write to screen

● Change process_wait() to an infinite loop
○ Don’t let Pintos power off before any processes actually get to run.

Simple user programs should start to work.

Tips
● Use GDB for user programs

○ GDB Macro: loadusersymbols program

○ Details in Appendix E.5.2

● Use GDB Text User Interface (TUI)
○ tui enable

● Read the design doc early
○ Design, then write code

● Read the specification carefully
○ Lots of pieces in this assignment

Questions?

