
Project 3: Virtual Memory
CS140 Winter 2020

1



● Goal
○ Total size of programs running > size of physical memory
○ 80/20 rule, store data that isn’t currently used on disk

● Solution
○ Demand paging

■ Divide memory into fixed-sized “pages”
■ If access data not currently in memory (page fault), “page in”

● May involve eviction
● Try to evict the page that will be used furthest in the future

● Due Date: Friday, February 28, by 12pm (two weeks from today)

Overview

2



Other Requirements

● Stack growth
○ Allocate new stack pages as necessary

● Memory mapped files
○ “map” a file into virtual pages
○ Operate on file with memory instructions instead of read/write system calls

● Accessing user memory
○ Make sure data the kernel is currently operating on doesn’t get paged out
○ Might be holding resources needed to handle the page fault

■ Avoid deadlock

3



Disclaimer

● Most people think this assignment is really hard
● This assignment is really fun!
● System design is really fun!!!

4



Terminology

● Page
○ Contiguous region of virtual memory (e.g. virtual page)

● Frame
○ Contiguous region of physical memory (e.g. physical page)

● Page table
○ Data structure to translate a virtual address to physical address (page to a frame)

● Swap slot 
○ Contiguous, page-size region of disk space in the swap partition 
○ Some evicted pages are written to swap (e.g. stack pages)

5



Handling Page Faults

● Page fault
○ User accesses memory address for data that isn’t currently loaded into memory

● How to “page in”?
○ Determine if memory access was valid

■ Might need new stack page
■ If not valid, terminate process

○ Find a frame to use*
○ Locate data that belongs in the page, fetch data into frame
○ Install page table entry for faulting virtual address to the physical page

● Where is this information?
○ Create/use per-process supplemental page table (SPT) 

■ Determine valid addresses
■ Locate data that belongs in the page

*more on this soon
6



Finding a Frame

● Check if any available
○ palloc_get_page(PAL_USER) allocates new user frames

● If not, evict
○ Create/use global frame table to iterate over all frames used by any process
○ Global page replacement algorithm

■ Approximates LRU; at least as good as clock / “second chance”
● If page accessed, set not accessed.
● If page not accessed, evict. 

○ Clear evicted page
■ Remove references to the frame from any page table that refers to it
■ If dirty, write to file system or swap

● If no frame can be evicted without allocating a swap slot, but swap is full, 
panic the kernel.

7



Memory Mapped Files

● mapid_t mmap (int fd, void *addr) 
○ Maps file into consecutive virtual pages in the process's virtual address space, starting at addr
○ Operate on file with memory instructions instead of read/write system calls
○ Fails if address invalid

● void munmap (mapid_t mapping)
○ Removes the mapping

● Lazily load pages
● File is backing store (on eviction, writes back to file)
● Create/use file mapping table 

8



Accessing User Memory

● In project 2, you rejected user addresses for data not in memory
○ An address could be valid but not currently mapped

● Make sure pages aren’t evicted from frames while accessed by kernel
○ Might be holding resources needed to handle the page fault
○ Can implement “pinning” or “locking” to make sure page isn’t evicted

● Accessed / dirty bits different per page
○ Always access user data through the user virtual address

9



Swap

● Storage for stack pages and dirty executable pages
○ block_get_role (BLOCK_SWAP) 

● Create/use global swap table to track in-use and free swap slots
○ Pick swap slot during eviction
○ Free swap slot when paged back in or process terminates

10



Types of Data in Memory

● Executables
○ Loaded lazily
○ Written to swap if dirty (if ever dirty)
○ Read-only and unmodified pages can be read back from executable

● Stack
○ Allocate additional pages only if they “appear” to be stack accesses

■ PUSH: 4 bytes below %esp 
■ PUSHA: 32 bytes below %esp
■ Get %esp from struct intr_frame passed to page_fault()

○ Written to swap when evicted

● Files, from mmap
○ Loaded lazily
○ Written back to file if dirty

11



Page fault

Valid stack extension Invalid address

Extend stack

Kill process

“Page in” from file system or 
swap, using info from 

supplemental page table 

Find frame from 
frame table

Free frame exists Evict

Find LRU page, using 
accessed and dirty bits

Write data, if necessary

Remove page table references

Write zeros

Install into page table

Swap full, all 
frames need swap

Panic the kernel

Swap if stack or 
dirty executable

File if dirty 
mmaped file

Find swap slot in 
swap table

Valid address, but on disk

No-op if clean file

12



Suggested Order

1. Must have working project 2 
○ Fix any bugs!

2. Frame table 
○ Don’t implement swapping yet
○ You should still pass all project 2 tests

3. Supplemental page table and page fault handler 
○ Lazily load code and data segments via page fault handler
○ You should pass all project 2 functionality tests, but only some robustness tests

4. Stack growth, mapped files, page reclamation
5. Eviction 

○ Don’t forget synchronization
■ What if a process accesses a page during eviction?
■ What if two processes are trying to evict pages at the same time?

13



Data Structure Choices

● Arrays
○ Simplest approach, sparsely populated array wastes memory

● Lists
○ Pretty simple, traversing a list can take lots of time

● Bitmaps
○ Array of bits each of which can be true or false
○ Track usage in a set of identical resources 

● Hash Tables 

14



Necessary conditions for deadlock

1. Limited access (mutual exclusion)
2. No preemption
3. Multiple independent requests (hold and wait)
4. Circularity in graph of requests

○ A holds mutex x, wants mutex y; B holds y, wants x

15



Advice

● Start early 
● Design first

○ Make sure you really understand the assignment before coding
○ Design something that makes it easy for you to convince yourself it is correct — draw diagrams

● Be open to changing your design
○ If things feel really hard, take a step back
○ A better design might save you hours of debugging

● Avoid deadlock
○ Organize your synchronization mechanisms hierarchically
○ Write out all cases in which locks are acquired, and the order in which they are acquired

● Add files

16



Good luck & have fun!

17


