Project 3: Virtual Memory

CS140 Winter 2020

Overview

e Due Date: Friday, February 28, by 12pm (two weeks from today)

e Goal

o Total size of programs running > size of physical memory
o 80/20 rule, store data that isn’t currently used on disk

e Solution
o Demand paging
m Divide memory into fixed-sized “pages”
m If access data not currently in memory (page fault), “page in”
e May involve eviction
e Try to evict the page that will be used furthest in the future

Other Requirements

e Stack growth

o Allocate new stack pages as necessary

e Memory mapped files

o “map” afile into virtual pages

o Operate on file with memory instructions instead of read/write system calls
e Accessing user memory

o Make sure data the kernel is currently operating on doesn’t get paged out

o Might be holding resources needed to handle the page fault
m Avoid deadlock

Disclaimer

e Most people think this assignment is really hard
e This assignment is really fun!
e System design is really fun!!!

Terminology

e Page
o Contiguous region of virtual memory (e.g. virtual page)
e Frame

o Contiguous region of physical memory (e.g. physical page)
e Page table

o Data structure to translate a virtual address to physical address (page to a frame)
e Swap slot

o Contiguous, page-size region of disk space in the swap partition
o Some evicted pages are written to swap (e.g. stack pages)

Handling Page Faults

e Page fault
o User accesses memory address for data that isn’t currently loaded into memory
e How to “pagein”?
o Determine if memory access was valid
m Might need new stack page
m If not valid, terminate process
o Find a frame to use*
o Locate data that belongs in the page, fetch data into frame
o Install page table entry for faulting virtual address to the physical page

e Where is this information?
o Create/use per-process supplemental page table (SPT)
m Determine valid addresses

m Locate data that belongs in the page

*more on this soon
6

Finding a Frame

e Check if any available

o palloc_get page(PAL_USER) allocates new user frames

e Ifnot, evict
o Create/use global frame table to iterate over all frames used by any process
o Global page replacement algorithm
m Approximates LRU; at least as good as clock / “second chance”
e If page accessed, set not accessed.
e If page not accessed, evict.
o Clear evicted page
m Remove references to the frame from any page table that refers to it
m If dirty, write to file system or swap

e If no frame can be evicted without allocating a swap slot, but swap is full,
panic the kernel.

Memory Mapped Files

e mapid t mmap (int fd, void *addr)
o Maps file into consecutive virtual pages in the process's virtual address space, starting at addr
o Operate on file with memory instructions instead of read /write system calls
o Fails if address invalid

e void munmap (mapid_t mapping)
o Removes the mapping
e Larzily load pages
e Fileis backing store (on eviction, writes back to file)
e C(Create/use file mapping table

Accessing User Memory

e In project 2, you rejected user addresses for data not in memory
o An address could be valid but not currently mapped

e Make sure pages aren’t evicted from frames while accessed by kernel
o Might be holding resources needed to handle the page fault
o Can implement “pinning” or “locking” to make sure page isn’t evicted

e Accessed / dirty bits different per page

o Always access user data through the user virtual address

Swap

e Storage for stack pages and dirty executable pages
o block get role (BLOCK_SWAP)
e C(reate/use global swap table to track in-use and free swap slots

o Pick swap slot during eviction
o Free swap slot when paged back in or process terminates

10

Types of Data in Memory

e Executables
o Loaded lazily
o Written to swap if dirty (if ever dirty)
o Read-only and unmodified pages can be read back from executable

e Stack
o Allocate additional pages only if they “appear” to be stack accesses
m PUSH: 4 bytes below %esp
m PUSHA: 32 bytes below %esp
m Get%esp from struct intr_frame passed to page fault()
o Written to swap when evicted

e Files, from mmap

o Loaded lazily
o Written back to file if dirty

11

Page fault

Valid stack extension Valid address, but on disk Invalid address

Find frame from

frame table .
Kill process

Swap full, all
frames need swap

Find LRU page, using Panic the kernel
accessed and dirty bits

Remove page table references

Free frame exists

\ “Page in” from file system or
swap, using info from

supplemental page table

Write data, if necessary

Install into page table

Suggested Order

1. Must have working project 2
o Fix any bugs!
2. Frame table
o Don’t implement swapping yet
o You should still pass all project 2 tests
3. Supplemental page table and page fault handler
o Lazily load code and data segments via page fault handler
o You should pass all project 2 functionality tests, but only some robustness tests

4. Stack growth, mapped files, page reclamation

5. Eviction
o Don’t forget synchronization
m What if a process accesses a page during eviction?
m What if two processes are trying to evict pages at the same time?

13

Data Structure Choices

Arrays

o Simplest approach, sparsely populated array wastes memory
Lists

o Pretty simple, traversing a list can take lots of time
Bitmaps

o Array of bits each of which can be true or false

o Track usage in a set of identical resources

Hash Tables

14

Necessary conditions for deadlock

Limited access (mutual exclusion)
No preemption
Multiple independent requests (hold and wait)

Circularity in graph of requests
o Aholds mutex x, wants mutex y; B holds y, wants x

 w N R

15

Advice

e Start early

e Design first

o Make sure you really understand the assignment before coding

o Design something that makes it easy for you to convince yourself it is correct — draw diagrams
e Be open to changing your design

o If things feel really hard, take a step back
o A better design might save you hours of debugging

e Avoid deadlock

o Organize your synchronization mechanisms hierarchically
o Write out all cases in which locks are acquired, and the order in which they are acquired

e Add files

16

Good luck & have fun!

