CS 140 Project 4: File Systems
February 28, 2020



Today’s Topics
e Overview

e Project 4 Requirements
o Buffer Cache
o Indexed and Extensible Files
o Subdirectories

o Synchronization

e Getting Started



Project Overview

e Build on top of project 2 or project 3
o Up to 5% extra credit if you enable VM
o Edit ‘filesys/Make.vars’ to enable VM
e Remove the severe limitations of the basic file system
o No internal synchronization
o File size is fixed at creation time
o File data is allocated on contiguous range of disk sectors

o No subdirectory



Project Overview

Reference Implementation:

Makefile.build 5

devices/timer.c 42 ++

filesys/Make.vars 6

filesys/cache.c 473 ++++++++H++HHHH
filesys/cache.h 23 +

filesys/directory.c 99 ++++-

filesys/directory.h 3

filesys/filesys.c 194 +++++++++-

filesys/filesys.h 5

filesys/free-map.c 45 +-

filesys/free-map.h 4

filesys/fsutil.c 8

filesys/inode.c 444 ++++++++++HHH - - - - -
filesys/inode.h 11

|
|
|
|
|
|
|
filesys/file.c | 4
|
|
|
|
|
|
|

. snip ...



Today’s Topics

e Project 4 Requirements
o Buffer Cache
o Indexed and Extensible Files
o Subdirectories

o Synchronization



Buffer Cache

e Modify the file system to keep a cache of file blocks
o Reduce expensive disk I/O
o No more than 64 sectors (including inode and file data)!
e Get rid of the “bounce buffer” in inode {read,write} at()
o Used to implement read/write in byte-granularity
o Interact with the buffer cache instead
e Cache replacement algorithm
o Must be at least as good as the “clock” algorithm

o Maybe give higher priorities to metadata (i.e., inode) over file data?



Buffer Cache, Cont’d

e Your cache should be write-behind

o Keep dirty blocks in cache

o  Write to disk on cache eviction

o Periodically flush dirty blocks back to disk

o Don'’t forget to flush when Pintos halts (in filesys done())
e Your cache should also be read-ahead

o Prefetch the next block of a file when one block of file is read

o  Only meaningful when done asynchronously, in the background



Remove inode disk from inode

/* On-disk inode.
Must be exactly BLOCK_SECTOR_SIZE bytes long. */
struct inode disk

{
block_sector_t start; /* First data sector. */
off_t length; /* File size in bytes. */
unsigned magic; /* Magic number. */
uint32 t unused[125]; /* Not used. */

}s

/* In-memory inode. */
struct inode
{
....unrelated fields omitted ...
,Eé YOU SHOULD REMOVE THIS FIELD
struct inode disk data; /* Inode content. */

}s




Indexed and Extensible Files

e The basic file system suffers from external fragmentation

o Always allocates files as a single extent

o Dictated by the current representation of an inode

/* On-disk inode.
Must be exactly BLOCK SECTOR SIZE bytes long. */
struct inode_disk

{
block sector_t start; /* First data sector. */
off_t length; /* File size in bytes. */
unsigned magic; /* Magic number. */

uint32_t unused[125]; /* Not used. */
}s




Indexed and Extensible Files, Cont’d

e Modify struct inode_disk to use an index structure

o Use a combination of direct, indirect, and doubly indirect blocks

o Support file size up to 8MB inode contents
metadata data
directory ~dataptr
| | data pt
I P — data
| | ' II’E(EII’ ct
i"r?t?hr?be'e”r indirect ptr oc :
- double indir\ data ptr
oz E data ptr idata
. data




Indexed and Extensible Files, Cont’d

e Support file growth
o There should be no predetermined limit on the size of a file
o File size starts as 0; expanded every time user writes beyond EOF
o Details in Section 5.3.2
e Directory can grow too: remove the 16-file limit in the root directory
o “dir_create(ROOT_DIR_SECTOR, 16)"in filesys.c:do_format(void)
e Use the “free map” (free-map.c) to keep track of free disk sectors
o Hard-coded to be kept at disk sector O (i.e., “#define FREE_MAP_SECTOR ")

o Note: You can keep a cached copy permanently in memory



Subdirectories

e Implement a hierarchical name space

o E.g., “/foo/bar/../baz/./a”

o Directory entries (i.e., struct dir_entry) can point to files or other directories
e Each process has its own current directory

o Set to the root directory at startup

o Inherited by the child process started by the exec system call
e Implement path resolution

o Update existing syscalls to take path names (absolute or relative) as inputs

‘ )

o Support special file names “.” and ‘..



Subdirectories, Cont’d

e Update existing system calls

o Update open to open directories
o Update remove to delete empty directories

©)

o Many more details in Section 5.3.3

e More system calls

o Implement chdir, mkdir, readdir, isdir, and inumber

o User programs 1s, mkdir, and pwd should work now



Synchronization

e No more global file system lock

o Operations on different buffer cache blocks must be independent

o E.qg., process A can read cache block 3 while process B is replacing block 7
e Multiple processes must be able to access the same file concurrently

o When the file size is fixed: read can see partial change; writes can interleave

o But extending a file and writing data into the new section must be atomic
e Operations on the same directory must be serialized

o Operations on different directories are independent



Today’s Topics

e Getting Started



Getting Started

e New code to work with

©)

©)

©)

©)

directory.h/c: Performs directory operations using inodes
inode.h/c: Data structures representing the layout of a file’s data on disk
file.h/c: Translates file reads and writes to disk sector reads and writes

Details in Section 5.1.1

e Testing file system persistence

©)

©)

©)

Invoke Pintos a second time to copy files out of the Pintos file system
Grading scripts check if the contents of the file meet expectation
Won't pass the extended file system tests until you support tar

Details in Section 5.1.2




Suggested Order of Implementation

e Buffer cache

o All tests from project 2 (or project 3) should still pass
e Extensible files

o Pass the file growth tests
e Subdirectories

o Pass the directory tests

o Can be done more or less in parallel with extensible files

Think about synchronization from the beginning.



Questions?



