
CS 140 Project 4: File Systems
February 28, 2020

Today’s Topics
● Overview

● Project 4 Requirements
○ Buffer Cache

○ Indexed and Extensible Files

○ Subdirectories

○ Synchronization

● Getting Started

Project Overview
● Build on top of project 2 or project 3

○ Up to 5% extra credit if you enable VM

○ Edit ‘filesys/Make.vars’ to enable VM

● Remove the severe limitations of the basic file system
○ No internal synchronization

○ File size is fixed at creation time

○ File data is allocated on contiguous range of disk sectors

○ No subdirectory

Project Overview
Reference Implementation:

Makefile.build | 5
devices/timer.c | 42 ++
filesys/Make.vars | 6
filesys/cache.c | 473 +++++++++++++++++++++++++
filesys/cache.h | 23 +
filesys/directory.c | 99 ++++-
filesys/directory.h | 3
filesys/file.c | 4
filesys/filesys.c | 194 +++++++++-
filesys/filesys.h | 5
filesys/free-map.c | 45 +-
filesys/free-map.h | 4
filesys/fsutil.c | 8
filesys/inode.c | 444 ++++++++++++++++++-----
filesys/inode.h | 11
... snip ...

Today’s Topics
● Overview

● Project 4 Requirements
○ Buffer Cache

○ Indexed and Extensible Files

○ Subdirectories

○ Synchronization

● Getting Started

Buffer Cache
● Modify the file system to keep a cache of file blocks

○ Reduce expensive disk I/O

○ No more than 64 sectors (including inode and file data)!

● Get rid of the “bounce buffer” in inode_{read,write}_at()
○ Used to implement read/write in byte-granularity

○ Interact with the buffer cache instead

● Cache replacement algorithm
○ Must be at least as good as the “clock” algorithm

○ Maybe give higher priorities to metadata (i.e., inode) over file data?

Buffer Cache, Cont’d
● Your cache should be write-behind

○ Keep dirty blocks in cache

○ Write to disk on cache eviction

○ Periodically flush dirty blocks back to disk

○ Don’t forget to flush when Pintos halts (in filesys_done())

● Your cache should also be read-ahead
○ Prefetch the next block of a file when one block of file is read

○ Only meaningful when done asynchronously, in the background

Remove inode_disk from inode
/* On-disk inode.
 Must be exactly BLOCK_SECTOR_SIZE bytes long. */
struct inode_disk
 {
 block_sector_t start; /* First data sector. */
 off_t length; /* File size in bytes. */
 unsigned magic; /* Magic number. */
 uint32_t unused[125]; /* Not used. */
 };

/* In-memory inode. */
struct inode
 {
 … unrelated fields omitted …
 ⬇ YOU SHOULD REMOVE THIS FIELD
 struct inode_disk data; /* Inode content. */
 };

Indexed and Extensible Files
● The basic file system suffers from external fragmentation

○ Always allocates files as a single extent

○ Dictated by the current representation of an inode

/* On-disk inode.
 Must be exactly BLOCK_SECTOR_SIZE bytes long. */
struct inode_disk
 {
 block_sector_t start; /* First data sector. */
 off_t length; /* File size in bytes. */
 unsigned magic; /* Magic number. */
 uint32_t unused[125]; /* Not used. */
 };

Indexed and Extensible Files, Cont’d
● Modify struct inode_disk to use an index structure

○ Use a combination of direct, indirect, and doubly indirect blocks

○ Support file size up to 8MB

Indexed and Extensible Files, Cont’d
● Support file growth

○ There should be no predetermined limit on the size of a file

○ File size starts as 0; expanded every time user writes beyond EOF

○ Details in Section 5.3.2

● Directory can grow too: remove the 16-file limit in the root directory
○ “dir_create(ROOT_DIR_SECTOR, 16)” in filesys.c:do_format(void)

● Use the “free map” (free-map.c) to keep track of free disk sectors
○ Hard-coded to be kept at disk sector 0 (i.e., “#define FREE_MAP_SECTOR 0”)

○ Note: You can keep a cached copy permanently in memory

Subdirectories
● Implement a hierarchical name space

○ E.g., “/foo/bar/../baz/./a”

○ Directory entries (i.e., struct dir_entry) can point to files or other directories

● Each process has its own current directory
○ Set to the root directory at startup

○ Inherited by the child process started by the exec system call

● Implement path resolution
○ Update existing syscalls to take path names (absolute or relative) as inputs

○ Support special file names ‘.’ and ‘..’

Subdirectories, Cont’d
● Update existing system calls

○ Update open to open directories

○ Update remove to delete empty directories

○ …

○ Many more details in Section 5.3.3

● More system calls
○ Implement chdir, mkdir, readdir, isdir, and inumber

○ User programs ls, mkdir, and pwd should work now

Synchronization
● No more global file system lock

○ Operations on different buffer cache blocks must be independent

○ E.g., process A can read cache block 3 while process B is replacing block 7

● Multiple processes must be able to access the same file concurrently
○ When the file size is fixed: read can see partial change; writes can interleave

○ But extending a file and writing data into the new section must be atomic

● Operations on the same directory must be serialized
○ Operations on different directories are independent

Today’s Topics
● Overview

● Project 4 Requirements
○ Buffer Cache

○ Indexed and Extensible Files

○ Subdirectories

○ Synchronization

● Getting Started

Getting Started
● New code to work with

○ directory.h/c: Performs directory operations using inodes

○ inode.h/c: Data structures representing the layout of a file’s data on disk

○ file.h/c: Translates file reads and writes to disk sector reads and writes

○ Details in Section 5.1.1

● Testing file system persistence
○ Invoke Pintos a second time to copy files out of the Pintos file system

○ Grading scripts check if the contents of the file meet expectation

○ Won’t pass the extended file system tests until you support tar

○ Details in Section 5.1.2

Suggested Order of Implementation
● Buffer cache

○ All tests from project 2 (or project 3) should still pass

● Extensible files
○ Pass the file growth tests

● Subdirectories
○ Pass the directory tests

○ Can be done more or less in parallel with extensible files

Think about synchronization from the beginning.

Questions?

