CPU;,
@ Textbook scheduling
Pe ... - P, P . CPU,
@ Priority scheduling
CPU,

© Advanced scheduling issues
e The scheduling problem:

- Have k jobs ready to run @ Virtual time case studies
- Have n > 1CPUs that can run them

* Which jobs should we assign to which CPU(s)?

1/45 2/45

When do we schedule CPU? Scheduling criteria
o\ad’mined Séi"s%‘iﬂﬁ' terminated * Why do we care?
- What goals should we have for a scheduling algorithm?

ready running

interrupt

1/0 or event 1/0 or event wait

completion

¢ Scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from new/waiting to ready
4. Exits
* Non-preemptive schedules use 1& 4 only

* Preemptive schedulers run at all four points

3/45 4/45

Scheduling criteria Example: FCFS Scheduling

* Why do we care?
- What goals should we have for a scheduling algorithm?

Run jobs in order that they arrive
- Called “First-come first-served” (FCFS)

e Throughput - # of processes that complete per unit time - E.g., Say P, needs 24 sec, while P, and P; need 3.
- Higher is better - Say Py, P; arrived immediately after Py, get:

e Turnaround time - time for each process to complete P, P, li
- Lower is better

0 24 27 30

Response time - time from request to first response

- lLe., time between waiting—ready transition and
ready—running (e.g., key press to echo, not launch to exit)

- Lower is better

Dirt simple to implement—how good is it?

Throughput: 3 jobs / 30 sec = 0.1 jobs/sec
L o Turnaround Time: P; : 24, P, : 27, P3 : 30
Above criteria are affected by secondary criteria - Average TT: (24 + 27 + 30)/3 = 27
- CPU utilization - fraction of time CPU doing productive work
- Waiting time - time each process waits in ready queue

Can we do better?

4/45 5/45

FCFS continued FCFS continued

* Suppose we scheduled P,, P5, then P,
- Would get:

AR P

0 3 6 30

Throughput: 3 jobs /30 sec=0.1jobs/sec
Turnaround time: P; : 30,P, : 3,P3: 6
- Average TT: (30 + 3+ 6)/3 = 13 - much less than 27

e Lesson: scheduling algorithm can reduce TT
- Minimizing waiting time can improve RT and TT

Can a scheduling algorithm improve throughput?

View CPU and 1/0 devices the same Bursts of computation & 1/0

® CPU is one of several devices needed by users’ jobs

- CPU runs compute jobs, Disk drive runs disk jobs, etc.
- With network, part of job may run on remote CPU

¢ Scheduling 1-CPU system with n 1/O devices like scheduling

asymmetric (n + 1)-CPU multiprocessor

e Suppose we scheduled P,, Ps, then P,
- Would get:

17] P

0 3 6 30

Throughput: 3 jobs / 30 sec = 0.1 jobs/sec
Turnaround time: P; : 30,P, : 3,P3: 6
- Average TT: (30 + 3+ 6)/3 = 13 - much less than 27

e Lesson: scheduling algorithm can reduce TT
- Minimizing waiting time can improve RT and TT

Can a scheduling algorithm improve throughput?
- Yes, if jobs require both computation and I/O

6/45 6/45

e Jobs contain I/O and computation load store
i add store CPU burst
- Bursts of computation read from file

- Then must wait for I/0

¢ To maximize throughput, maximize

- Result: all I/0 devices + CPU busy = (n + 1)-fold throughput gain! both CPU and 1/0 device utilization (L e

* Example: disk-bound grep + CPU-bound matrix multiply
- Overlap them just right? throughput will be almost doubled

wait for wait for wait for
BMeP | disk disk disk H
Liinly 1NN
multiply
1
wait for CPU

Histogram of CPU-burst times FCFS Convoy effect

frequency

60

@
o
I,
I
I ey

40 \
20

0 8 16 24 32 40
burst duration (milliseconds)

¢ What does this mean for FCFS?

write to file

° ?

- Overlap computation from one job

with I/O from other jobs load store PUb
. . t
- Means response time very important e e

for I/O-intensive jobs: 1/0 device will
be idle until job gets small amount of —— o
CPU to issue next I/O request urs

7/45 8/45

e CPU-bound jobs will hold CPU until exit or 1/O
(but 1/0O rare for CPU-bound thread)

- Long periods where no I/0 requests issued, and CPU held

- Result: poor I/O device utilization
* Example: one CPU-bound job, many I/O bound

- CPU-bound job runs (1/0 devices idle)

- Eventually, CPU-bound job blocks

- 1/0-bound jobs run, but each quickly blocks on 1/0

- CPU-bound job unblocks, runs again

- All1/O requests complete, but CPU-bound job still hogs CPU

- 1/O devices sitidle since I/O-bound jobs can’t issue next requests
e Simple hack: run process whose 1/0 completed

- What is a potential problem?

9/45 10/45

FCFS Convoy effect SJF Scheduling

® CPU-bound jobs will hold CPU until exit or 1/0O
(but 1/0 rare for CPU-bound thread)

Long periods where no I/0O requests issued, and CPU held
Result: poor /0 device utilization

* Example: one CPU-bound job, many I/O bound

CPU-bound job runs (I/O devices idle)

Eventually, CPU-bound job blocks

1/0-bound jobs run, but each quickly blocks on 1/0
CPU-bound job unblocks, runs again

All1/0 requests complete, but CPU-bound job still hogs CPU

1/0 devices sit idle since I/0-bound jobs can’t issue next requests

¢ Simple hack: run process whose 1/0 completed

What is a potential problem?
1/0-bound jobs can starve CPU-bound one

* Shortest-job first (SJF) attempts to minimize TT

Schedule the job whose next CPU burst is the shortest
Misnomer unless “job” = one CPU burst with no I/O

* Two schemes:

- Non-preemptive - once CPU given to the process it cannot be

- Preemptive - if a new process arrives with CPU burst length less

preempted until completes its CPU burst

than remaining time of current executing process, preempt
(Known as the Shortest-Remaining-Time-First or SRTF)

* What does SJF optimize?
- Gives minimum average waiting time for a given set of processes

SJF limitations SJF limitations

* Doesn’t always minimize average TT

Only minimizes waiting time
Example where turnaround time might be suboptimal?

¢ Can lead to unfairness or starvation

¢ In practice, can’t actually predict the future

* But can estimate CPU burst length based on past

Exponentially weighted average a good idea
t, actual length of process’s nth CPU burst
741 estimated length of proc’s (n + 1)t
Choose parameter a where 0 < o <1
Letmp =ath +(1— a)m

10/45

1/45

13/45

o Shortest-job first (SJF) attempts to minimize TT
- Schedule the job whose next CPU burst is the shortest
- Misnomer unless “job” = one CPU burst with no I/0

* Two schemes:

- Non-preemptive - once CPU given to the process it cannot be
preempted until completes its CPU burst

- Preemptive - if a new process arrives with CPU burst length less
than remaining time of current executing process, preempt
(Known as the Shortest-Remaining-Time-First or SRTF)

* What does SJF optimize?

/45

Process Arrival Time Burst Time

Py 0 7
P, 2 4
Ps 4 1
Py 5 4

* Non-preemptive

P P, Py
0 I I I I 7 8 I I I 12 I I I]6
* Preemptive
0 | 2 | 4 5 7 S 1 S 16

* Drawbacks?
12/45

e Doesn’t always minimize average TT
- Only minimizes waiting time
- Example where turnaround time might be suboptimal?
- Overall longer job has shorter bursts

¢ Can lead to unfairness or starvation

 In practice, can’t actually predict the future

e But can estimate CPU burst length based on past
- Exponentially weighted average a good idea
- tp actual length of process’s nth CPU burst
- 7ny1 estimated length of proc’s (n + 1)t
- Choose parameter a where 0 < ae < 1
- Letmp=ath+(1—a)m

13/45

Exp. weighted average example Round robin (RR) scheduling

T

12

10

- DREER P |

* Solution to fairness and starvation

- Preempt job after some time slice or quantum
- When preempted, move to back of FIFO queue

- (Most systems do some flavor of this)

¢ Advantages:

- Fair allocation of CPU across jobs
- Low average waiting time when job lengths vary

CPU burst ()

"guess” (1)

* Varying sized jobs are good ...what about same-sized jobs?

10

e Assume 2 jobs of time=100 each:

P

P,

P

P,

P

P,

P

P;

0

* Even if context switches were free...
- What would average turnaround time be with RR?

1

2

3

4

5

- How does that compare to FCFS?

Context switch costs Context switch costs

* What is the cost of a context switch?

198 199 200

- Good for responsiveness if small number of jobs

¢ Disadvantages?

14/45 15/45

e Varying sized jobs are good ...what about same-sized jobs?
* Assume 2 jobs of time=100 each:

Pri Py | PPy PP o [P P

0O 1 2 3 4 5 6 198 199 200

* Even if context switches were free...

- What would average turnaround time be with RR? 199.5
- How does that compare to FCFS? 150

16/45 16/45

* What is the cost of a context switch?

e Brute CPU time cost in kernel

- Save and restore resisters, etc.
- Switch address spaces (expensive instructions)

¢ Indirect costs: cache, buffer cache, & TLB misses

P P>
FNEEEEE ENpEEEE
EEEEEEE EEEEEEE
EEEEEEN | — EEEEEEE
EEEEEEE EEEEEEE
PEEEENm PEEEENE

CPU cache CPU cache

17/45 17/45

¢ What is the cost of a context switch?

¢ Brute CPU time cost in kernel

- Save and restore resisters, etc.
- Switch address spaces (expensive instructions)

¢ Indirect costs: cache, buffer cache, & TLB misses

P P, P

CPU cache CPU cache CPU cache

Turnaround time vs. quantum Two-level scheduling

process | time
125 P, ”
12.0 A P, 3
. \ P, 1
£ 115 P, 7
: 11.0 \
3 Y
g 105
=
g 100
o
S o5
9.0

1 2 3 4 5 6 7
time quantum

L ouine priority scheduling

Associate a numeric priority with each process

@ Textbook scheduling
@ Priority scheduling
© Advanced scheduling issues

@ Virtual time case studies

17/45

19/45

21/45

process time = 10 quantum context

switches

‘ ‘ 12 0
0 10

| | e :
0 6 10

T -
0 1 2 3 4 5 6 7 8 9 10

* How to pick quantum?

- Want much larger than context switch cost
- Majority of bursts should be less than quantum
- But not so large system reverts to FCFS

e Typical values: 1-100 msec

18/45

* Under memory constraints, may need to swap process to disk

e Switching to swapped out process very expensive

- Swapped out process has most memory pages on disk
- Will have to fault them all in while running

- One disk access costs ~10ms. On 1GHz machine, 10ms =10 million
cycles!

¢ Solution: Context-switch-cost aware scheduling

- Runin-core subset for “a while”
- Then swap some between disk and memory

* How to pick subset? How to define “a while”?

- View as scheduling memory before scheduling CPU
- Swapping in process is cost of memory “context switch”
- So want “memory quantum” much larger than swapping cost

20/45

- E.g., smaller number means higher priority (Unix/BSD)
- Or smaller number means lower priority (Pintos)

Give CPU to the process with highest priority

- Can be done preemptively or non-preemptively

Note SJF is priority scheduling where priority is the predicted
next CPU burst time

Starvation - low priority processes may never execute
Solution?

22/45

Priority scheduling Multilevel feeedback queues (BSD)
0...3

— tail

* Associate a numeric priority with each process ol 4t P — — tail

- E.g., smaller number means higher priority (Unix/BSD) ," 8.1 SI—I— I — I —I— tail

- Or smaller number means lower priority (Pintos)

* Give CPU to the process with highest priority
- Can be done preemptively or non-preemptively '-‘

124..127 —Il——— tail

* Note SJF is priority scheduling where priority is the predicted \
. ', » Every runnable process on one of 32 run queues
next CPU burst time N
. L “~-- Kernel runs process on highest-priority non-empty queue
o Starvation - low priority processes may never execute - Round-robins among processes on same queue

® Process priorities dynamically computed
- Processes moved between queues to reflect priority changes
- If a process gets higher priority than running process, run it

¢ ldea: Favor interactive jobs that use less CPU

* Solution?
- Aging: increase a process’s priority as it waits

22/45 23/45

Process priority Sleeping process increases priority

® p_nice - user-settable weighting factor

® p_estcpu not updated while asleep

® p_estcpu - per-process estimated CPU usage
- Instead p_slptime keeps count of sleep time

- Incremented whenever timer interrupt found process running

- Decayed every second while process runnable * When process becomes runnable

2 -load p_slptime
p_estcpu < (— p_estcpu+ p_nice 2 - load -
2 -load + 1) t N X t
p_estcpu 2 load -1 p_estcpu

- Load is sampled average of length of run queue plus short-term

sleep queue over last minute - Approximates decay ignoring nice and past loads

 Previous description based on [McKusick]' (The Design and

* Run queue determined by p_usrpri/4
Implementation of the 4.4BSD Operating System)

t
p_usrpri « 50 + (@) +2-p_nice

(value clipped if over 127) -
'See library.stanford.edu for off-campus access
24/45

e With thread library, have two scheduling decisions:

* Same basic idea for second half of project 1 - Local Scheduling - Thread library decides which user thread to put
onto an available kernel thread

- But 64 priorities, not 128
- Higher numbers mean higher priority - Global Scheduling - Kernel decides which kernel thread to run next
- Okay to have only one run queue if you prefer

25/45

e Can expose to the user

(less efficient, but we won’t deduct points for it) - E.g, pthread_attr_setscope allows two choices
* Have to negate priority equation: - PTHREAD_SCOPE_SYSTEM - thread scheduled like a process
(effectively one kernel thread bound to user thread - Will return

priority = 63 — (recent_cpu) _ 2 .nice ENOTSUP in user-level pthreads implementation)
4 - PTHREAD_SCOPE_PROCESS - thread scheduled within the current
process (may have multiple user threads multiplexed onto kernel
threads)

26/45 27/45

Thread dependencies Priority donation

e Say H at high priority, L at low priority

- Lacquires lock ¢.

- Scenario 1: H tries to acquire ¢, fails, spins. L never gets to run.

- Scenario 2: H tries to acquire ¢, fails, blocks. M enters system at
medium priority. L never gets to run.

- Both scenes are examples of priority inversion

¢ Scheduling = deciding who should make progress

- Athread’s importance should increase with the importance of

those that depend on it

- Naive priority schemes violate this

@ Textbook scheduling
@ Priority scheduling
® Advanced scheduling issues

@ Virtual time case studies

Multiprocessor scheduling (cont) Real-time scheduling

28/45

30/45

* Want related processes/threads scheduled together

- Good if threads access same resources (e.g., cached files)
- Even more important if threads communicate often,

otherwise must context switch to communicate

® Gang scheduling—schedule all CPUs synchronously

- With synchronized quanta, easier to schedule related

processes/threads together

Py Pa
e

Paa P22

Pia P12
CPU, CPU,

Py3
Pi3

CPU3

Psq

Pia

CPU,

32/45

¢ Say higher number = higher priority (like Pintos)
e Example 1: L (prio 2), M (prio 4), H (prio 8)
- L holds lock ¢
- Mwaitson ¢, L’s priority raised to L; = max(M,L) = 4
- Then H waits on ¢, L’s priority raised to max(H, L;) = 8
* Example 2: Same L, M, H as above
- L holds lock ¢, M holds lock ¢,
- Mwaits on ¢, L’s priority now Ly = 4 (as before)
- Then H waits on ¢;. M’s priority goes to M; = max(H,M) = 8,and L’s
priority raised to max(M;,L;) = 8
* Example 3: L (prio 2), My, ... Moo (all prio 4)
- Lhas¢,and My, ..., Moo all block on £. L’s priority is
max(L, My, ..., Miooo) = 4.

29/45

* Must decide on more than which processes to run
- Must decide on which CPU to run which process
* Moving between CPUs has costs
- More cache misses, depending on arch. more TLB misses too
e Affinity scheduling—try to keep process/thread on same CPU

L]
P, Py ' Py P,
2 P : Gl P2
- Py \ P e}
1
Py Py ' Py Py
]
CPU, CPU; ! cPY; CPU,
L}
]
no affinity ' affinity

- Butalso prevent load imbalances

- Do cost-benefit analysis when deciding to migrate...
affinity can also be harmful, particularly when tail latency is critical
31/45

* Two categories:
- Soft real time—miss deadline and CD will sound funny
- Hard real time—miss deadline and plane will crash

e System must handle periodic and aperiodic events

- E.g., processes A, B, C must be scheduled every 100, 200, 500 msec,
require 50, 30, 100 msec respectively

- Schedulable if 3" p(:g .

< 1(not counting switch time)

e Variety of scheduling strategies

- E.g., first deadline first
(works if schedulable, otherwise fails spectacularly)

33/45

° Many modern schedulers employ notion of virtual time

€ Textbook scheduling - ldea: Equalize virtual CPU time consumed by different processes
- Higher-priority processes consume virtual time more slowly

Forms the basis of the current linux scheduler, CFS
Case study: Borrowed Virtual Time (BVT) [Duda]

BVT runs process with lowest effective virtual time

- A; - actual virtual time consumed by process

- effective virtual time E; = A; — (warp; ? W; : 0)

- Special warp factor allows borrowing against future CPU time
...hence name of algorithm

@ Priority scheduling

© Advanced scheduling issues

@ Virtual time case studies

34/45 35/45
Process weights Process weights
e Each process i’s faction of CPU determined by weight w; e Each process i’s faction of CPU determined by weight w;
- ishould get w;/ >~ w; faction of CPU - ishould get w;/ >~ w; faction of CPU
J J
- So w; is real seconds per virtual second that process i has CPU - So w; is real seconds per virtual second that process j has CPU
* When/consumes t CPU time, track it: A; += t/w; * When/consumes t CPU time, track it: A; += t/w;
* Example: gcc (weight 2), bigsim (weight 1) * Example: gcc (weight 2), bigsim (weight 1)
- Assuming no 10, runs: gcc, gcc, bigsim, gec, gec, bigsim, ... - Assuming no |0, runs: gcc, gcc, bigsim, gec, gee, bigsim, ...
- Lots of context switches, not so good for performance - Lots of context switches, not so good for performance
* Add in context switch allowance, C ¢ Add in context switch allowance, C
- Only switch fromjtoif ; < E; — C/w; - Only switch fromitojif E; < E; — C/w;
- Ciswall-clock time (>> context switch cost), so must divide by w; - Ciswall-clock time (>> context switch cost), so must divide by w;
- Ignore Cifj just became runable...why? - Ignore Cifj just became runable to avoid affecting response time
36/45 36/45
BVT example Sleep/wakeup
180 T T T
gcc —A— T
160 - bigsim —e— : * Must lower priority (increase A;) after wakeup
140 1 - Otherwise process with very low A; would starve everyone
2 120 ¢ 1 * Bound lag with Scheduler Virtual Time (SVT)
‘(_*‘; 100 ¢] - SVTis minimum 4; for all runnable threads j
£ 80 1 - When waking i from voluntary sleep, set A; < max(A;, SVT)
> 607 * Note voluntary/involuntary sleep distinction
40 ¢ - E.g., Don’t reset A; to SVT after page fault
20 ¢] - Faulting thread needs a chance to catch up
0 : : .
0 3 6 9 12 15 18 21 24 27 But do set A; «— max(A;, SVT) after socket read
real time ¢ Note: Even with SVT A; can never decrease
e gcc has weight 2, bigsim weight1,C =2,n01/0 - After short sleep, might have A; > SVT, so max(A;, SVT) = A;
- bigsim consumes virtual time at twice the rate of gcc - i never gets more than its fair share of CPU in long run

- Processes run for C time after lines cross before context switch
37/45 38/45

400

gcc —a— ' e Also want to support time-critical tasks

350 | bigsim —e— | - E.g., mpeg player must run every 10 clock ticks
300 1 e Recall £; = A; — (warp; ? W; : 0)
250 ¢ - W;is warp factor - gives thread precedence
200 t 1 - Just give mpeg player i large W; factor
150 | h - Will get CPU whenever it is runable
100 | | - But long term CPU share won’t exceed w;/ ij w;

S0 ¢ 1 * Note I, only matters when warp; is true

0 - Can set warp; with a syscall, or have it set in signal handler
0 15 30

- Also gets cleared if i keeps using CPU for L; time

e gcc’s A; gets reset to SVT on wakeup - L, limit gets reset every U; time

- Otherwise, would be at lower (blue) line and starve bigsim - L; = 0 means no limit - okay for small W; value
39/45 40/45
Running warped Warped thread hogging CPU
120 P ——— . o 120 Fp——
100 | bigsim —e— 100 r bigsim —e—
gof PO T go MPeO T]
60 60 —
40 40 t 7 =
20 + 20
04 0 ¢ b
20} -20
40+ _40[,
-60 -60 ' : : :
0 5 10 15 20 25 0 5 10 15 20 25
* mpeg player runs with —50 warp value ° mpeg goes into tight loop at time 5
- Always gets CPU when needed, never misses a frame * Exceeds L; at time 10, so warp; « false
41/45 42/45

BVT example: Search engine Case study: SMART

* Common queries 150 times faster than uncommon

- Have 10-thread pool of threads to handle requests
- Assign W; value sufficient to process fast query (say 50)

e Key idea: Separate importance from urgency

- Figure out which processes are important enough to run

- Run whichever of these is most urgent
* Say 1slow query, small trickle of fast queries

- Fast queries come in, warped by 50, execute immediately
- Slow query runs in background

e Importance = (priority, BVFT) value tuple

- priority - parameter set by user or administrator (higher is better)
» Takes absolute priority over BVFT

- Good for turnaround time - BVFT - Biased Virtual Finishing Time (lower is better)
* Say 1slow query, but many fast queries > virtual time consumed + virtual length of next CPU burst
- At first, only fast queries run > Ir;i.\;vwrtual time at which quantum would end if process scheduled

- But SVT is bounded by A; of slow query thread i

- Recall fast query thread j gets A; = max(4;, SVT) = Aj; eventually . .
SVT < A;and a bit later 4; — warp; > A. e Urgency = next deadline (sooner is more urgent)

> Bias is like negative warp, see paper for details

- At that point thread i will run again, so no starvation

43/45 44/45

SMART algorithm

* If most important ready task (ready task with best value
tuple) is conventional (not real-time), run it

Consider all real-time tasks with better value tuples than the
best ready conventional task

For each such real-time task, starting from the best
value-tuple

- Canyou run it without missing deadlines of more important tasks?
- If so, add to schedulable set

¢ Run task with earliest deadline in schedulable set

Send signal to tasks that won’t meet their deadlines

45/45

