
CPU scheduling

CPU1

CPU2
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CPUn

P1P2P3. . .Pk

• The scheduling problem:
- Have k jobs ready to run
- Have n ≥ 1 CPUs that can run them

• Which jobs should we assign to which CPU(s)?
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When dowe schedule CPU?

new

ready running

terminated

waiting

admitted

interrupt

scheduler
dispatch exit

I/O or event
completion

I/O or event wait

• Scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from new/waiting to ready
4. Exits

• Non-preemptive schedules use 1 & 4 only
• Preemptive schedulers run at all four points
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Scheduling criteria

• Why do we care?
- What goals should we have for a scheduling algorithm?

• Throughput – # of processes that complete per unit time
- Higher is better

• Turnaround time – time for each process to complete
- Lower is better

• Response time – time from request to first response
- I.e., time betweenwaiting→ready transition and
ready→running (e.g., key press to echo, not launch to exit)

- Lower is better
• Above criteria are a�ected by secondary criteria

- CPU utilization – fraction of time CPU doing productive work
- Waiting time – time each process waits in ready queue
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Example: FCFS Scheduling

• Run jobs in order that they arrive
- Called “First-come first-served” (FCFS)
- E.g., Say P1 needs 24 sec, while P2 and P3 need 3.
- Say P2, P3 arrived immediately a�er P1, get:

P1 P2 P3

0 24 27 30

• Dirt simple to implement—how good is it?
• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec
• Turnaround Time: P1 : 24, P2 : 27, P3 : 30

- Average TT: (24+ 27+ 30)/3 = 27

• Can we do better?
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FCFS continued

• Suppose we scheduled P2, P3, then P1
- Would get:

P1P2 P3

0 3 6 30

• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec
• Turnaround time: P1 : 30, P2 : 3, P3 : 6

- Average TT: (30+ 3+ 6)/3 = 13 – much less than 27

• Lesson: scheduling algorithm can reduce TT
- Minimizing waiting time can improve RT and TT

• Can a scheduling algorithm improve throughput?

- Yes, if jobs require both computation and I/O
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View CPU and I/O devices the same

• CPU is one of several devices needed by users’ jobs
- CPU runs compute jobs, Disk drive runs disk jobs, etc.
- With network, part of job may run on remote CPU

• Scheduling 1-CPU systemwith n I/O devices like scheduling
asymmetric (n+ 1)-CPUmultiprocessor
- Result: all I/O devices + CPU busy=⇒ (n+ 1)-fold throughput gain!

• Example: disk-bound grep + CPU-boundmatrix multiply
- Overlap them just right? throughput will be almost doubled

wait for
disk

wait for
disk

wait for
diskgrep

matrix
multiply

wait for CPU
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Bursts of computation & I/O

• Jobs contain I/O and computation
- Bursts of computation
- Thenmust wait for I/O

• Tomaximize throughput, maximize
both CPU and I/O device utilization
• How to do?

- Overlap computation from one job
with I/O from other jobs

- Means response time very important
for I/O-intensive jobs: I/O device will
be idle until job gets small amount of
CPU to issue next I/O request
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Histogram of CPU-burst times

• What does this mean for FCFS?
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FCFS Convoy e�ect

• CPU-bound jobs will hold CPU until exit or I/O
(but I/O rare for CPU-bound thread)
- Long periods where no I/O requests issued, and CPU held
- Result: poor I/O device utilization

• Example: one CPU-bound job, many I/O bound
- CPU-bound job runs (I/O devices idle)
- Eventually, CPU-bound job blocks
- I/O-bound jobs run, but each quickly blocks on I/O
- CPU-bound job unblocks, runs again
- All I/O requests complete, but CPU-bound job still hogs CPU
- I/O devices sit idle since I/O-bound jobs can’t issue next requests

• Simple hack: run process whose I/O completed
- What is a potential problem?

I/O-bound jobs can starve CPU-bound one
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SJF Scheduling

• Shortest-job first (SJF) attempts to minimize TT
- Schedule the job whose next CPU burst is the shortest
- Misnomer unless “job” = one CPU burst with no I/O

• Two schemes:
- Non-preemptive – once CPU given to the process it cannot be
preempted until completes its CPU burst

- Preemptive – if a new process arrives with CPU burst length less
than remaining time of current executing process, preempt
(Known as the Shortest-Remaining-Time-First or SRTF)

• What does SJF optimize?

- Gives minimum averagewaiting time for a given set of processes
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Examples

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

• Non-preemptive
P1 P3 P2 P4

0 7 8 12 16
• Preemptive

P1 P2 P3 P2 P4 P1

0 2 4 5 7 11 16
• Drawbacks?
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SJF limitations

• Doesn’t always minimize average TT
- Only minimizes waiting time
- Example where turnaround timemight be suboptimal?

- Overall longer job has shorter bursts

• Can lead to unfairness or starvation
• In practice, can’t actually predict the future
• But can estimate CPU burst length based on past

- Exponentially weighted average a good idea
- tn actual length of process’s nth CPU burst
- τn+1 estimated length of proc’s (n+ 1)st

- Choose parameter αwhere 0 < α ≤ 1
- Let τn+1 = αtn + (1− α)τn
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Exp. weighted average example
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Round robin (RR) scheduling

P1 P2 P3 P1 P2 P1

• Solution to fairness and starvation
- Preempt job a�er some time slice or quantum
- When preempted, move to back of FIFO queue
- (Most systems do some flavor of this)

• Advantages:
- Fair allocation of CPU across jobs
- Low average waiting time when job lengths vary
- Good for responsiveness if small number of jobs

• Disadvantages?
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RR disadvantages

• Varying sized jobs are good .. .what about same-sized jobs?
• Assume 2 jobs of time=100 each:

0 1

P1 P2

2 3

P1 P2

4 5

P1 P2

6 198 199 200

P1 P2· · ·

• Even if context switches were free. . .
- What would average turnaround time be with RR?

199.5

- How does that compare to FCFS?

150
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Context switch costs

• What is the cost of a context switch?

• Brute CPU time cost in kernel
- Save and restore resisters, etc.
- Switch address spaces (expensive instructions)

• Indirect costs: cache, bu�er cache, & TLBmisses

CPU cache

P1

CPU cache

P2
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Time quantum

• How to pick quantum?
- Want much larger than context switch cost
- Majority of bursts should be less than quantum
- But not so large system reverts to FCFS

• Typical values: 1–100msec
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Turnaround time vs. quantum
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Two-level scheduling

• Undermemory constraints, may need to swap process to disk
• Switching to swapped out process very expensive

- Swapped out process has most memory pages on disk
- Will have to fault them all in while running
- One disk access costs∼10ms. On 1GHz machine, 10ms = 10 million
cycles!

• Solution: Context-switch-cost aware scheduling
- Run in-core subset for “a while”
- Then swap some between disk andmemory

• How to pick subset? How to define “a while”?
- View as schedulingmemory before scheduling CPU
- Swapping in process is cost of memory “context switch”
- So want “memory quantum”much larger than swapping cost
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Priority scheduling

• Associate a numeric priority with each process
- E.g., smaller number means higher priority (Unix/BSD)
- Or smaller number means lower priority (Pintos)

• Give CPU to the process with highest priority
- Can be done preemptively or non-preemptively

• Note SJF is priority scheduling where priority is the predicted
next CPU burst time
• Starvation – low priority processes may never execute
• Solution?

- Aging: increase a process’s priority as it waits
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Multilevel feeedback queues (BSD)

0 . . .3

4 . . .7

8 . . . 11

...

124 . . . 127

tail

tail

tail

tail

• Every runnable process on one of 32 run queues
- Kernel runs process on highest-priority non-empty queue
- Round-robins among processes on same queue

• Process priorities dynamically computed
- Processes moved between queues to reflect priority changes
- If a process gets higher priority than running process, run it

• Idea: Favor interactive jobs that use less CPU
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Process priority

• p_nice – user-settable weighting factor
• p_estcpu – per-process estimated CPU usage

- Incremented whenever timer interrupt found process running
- Decayed every second while process runnable

p_estcpu←
(

2 · load
2 · load+ 1

)
p_estcpu+ p_nice

- Load is sampled average of length of run queue plus short-term
sleep queue over last minute

• Run queue determined by p_usrpri/4

p_usrpri← 50+
(p_estcpu

4

)
+ 2 · p_nice

(value clipped if over 127)
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Sleeping process increases priority

• p_estcpu not updated while asleep
- Instead p_slptime keeps count of sleep time

• When process becomes runnable

p_estcpu←
(

2 · load
2 · load+ 1

)p_slptime
× p_estcpu

- Approximates decay ignoring nice and past loads
• Previous description based on [McKusick]1 (The Design and
Implementation of the 4.4BSD Operating System)

1See library.stanford.edu for o�-campus access
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Pintos notes

• Same basic idea for second half of project 1
- But 64 priorities, not 128
- Higher numbers mean higher priority
- Okay to have only one run queue if you prefer
(less e�icient, but we won’t deduct points for it)

• Have to negate priority equation:

priority = 63−
(recent_cpu

4

)
− 2 · nice
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Thread scheduling

• With thread library, have two scheduling decisions:
- Local Scheduling – Thread library decides which user thread to put
onto an available kernel thread

- Global Scheduling – Kernel decides which kernel thread to run next
• Can expose to the user

- E.g., pthread_attr_setscope allows two choices
- PTHREAD_SCOPE_SYSTEM – thread scheduled like a process
(e�ectively one kernel thread bound to user thread – Will return
ENOTSUP in user-level pthreads implementation)

- PTHREAD_SCOPE_PROCESS – thread scheduled within the current
process (may have multiple user threads multiplexed onto kernel
threads)

27 / 45



Thread dependencies

• Say H at high priority, L at low priority
- L acquires lock `.
- Scenario 1: H tries to acquire `, fails, spins. L never gets to run.
- Scenario 2: H tries to acquire `, fails, blocks. M enters system at
medium priority. L never gets to run.

- Both scenes are examples of priority inversion
• Scheduling = deciding who should make progress

- A thread’s importance should increase with the importance of
those that depend on it

- Naïve priority schemes violate this
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Priority donation

• Say higher number = higher priority (like Pintos)
• Example 1: L (prio 2),M (prio 4), H (prio 8)

- L holds lock `
- Mwaits on `, L’s priority raised to L1 = max(M, L) = 4
- Then Hwaits on `, L’s priority raised tomax(H, L1) = 8

• Example 2: Same L,M,H as above
- L holds lock `,M holds lock `2
- Mwaits on `, L’s priority now L1 = 4 (as before)
- Then Hwaits on `2. M’s priority goes toM1 = max(H,M) = 8, and L’s
priority raised tomax(M1, L1) = 8

• Example 3: L (prio 2),M1, . . .M1000 (all prio 4)
- L has `, andM1, . . . ,M1000 all block on `. L’s priority is
max(L,M1, . . . ,M1000) = 4.
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Multiprocessor scheduling issues

• Must decide onmore than which processes to run
- Must decide on which CPU to run which process

• Moving between CPUs has costs
- More cache misses, depending on arch. more TLBmisses too

• A�inity scheduling—try to keep process/thread on same CPU

CPU1

P2

P3

P1

P2

CPU2

P3

P1

P2

P3

CPU3

P1

P2

P3

P1

no a�inity

CPU1

P1

P1

P1

P1

CPU2

P2

P2

P2

P2

CPU3

P3

P3

P3

P3

a�inity

- But also prevent load imbalances
- Do cost-benefit analysis when deciding to migrate. . .
a�inity can also be harmful, particularly when tail latency is critical
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Multiprocessor scheduling (cont)

• Want related processes/threads scheduled together
- Good if threads access same resources (e.g., cached files)
- Evenmore important if threads communicate o�en,
otherwise must context switch to communicate

• Gang scheduling—schedule all CPUs synchronously
- With synchronized quanta, easier to schedule related
processes/threads together

CPU1

P1,1

P2,1

P3,1

P4,1

CPU2

P1,2

P2,2

P3,2

P4,2

CPU3

P1,3

P2,3

P3,3

P4,3

CPU4

P1,4

P2,4

P3,4

P4,4
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Real-time scheduling

• Two categories:
- So� real time—miss deadline and CD will sound funny
- Hard real time—miss deadline and plane will crash

• Systemmust handle periodic and aperiodic events
- E.g., processes A, B, C must be scheduled every 100, 200, 500msec,
require 50, 30, 100 msec respectively

- Schedulable if
∑ CPU

period ≤ 1 (not counting switch time)

• Variety of scheduling strategies
- E.g., first deadline first
(works if schedulable, otherwise fails spectacularly)
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Scheduling with virtual time

• Manymodern schedulers employ notion of virtual time
- Idea: Equalize virtual CPU time consumed by di�erent processes
- Higher-priority processes consume virtual timemore slowly

• Forms the basis of the current linux scheduler, CFS
• Case study: Borrowed Virtual Time (BVT) [Duda]
• BVT runs process with lowest e�ective virtual time

- Ai – actual virtual time consumed by process i
- e�ective virtual time Ei = Ai − (warpi ? Wi : 0)
- Special warp factor allows borrowing against future CPU time
. . .hence name of algorithm
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Process weights

• Each process i’s faction of CPU determined by weightwi
- i should getwi/

∑
j
wj faction of CPU

- Sowi is real seconds per virtual second that process i has CPU

• When i consumes t CPU time, track it: Ai += t/wi
• Example: gcc (weight 2), bigsim (weight 1)

- Assuming no IO, runs: gcc, gcc, bigsim, gcc, gcc, bigsim, . . .
- Lots of context switches, not so good for performance

• Add in context switch allowance, C
- Only switch from i to j if Ej ≤ Ei − C/wi

- C is wall-clock time (>> context switch cost), so must divide bywi

- Ignore C if j just became runable. . .why?
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BVT example
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• gcc has weight 2, bigsimweight 1, C = 2, no I/O
- bigsim consumes virtual time at twice the rate of gcc
- Processes run for C time a�er lines cross before context switch
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Sleep/wakeup

• Must lower priority (increase Ai) a�er wakeup
- Otherwise process with very low Ai would starve everyone

• Bound lag with Scheduler Virtual Time (SVT)
- SVT is minimum Aj for all runnable threads j
- When waking i from voluntary sleep, set Ai ← max(Ai,SVT)

• Note voluntary/involuntary sleep distinction
- E.g., Don’t reset Aj to SVT a�er page fault
- Faulting thread needs a chance to catch up
- But do set Ai ← max(Ai,SVT) a�er socket read

• Note: Even with SVT Ai can never decrease
- A�er short sleep, might have Ai > SVT, somax(Ai,SVT) = Ai
- i never gets more than its fair share of CPU in long run
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gcc wakes up a�er I/O

0
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350
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gcc
bigsim

• gcc’s Ai gets reset to SVT on wakeup
- Otherwise, would be at lower (blue) line and starve bigsim
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Real-time threads

• Also want to support time-critical tasks
- E.g., mpeg player must run every 10 clock ticks

• Recall Ei = Ai − (warpi ? Wi : 0)
- Wi iswarp factor – gives thread precedence
- Just give mpeg player i largeWi factor
- Will get CPU whenever it is runable
- But long term CPU share won’t exceedwi/

∑
j
wj

• NoteWi only matters when warpi is true
- Can set warpi with a syscall, or have it set in signal handler
- Also gets cleared if i keeps using CPU for Li time
- Li limit gets reset every Ui time
- Li = 0means no limit – okay for smallWi value
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Running warped
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• mpeg player runs with−50warp value
- Always gets CPU when needed, never misses a frame
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Warped thread hogging CPU
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• mpeg goes into tight loop at time 5
• Exceeds Li at time 10, so warpi ← false
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BVT example: Search engine

• Common queries 150 times faster than uncommon
- Have 10-thread pool of threads to handle requests
- AssignWi value su�icient to process fast query (say 50)

• Say 1 slow query, small trickle of fast queries
- Fast queries come in, warped by 50, execute immediately
- Slow query runs in background
- Good for turnaround time

• Say 1 slow query, but many fast queries
- At first, only fast queries run
- But SVT is bounded by Ai of slow query thread i
- Recall fast query thread j gets Aj = max(Aj,SVT) = Aj; eventually
SVT < Aj and a bit later Aj −warpj > Ai.

- At that point thread iwill run again, so no starvation
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Case study: SMART

• Key idea: Separate importance from urgency
- Figure out which processes are important enough to run
- Run whichever of these is most urgent

• Importance = 〈priority,BVFT〉 value tuple
- priority – parameter set by user or administrator (higher is better)

. Takes absolute priority over BVFT
- BVFT – Biased Virtual Finishing Time (lower is better)

. virtual time consumed + virtual length of next CPU burst

. I.e., virtual time at which quantumwould end if process scheduled
now

. Bias is like negative warp, see paper for details

• Urgency = next deadline (sooner is more urgent)
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SMART algorithm

• If most important ready task (ready task with best value
tuple) is conventional (not real-time), run it
• Consider all real-time tasks with better value tuples than the
best ready conventional task
• For each such real-time task, starting from the best
value-tuple
- Can you run it without missing deadlines of more important tasks?
- If so, add to schedulable set

• Run task with earliest deadline in schedulable set
• Send signal to tasks that won’t meet their deadlines
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