
Overview of previous and current lectures

• Locks create serial code
- Serial code gets no speedup frommultiprocessors

• Test-and-set spinlock has additional disadvantages
- Lots of tra�ic over memory bus
- Not fair on NUMAmachines

• Idea 1: Avoid spinlocks
- We saw lock-free algorithms last lecture
- Introduced RCU last time, dive deeper today

• Idea 2: Design better spinlocks
- Less memory tra�ic, better fairness

• Idea 3: Hardware turns coarse- into fine-grained locks!
- While also reducing memory tra�ic for lock in common case
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Read-copy update [McKenney]

• Some data is read waymore o�en than written
- Routing tables consulted for each forwarded packet
- Data maps in systemwith 100+ disks (updated on disk failure)

• Optimize for the common case of reading without lock
- Have global variable: _Atomic(routing_table *) rt;
- Use it with no lock
#define RELAXED(var) \
atomic_load_explicit(&(var), memory_order_relaxed)

/* ... */

route = lookup(RELAXED(rt), destination);

• Update bymaking copy, swapping pointer
routing_table *newrt = copy_routing_table(rt);
update_routing_table(newrt);
atomic_store_explicit(&rt, newrt, memory_order_release);
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Is RCU really safe?

• Consider the use of global rtwith no fences:
lookup(RELAXED(rt), route);

• Could a CPU read new pointer but then old contents of *rt?
• Yes on alpha, No on all other existing architectures
• We are saved by dependency ordering in hardware

- Instruction B depends on A if B uses result of A
- Non-alpha CPUs won’t re-order dependent instructions
- If writer uses release fence, safe to load pointer then just use it

• This is the point of memory_order_consume
- Should be equivalent to acquire barrier on alpha
- But should compile to nothing (be free) on other machines
- But hard to get semantics right (temporarily deprecated in C++)
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Preemptible kernels

• Recall kernel process context from lecture 1
- When CPU in kernel mode but executing on behalf of a process
(e.g., might be in system call or page fault handler)

- As opposed to interrupt handlers or context switch code
• A preemptible kernel can preempt process context code

- Take a CPU core away from kernel process context code between
any two instructions

- Give the same CPU core to kernel code for a di�erent process
• Don’t confuse with:

- Interrupt handlers can always preempt process context code
- Preemptive threads (always have for multicore)
- Process context code running concurrently on other CPU cores

• Sometimes want or need to disable preemption
- E.g., before acquiring spinlock also used by interrupt handler
- Or in code that must not be migrated between CPUs
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Garbage collection

• When can you free memory of old routing table?
- When you are guaranteed no one is using it—how to determine?

• Definitions:
- temporary variable – short-used (e.g., local) variable
- permanent variable – long lived data (e.g., global rt pointer)
- quiescent state – when all a thread’s temporary variables dead
- quiescent period – time during which every thread has been in
quiescent state at least once

• Free old copy of updated data a�er quiescent period
- How to determine when quiescent period has gone by?
- E.g., keep count of syscalls/context switches on each CPU

• Restrictions:
- Can’t hold a pointer across context switch or user mode
(Never copy rt into another permanent variable)

- Must disable preemption while consuming RCU data structure
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Useful macros

• Atomic compare and swap: CAS (mem, old, new)
- In C11: atomic_compare_exchange_strong
- On x86: cmpxchg instruction provides this (with lock prefix)
- If *mem == old, then swap *mem↔new and return true, else false

• Atomic swap: XCHG (mem, new)
- C11 atomic_exchange, can implement with xchg on x86
- Atomically exchanges *mem↔new

• Atomic fetch and add: FADD (mem, val)
- C11 atomic_fetch_add, can implement with lock add on x86
- Atomically sets *mem += val and returns old value of *mem

• Atomic fetch and subtract: FSUB (mem, val)

• Note: atomics return previous value (like x++, not ++x)
• All behave like sequentially consistent fences, too

- Unlike _explicit versions, which take a memory_order argument
8 / 44

MCS lock

• Idea 2: Build a better spinlock
• Lock designed by Mellor-Crummey and Scott

- Goal: reduce bus tra�ic on cc machines, improve fairness
• Each CPU has a qnode structure in local memory

typedef struct qnode {
_Atomic (struct qnode *) next;
atomic_bool locked;

} qnode;

- Local can mean local memory in NUMAmachine
- Or just its own cache line that gets cached in exclusive mode

• A lock is a qnode pointer: typedef _Atomic (qnode *) lock;
- Construct list of CPUs holding or waiting for lock
- lock itself points to tail of list list

• While waiting, spin on your local locked flag
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MCS Acquire
acquire (lock *L, qnode *I) {
I->next = NULL;
qnode *predecessor = I;
XCHG (*L, predecessor);
if (predecessor != NULL) {
I->locked = true;
predecessor->next = I;
while (I->locked)
;

}
}

• If unlocked, L is NULL
• If locked, no waiters, L is owner’s qnode
• If waiters, *L is tail of waiter list:

waiterwaiterowner
next next

*L

next
NULL
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MCS Release with CAS

release (lock *L, qnode *I) {
if (!I->next)
if (CAS (*L, I, NULL))
return;

while (!I->next)
;

I->next->locked = false;
}

• If I->next NULL and *L == I

- No one else is waiting for lock, OK to set *L = NULL

*L

NULL*I
next
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MCS Release with CAS

release (lock *L, qnode *I) {
if (!I->next)
if (CAS (*L, I, NULL))
return;

while (!I->next)
;

I->next->locked = false;
}

• If I->next NULL and *L != I

- Another thread is in the middle of acquire
- Just wait for I->next to be non-NULL

NULL locker

*L

NULL
next

*I

predecessor in locker
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MCS Release with CAS

release (lock *L, qnode *I) {
if (!I->next)
if (CAS (*L, I, NULL))
return;

while (!I->next)
;

I->next->locked = false;
}

• If I->next is non-NULL
- I->next oldest waiter, wake up with I->next->locked = false

waiterwaiter
next

*L

next
NULL*I

next
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MCS Release w/o CAS

• What to do if no atomic CAS (consensus number∞), but do
have XCHG (consensus number 2)?
• Be optimistic—read *Lwith two XCHGs:
1. Atomically swap NULL into *L
- If old value of *Lwas I, no waiters and we are done
2. Atomically swap old *L value back into *L
- If *L unchanged, same e�ect as CAS

• Otherwise, we have to clean up themess
- Some “userper” attempted to acquire lock between 1 and 2
- Because *Lwas NULL, the userper succeeded
(May be followed by zero or more waiters)

- Stick old list of waiters on to end of new last waiter
(Sacrifice small amount of fairness, but still safe)
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MCS Release w/o C&S code

release (lock *L, qnode *I) {
if (I->next)
I->next->locked = false;

else {
qnode *old_tail = NULL;
XCHG (*L, old_tail);
if (old_tail == I)
return;

/* old_tail != I? CAS would have failed, so undo XCHG */
qnode *userper = old_tail;
XCHG (*L, userper);
while (I->next == NULL)
;

if (userper) /* someone changed *L between 2 XCHGs */
userper->next = I->next;

else
I->next->locked = false;

}
}
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Kernel support for sleeping locks

• Sleeping locks must interact with scheduler
- For processes or kernel threads, must go into kernel (expensive)
- Common case is you can acquire lock—how to optimize?

• Idea: never enter kernel for uncontested lock
struct lock {
atomic_flag busy;
_Atomic (thread *) waiters; /* wait-free stack/queue */

};
void acquire (lock *lk) {
while (atomic_flag_test_and_set (&lk->busy)) { /* 1 */
atomic_push (&lk->waiters, self); /* 2 */
sleep ();

}
}
void release (lock *lk) {
atomic_flag_clear(&lk->busy);
wakeup (atomic_pop (&lk->waiters));

}
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Race condition

• Unfortunately, previous slide not safe
- What happens if release called between lines 1 and 2?
- wakeup called on NULL, so acquire blocks

• futex abstraction solves the problem [Franke]
- Ask kernel to sleep only if memory location hasn’t changed

• void futex (int *uaddr, FUTEX_WAIT, int val. . .);
- Go to sleep only if *uaddr == val
- Extra arguments allow timeouts, etc.

• void futex (int *uaddr, FUTEX_WAKE, int val. . .);
- Wake up at most val threads sleeping on uaddr

• uaddr is translated down to o�set in VM object
- So works onmemory mapped file at di�erent virtual addresses in
di�erent processes
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Futex example

struct lock {
atomic_flag busy;

};
void acquire (lock *lk) {
while (atomic_flag_test_and_set (&lk->busy))
futex(&lk->busy, FUTEX_WAIT, 1);

}
void release (lock *lk) {
atomic_flag_clear (&lk->busy);
futex(&lk->busy, FUTEX_WAKE, 1);

}

• What’s suboptimal about this code?

- release requires a system call (expensive) even with no contention

• See [Drepper] for these examples and a good discussion
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Futex example, second attempt

static_assert (ATOMIC_INT_LOCK_FREE >= 2);

struct lock {
atomic_int busy;

};
void acquire (lock *lk) {
int c;
while ((c = FADD(&lk->busy, 1))) /* 1 */
futex((int*) &lk->busy, FUTEX_WAIT, c+1); /* 2 */

}
void release (lock *lk) {
if (FSUB(&lk->busy, 1) != 1) {
lk->busy = 0;
futex((int*) &lk->busy, FUTEX_WAKE, 1);

}
}

• Nowwhat’s wrong with this code?

- Two threads could interleave lines 1 and 2, never sleep
- Could even overflow the counter, violate mutual exclusion
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Futex example, third attempt

struct lock {
// 0=unlocked, 1=locked no waiters, 2=locked+waiters
atomic_int state;

};
void acquire (lock *lk) {
int c = 1;
if (!CAS (&lk->state, 0, c)) {
XCHG (&lk->state, c = 2);
while (c != 0) {
futex ((int *) &lk->state, FUTEX_WAIT, 2);
XCHG (&lk->state, c = 2);

}
}

}
void release (lock *lk) {
if (FSUB (&lk->state, 1) != 1) { // FSUB returns old value
lk->state = 0;
futex ((int *) &lk->state, FUTEX_WAKE, 1);

}
}
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The deadlock problem

mutex_t m1, m2;

void p1 (void *ignored) {
lock (m1);
lock (m2);
/* critical section */
unlock (m2);
unlock (m1);

}
void p2 (void *ignored) {
lock (m2);
lock (m1);
/* critical section */
unlock (m1);
unlock (m2);

}

• This program can cease to make progress – how?
• Can you have deadlock w/omutexes?
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More deadlocks

• Same problemwith condition variables
- Suppose resource 1 managed by c1, resource 2 by c2
- A has 1, waits on c2, B has 2, waits on c1

• Or have combinedmutex/condition variable deadlock:
- lock (a); lock (b); while (!ready) wait (b, c);

unlock (b); unlock (a);
- lock (a); lock (b); ready = true; signal (c);

unlock (b); unlock (a);

• One lesson: Dangerous to hold locks when crossing
abstraction barriers!
- I.e., lock (a) then call function that uses condition variable
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Deadlocks w/o computers

• Real issue is resources & how required
• E.g., bridge only allows tra�ic in one direction

- Each section of a bridge can be viewed as a resource.
- If a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback).

- Several cars may have to be backed up if a deadlock occurs.
- Starvation is possible.
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Deadlock conditions

1. Limited access (mutual exclusion):
- Resource can only be shared with finite users

2. No preemption:
- Once resource granted, cannot be taken away

3. Multiple independent requests (hold and wait):
- Don’t ask all at once
(wait for next resource while holding current one)

4. Circularity in graph of requests
• All of 1–4 necessary for deadlock to occur
• Two approaches to dealing with deadlock:

- Pro-active: prevention
- Reactive: detection + corrective action
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Prevent by eliminating one condition

1. Limited access (mutual exclusion):
- Buymore resources, split into pieces, or virtualize to make
"infinite" copies

- Threads: threads have copy of registers = no lock

2. No preemption:
- Physical memory: virtualized with VM, can take physical page away
and give to another process!

3. Multiple independent requests (hold and wait):
- Wait on all resources at once (must know in advance)

4. Circularity in graph of requests
- Single lock for entire system: (problems?)
- Partial ordering of resources (next)

25 / 44

Resource-allocation graph

• View system as graph
- Processes and Resources are nodes
- Resource Requests and Assignments are edges

• Process:

• Resource with 4 instances:

• Pi requesting Rj:

• Pi holding instance of Rj:
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Example resource allocation graph
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Graphwith deadlock
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Is this deadlock?
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Cycles and deadlock

• If graph has no cycles=⇒ no deadlock
• If graph contains a cycle

- Definitely deadlock if only one instance per resource
- Otherwise, maybe deadlock, maybe not

• Prevent deadlock with partial order on resources
- E.g., always acquire mutexm1 beforem2

- Usually design locking discipline for application this way
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Prevention

• Determine safe states based on possible resource allocation
• Conservatively prohibits non-deadlocked states
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Claim edges

• Dotted line is claim edge
- Signifies processmay request resource
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Example: unsafe state

• Note cycle in graph
- P1might request R2 before relinquishing R1
- Would cause deadlock
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Detecting deadlock

• Static approaches (hard)
• Dynamically, program grinds to a halt

- Threads package can diagnose by keeping track of locks held:
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Fixing & debugging deadlocks

• Reboot system / restart application
• Examine hung process with debugger
• Threads package can deduce partial order

- For each lock acquired, order with other locks held
- If cycle occurs, abort with error
- Detects potential deadlocks even if they do not occur

• Or use transactions. . .
- Another paradigm for handling concurrency
- O�en provided by databases, but some OSes use them
- Vino OS used transactions to abort a�er failures [Seltzer]
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Transactions

• A transaction T is a collection of actions with
- Atomicity – all or none of actions happen
- Consistency – T leaves data in valid state
- Isolation – T’s actions all appear to happen before or a�er every
other transaction

- Durability1 – T’s e�ects will survive reboots
- O�en hear mnemonic ACID to refer to above

• Transactions typically executed concurrently
- But isolationmeans must appear not to
- Must roll-back transactions that use others’ state
- Means you have to record all changes to undo them

• When deadlock detected just abort a transaction
- Breaks the dependency cycle

1Not applicable to topics in this lecture
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Transactional memory

• Somemodern processors support transactional memory
• Transactional Synchronization Extensions (TSX) [intel1§16]

- xbegin abort_handler – begins a transaction
- xend – commit a transaction
- xabort $code – abort transaction with 8-bit code
- Note: nested transactions okay (also xtest tests if in transaction)

• During transaction, processor tracks accessedmemory
- Keeps read-set and write-set of cache lines
- Nothing gets written back to memory during transaction
- On xend or earlier, transaction aborts if any conflicts
- Otherwise, all dirty cache lines are written back atomically
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Using transactional memory

• Idea 3: Use to get “free” fine-grained locking on a hash table
- E.g., concurrent inserts that don’t touch same buckets are okay
- Should read spinlock to make sure not taken (but not write) [Kim]
- Hardware will detect there was no conflict

• Can also use to poll for one of many asynchronous events
- Start transaction
- Fill cache with values to which you want to see changes
- Loop until a write causes your transaction to abort

• Note: Transactions are never guaranteed to commit
- Might overflow cache, get false sharing, see weird processor issue
- Means abort path must always be able to perform transaction
(e.g., you do need a lock on your hash table)
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Hardware lock elision (HLE)

• Idea: make it so spinlocks rarely need to spin
- Begin a transaction when you acquire lock
- Other CPUs won’t see lock acquired, can also enter critical section
- Okay not to have mutual exclusion when nomemory conflicts!
- On conflict, abort and restart without transaction, thereby visibly
acquiring lock (and aborting other concurrent transactions)

• Intel support:
- Use xacquire prefix before xchgl (used for test and set)
- Use xrelease prefix before movl that releases lock
- Prefixes chosen to be noops on older CPUs (binary compatibility)

• Hash table example:
- Use xacquire xchgl in table-wide test-and-set spinlock
- Works correctly on older CPUs (with coarse-grained lock)
- Allows safe concurrent accesses on newer CPUs!
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Scalable interfaces

• Not all interfaces can scale
• How to tell which can and which can’t?
• Scalable Commutativity Rule: “Whenever interface operations
commute, they can be implemented in a way that scales”
[Clements]
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Are fork(), execve() broadly commutative?

pid_t pid = fork();
if (!pid)
execlp("bash", "bash", NULL);

• No, fork() doesn’t commute with memory writes, many file
descriptor operations, and all address space operations
- E.g., close(fd); fork(); vs. fork(); close(fd);

• execve() o�en follows fork() and undoes most of fork()’s
sub operations
• posix_spawn(), which combines fork() and execve() into a
single operation, is broadly commutative
- But obviously more complex, less flexible
- Maybe Microso� will have the last laugh?
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Is open() broadly commutative?

int fd1 = open("foo", O_RDONLY);
int fd2 = open("bar", O_RDONLY);

• Actually open() does not broadly commute!
• Does not commute with any system call (including itself) that
creates a file descriptor

• Why? POSIX requires new descriptors to be assigned the
lowest available integer

• If we fixed this, open()would commute, as long as it is not
creating a file in the same directory as another operation
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