Overview of previous and current lectures

* Locks create serial code
- Serial code gets no speedup from multiprocessors
Test-and-set spinlock has additional disadvantages

- Lots of traffic over memory bus
- Not fair on NUMA machines

Idea 1: Avoid spinlocks

- We saw lock-free algorithms last lecture
- Introduced RCU last time, dive deeper today

Idea 2: Design better spinlocks
- Less memory traffic, better fairness
Idea 3: Hardware turns coarse- into fine-grained locks!
- While also reducing memory traffic for lock in common case

1/44

© Rrcu

@ Improving spinlock performance
© Kernelinterface for sleeping locks
@ Deadlock

© Transactions

(@ Scalable interface design

2/44

Read-copy update [McKenney]

* Some data is read way more often than written
- Routing tables consulted for each forwarded packet
- Data maps in system with 100+ disks (updated on disk failure)
* Optimize for the common case of reading without lock
- Have global variable: _Atomic(routing_table *) rt;
- Use it with no lock
#define RELAXED(var) \

atomic_load_explicit(&(var), memory_order_relaxed)

/x ... %/

route = lookup(RELAXED(rt), destination);

* Update by making copy, swapping pointer
routing_table *newrt = copy_routing_table(rt);
update_routing_table(newrt) ;
atomic_store_explicit(&rt, newrt, memory_order_release);

3/44

http://www.rdrop.com/users/paulmck/RCU/rclockjrnl_tpds_mathtype.pdf

Is RCU really safe?

* Consider the use of global rt with no fences:
lookup (RELAXED(rt), route);

Could a CPU read new pointer but then old contents of *rt?

Yes on alpha, No on all other existing architectures
* We are saved by dependency ordering in hardware

- Instruction B depends on A if B uses result of A
- Non-alpha CPUs won’t re-order dependent instructions
- If writer uses release fence, safe to load pointer then just use it

This is the point of memory_order_consume
- Should be equivalent to acquire barrier on alpha
- But should compile to nothing (be free) on other machines
- But hard to get semantics right (temporarily deprecated in C++)

4/44

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0371r1.html

Preemptible kernels

* Recall kernel process context from lecture 1

- When CPU in kernel mode but executing on behalf of a process
(e.g., might be in system call or page fault handler)

- As opposed to interrupt handlers or context switch code
* A preemptible kernel can preempt process context code

- Take a CPU core away from kernel process context code between
any two instructions

- Give the same CPU core to kernel code for a different process
e Don’t confuse with:

- Interrupt handlers can always preempt process context code

- Preemptive threads (always have for multicore)

- Process context code running concurrently on other CPU cores
* Sometimes want or need to disable preemption

- E.g., before acquiring spinlock also used by interrupt handler

- Orin code that must not be migrated between CPUs

5/44

http://www.scs.stanford.edu/20wi-cs140/notes/intro.pdf#page=35

Garbage collection

* When can you free memory of old routing table?

- When you are guaranteed no one is using it—how to determine?
* Definitions:

- temporary variable - short-used (e.g., local) variable

- permanent variable - long lived data (e.g., global rt pointer)

- quiescent state - when all a thread’s temporary variables dead

- quiescent period - time during which every thread has been in
quiescent state at least once

* Free old copy of updated data after quiescent period

- How to determine when quiescent period has gone by?

- E.g., keep count of syscalls/context switches on each CPU
* Restrictions:

- Can’t hold a pointer across context switch or user mode
(Never copy rt into another permanent variable)

- Must disable preemption while consuming RCU data structure

6/44

@ Rrcu

@ Improving spinlock performance
© Kernelinterface for sleeping locks
@ Deadlock

© Transactions

(@ Scalable interface design

7/44

e Atomic compare and swap: CAS (mem, old, new)
- In C11: atomic_compare_exchange_strong
- On x86: cmpxchg instruction provides this (with 1ock prefix)
- If ¥mem == old, then swap *mem<+new and return true, else false
* Atomic swap: XCHG (mem, new)
- Cll atomic_exchange, can implement with xchg on x86
- Atomically exchanges *mem«snew
Atomic fetch and add: FADD (mem, val)
- CN atomic_fetch_add, can implement with lock add on x86
- Atomically sets *mem += val and returns old value of *mem
Atomic fetch and subtract: FSUB (mem, val)
Note: atomics return previous value (like x++, not ++x)
All behave like sequentially consistent fences, too
- Unlike _explicit versions, which take a memory_order argument

8/44

http://en.cppreference.com/w/c/atomic/atomic_compare_exchange
http://en.cppreference.com/w/c/atomic/atomic_exchange
http://en.cppreference.com/w/c/atomic/atomic_fetch_add
http://en.cppreference.com/w/c/atomic/memory_order

MCS lock

* ldea 2: Build a better spinlock

Lock designed by Mellor-Crummey and Scott
- Goal: reduce bus traffic on cc machines, improve fairness

Each CPU has a gnode structure in local memory

typedef struct gnode {
_Atomic (struct gnode *) next;
atomic_bool locked;
} gnode;
- Local can mean local memory in NUMA machine
- Orjustits own cache line that gets cached in exclusive mode

Alock is a gnode pointer: typedef _Atomic (qnode *) lock;
- Construct list of CPUs holding or waiting for lock
- lock itself points to tail of list list

While waiting, spin on your local 1ocked flag
9/44

http://www.cs.rice.edu/~johnmc/papers/tocs91.pdf

MCS Acquire

acquire (lock *L, gnode *I) {
I->next = NULL;
gqnode *predecessor = I;
XCHG (*L, predecessor);
if (predecessor != NULL) {
I->locked = true;
predecessor->next = I;
while (I->locked)
}
}

e If unlocked, L is NULL
¢ If locked, no waiters, L is owner’s gnode
 If waiters, L is tail of waiter list:

*L

next K next v next
owner =\walter =\walter—=NULL

10/44

MCS Acquire

acquire (lock *L, gnode *I) {
I->next = NULL;
gnode *predecessor = I;
XCHG (*L, predecessor);
if (predecessor != NULL) {
I->locked = true;
predecessor->next = I;
while (I->locked)
}
}

¢ If unlocked, L is NULL
¢ If locked, no waiters, L is owner’s gnode

 If waiters, L is tail of waiter list:
predecessor

*L, i
\

next K next N next
owner—walter—\waiter—NULL xI —NULL

10/44

MCS Acquire

acquire (lock *L, gnode *I) {
I->next = NULL;
gqnode *predecessor = I;
XCHG (*L, predecessor);
if (predecessor != NULL) {
I->locked = true;
predecessor->next = I;
while (I->locked)
}
}

¢ If unlocked, L is NULL
¢ If locked, no waiters, L is owner’s gnode

 If waiters, L is tail of waiter list:
predecessor

*L

next K next v next
owner—walter—\waiter—NULL xI —NULL

10/44

MCS Acquire

acquire (lock *L, gnode *I) {
I->next = NULL;
gqnode *predecessor = I;
XCHG (*L, predecessor);
if (predecessor != NULL) {
I->locked = true;
predecessor->next = I;
while (I->locked)
}
}

¢ If unlocked, L is NULL
¢ If locked, no waiters, L is owner’s gnode

 If waiters, L is tail of waiter list:
predecessor

*L

Y

next K next N next
owner—walter—|waiter

\

*I [—*NULL

10/44

MCS Release with CAS

release (lock *L, gnode *I) {
if (!I->next)
if (CAS (L, I, NULL))
return;
while (!I->next)

I->next->locked = false;

}

o If I->next NULL and *L ==
- Noone else is waiting for lock, OK to set *L. = NULL

*L,
1 next

*I —NULL

11/44

MCS Release with CAS

release (lock *L, gnode *I) {
if (!I->next)
if (CAS (xL, I, NULL))
return;
while (!I->next)

I->next->locked = false;

}

e If I->next NULLand *L '= I

- Another thread is in the middle of acquire
- Just wait for I->next to be non-NULL

predecessor in locker

*L

l' next Y
| ——=NULL |locker—=NULL

11/44

MCS Release with CAS

release (lock *L, gnode *I) {
if (!I->next)
if (CAS (xL, I, NULL))
return;
while (!I->next)

I->next->locked = false;

}

e If I->next is non-NULL
- I->next oldest waiter, wake up with I->next->locked = false

*L

next N next K next
*xT = walter—walter—NULL

11/44

MCS Release w/o CAS

* What to do if no atomic CAS (consensus number oc), but do
have XCHG (consensus number 2)?
* Be optimistic—read *L with two XCHGs:
1. Atomically swap NULL into *L
- If old value of *L was I, no waiters and we are done
2. Atomically swap old *L value back into *L
- If xL unchanged, same effect as CAs

* Otherwise, we have to clean up the mess

- Some “userper” attempted to acquire lock between 1 and 2
- Because *L was NULL, the userper succeeded
(May be followed by zero or more waiters)

- Stick old list of waiters on to end of new last waiter
(Sacrifice small amount of fairness, but still safe)

12/44

MCS Release w/o C&S code

release (lock *L, gnode *I) {
if (I->next)
I->next->locked = false;
else {
gnode *old_tail = NULL;
XCHG (*L, old_tail);
if (old_tail == I)
return;

/* old_tail '= I? CAS would have failed, so undo XCHG */
gnode *userper = old_tail;

XCHG (*L, userper);

while (I->next == NULL)

if (userper) /* someone changed *L between 2 XCHGs */
userper->next = I->next;

else
I->next->locked = false;

13/44

@ Rrcu

@ Improving spinlock performance
©® Kernelinterface for sleeping locks
@ Deadlock

© Transactions

(@ Scalable interface design

14/44

Kernel support for sleeping locks

* Sleeping locks must interact with scheduler
- For processes or kernel threads, must go into kernel (expensive)
- Common case is you can acquire lock—how to optimize?

¢ |dea: never enter kernel for uncontested lock

struct lock {
atomic_flag busy;
_Atomic (thread *) waiters; /* wait-free stack/queue */
I
void acquire (lock *1k) {
while (atomic_flag_test_and_set (&lk->busy)) { /x 1 x/
atomic_push (&lk->waiters, self); /* 2 x/
sleep O);
}
}
void release (lock *1k) {
atomic_flag_clear (&1k->busy) ;
wakeup (atomic_pop (&lk->waiters));
}

15/44

* Unfortunately, previous slide not safe

- What happens if release called between lines 1and 2?
- wakeup called on NULL, so acquire blocks

futex abstraction solves the problem [Franke]
- Ask kernel to sleep only if memory location hasn’t changed

void futex (int *uaddr, FUTEX_WAIT, int val...);

- Goto sleep only if ¥uaddr == val
- Extra arguments allow timeouts, etc.

void futex (int *uaddr, FUTEX_WAKE, int val...);
- Wake up at most val threads sleeping on uaddr

uaddr is translated down to offset in VM object

- So works on memory mapped file at different virtual addresses in
different processes

16/44

http://www.scs.stanford.edu/20wi-cs140/sched/readings/futexes.pdf

Futex example

struct lock {
atomic_flag busy;
s
void acquire (lock *1k) {
while (atomic_flag_ test_and_set (&lk->busy))
futex (&lk->busy, FUTEX_WAIT, 1);
}

void release (lock *1k) {
atomic_flag_clear (&lk->busy);
futex(&lk->busy, FUTEX_WAKE, 1);
}

* What’s suboptimal about this code?

» See [Drepper] for these examples and a good discussion

17/44

http://www.akkadia.org/drepper/futex.pdf

Futex example

struct lock {
atomic_flag busy;
s
void acquire (lock *1k) {
while (atomic_flag_ test_and_set (&lk->busy))
futex (&lk->busy, FUTEX_WAIT, 1);
}

void release (lock *1k) {
atomic_flag_clear (&lk->busy);
futex(&lk->busy, FUTEX_WAKE, 1);
}

* What’s suboptimal about this code?
- release requires a system call (expensive) even with no contention

» See [Drepper] for these examples and a good discussion

17/44

http://www.akkadia.org/drepper/futex.pdf

Futex example, second attempt

static_assert (ATOMIC_INT_LOCK_FREE >= 2);

struct lock {
atomic_int busy;

I
void acquire (lock *1k) {
int c;
while ((c = FADD(&lk->busy, 1))) /* 1 %/
futex((int*) &lk->busy, FUTEX_WAIT, c+1); /* 2 */
}

void release (lock *1k) {
if (FSUB(&lk->busy, 1) !'= 1) {
1lk->busy = 0;
futex((int*) &lk->busy, FUTEX_WAKE, 1);
}
}

* Now what’s wrong with this code?

18/44

Futex example, second attempt

static_assert (ATOMIC_INT_LOCK_FREE >= 2);

struct lock {
atomic_int busy;

I
void acquire (lock *1k) {
int c;
while ((c = FADD(&1lk->busy, 1))) /x 1 %/
futex((int*) &lk->busy, FUTEX_WAIT, c+1); /* 2 %/
}

void release (lock *1k) {
if (FSUB(&lk—>busy, 1) 1= 1) {
1lk->busy = 0;
futex((int*) &lk->busy, FUTEX_WAKE, 1);
}
}

* Now what’s wrong with this code?
- Two threads could interleave lines 1 and 2, never sleep

- Could even overflow the counter, violate mutual exclusion
18/ 44

Futex example, third attempt

struct lock {
// O=unlocked, 1=locked no waiters, 2=locked+waiters
atomic_int state;
}s
void acquire (lock *1k) {
int ¢ = 1;
if (!CAS (&lk->state, 0, c)) {
XCHG (&1k->state, c = 2);
while (c != 0) {
futex ((int *) &lk->state, FUTEX_WAIT, 2);
XCHG (&1k->state, c = 2);
}
}
}
void release (lock *1k) {
if (FSUB (&lk->state, 1) !'= 1) { // FSUB returns old value
lk->state = 0;
futex ((int *) &lk->state, FUTEX_WAKE, 1);
}
}

19/44

@ Rrcu

@ Improving spinlock performance
© Kernelinterface for sleeping locks
@ Deadlock

© Transactions

(@ Scalable interface design

20/44

The deadlock problem

mutex_t ml, m2;

void pl (void *ignored) {
lock (ml1);
lock (m2);
/* critical section */
unlock (m2);
unlock (m1);

}

void p2 (void *ignored) {
lock (m2);
lock (ml1);
/* critical section */
unlock (ml1);
unlock (m2);

}

* This program can cease to make progress - how?

e Canyou have deadlock w/o mutexes?
21/44

More deadlocks

* Same problem with condition variables
- Suppose resource 1 managed by ¢y, resource 2 by ¢,
- Ahas 1, waits on c2, B has 2, waits on c1
* Or have combined mutex/condition variable deadlock:

- lock (a); lock (b); while (!ready) wait (b, c);
unlock (b); unlock (a);

- lock (a); lock (b); ready = true; signal (c);
unlock (b); unlock (a);

* One lesson: Dangerous to hold locks when crossing
abstraction barriers!

- lLe., lock (a) then call function that uses condition variable

22/44

Deadlocks w/o computers

* Realissueis resources & how required

* E.g., bridge only allows traffic in one direction

- Each section of a bridge can be viewed as a resource.

- If a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback).

- Several cars may have to be backed up if a deadlock occurs.
- Starvation is possible.

23/44

Deadlock conditions

1. Limited access (mutual exclusion):
- Resource can only be shared with finite users

2. No preemption:
- Once resource granted, cannot be taken away

3. Multiple independent requests (hold and wait):

- Don’task all at once
(wait for next resource while holding current one)

4. Circularity in graph of requests
* All of 1-4 necessary for deadlock to occur

* Two approaches to dealing with deadlock:

- Pro-active: prevention
- Reactive: detection + corrective action

24/44

Prevent by eliminating one condition

1. Limited access (mutual exclusion):
- Buy more resources, split into pieces, or virtualize to make
"infinite" copies
- Threads: threads have copy of registers = no lock
2. No preemption:

- Physical memory: virtualized with VM, can take physical page away
and give to another process!

3. Multiple independent requests (hold and wait):

- Wait on all resources at once (must know in advance)

4. Circularity in graph of requests

- Single lock for entire system: (problems?)
- Partial ordering of resources (next)

25/44

Resource-allocation graph

View system as graph

- Processes and Resources are nodes
- Resource Requests and Assignments are edges

Process: Q

* Resource with 4 instances:

P; requesting R;: * 5o
Rj
P; holding instance of R;: ﬁ o

R/.

26/44

Example resource allocation graph

R, R,

° °

\ \

2

\/
®

° °

.

R,

27/44

Graph with deadlock

R, R,
L] ®
\ \
\¢
@ [s]
L
R, .

R,

28/ 44

Is this deadlock?

29/44

Cycles and deadlock

e If graph has no cycles =—> no deadlock

¢ If graph contains a cycle
- Definitely deadlock if only one instance per resource
- Otherwise, maybe deadlock, maybe not

* Prevent deadlock with partial order on resources

- E.g., always acquire mutex m; before m;
- Usually design locking discipline for application this way

30/44

unsafe

deadlock

safe

* Determine safe states based on possible resource allocation
¢ Conservatively prohibits non-deadlocked states

31/44

Claim edges

R,

* Dotted line is claim edge
- Signifies process may request resource

32/44

Example: unsafe state

R

* Note cyclein graph
- Py might request R, before relinquishing R,
- Would cause deadlock

33/44

Detecting deadlock

 Static approaches (hard)
* Dynamically, program grinds to a halt
- Threads package can diagnose by keeping track of locks held:

Resource-Allocation Graph ~ Corresponding wait-for graph
34/44

Fixing & debugging deadlocks

Reboot system / restart application

Examine hung process with debugger

Threads package can deduce partial order

- For each lock acquired, order with other locks held
- If cycle occurs, abort with error
- Detects potential deadlocks even if they do not occur

Or use transactions...

- Another paradigm for handling concurrency
- Often provided by databases, but some OSes use them
- Vino OS used transactions to abort after failures [Seltzer

35/44

http://www.eecs.harvard.edu/syrah/vino//osdi-96/paper.html

@ Rrcu

@ Improving spinlock performance
© Kernelinterface for sleeping locks
@ Deadlock

© Transactions

(@ Scalable interface design

36/44

e Atransaction T is a collection of actions with

- Atomicity - all or none of actions happen
- Consistency - T leaves data in valid state

Isolation - T’s actions all appear to happen before or after every
other transaction

Durability' - T’s effects will survive reboots
Often hear mnemonic ACID to refer to above

* Transactions typically executed concurrently
- Butisolation means must appear not to
- Must roll-back transactions that use others’ state
- Means you have to record all changes to undo them
* When deadlock detected just abort a transaction
- Breaks the dependency cycle

"Not applicable to topics in this lecture
37/44

Transactional memory

* Some modern processors support transactional memory
* Transactional Synchronization Extensions (TSX) [intel1§16]

- xbegin abort_handler - begins a transaction

- xend - commit a transaction

- xabort $code — abort transaction with 8-bit code

- Note: nested transactions okay (also xtest tests if in transaction)

* During transaction, processor tracks accessed memory
Keeps read-set and write-set of cache lines
Nothing gets written back to memory during transaction

On xend or earlier, transaction aborts if any conflicts
Otherwise, all dirty cache lines are written back atomically

38/44

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf#page=383

Using transactional memory

¢ Idea 3: Use to get “free” fine-grained locking on a hash table
- E.g., concurrent inserts that don’t touch same buckets are okay
- Should read spinlock to make sure not taken (but not write) [Kim]|
- Hardware will detect there was no conflict
e Can also use to poll for one of many asynchronous events
- Start transaction
- Fill cache with values to which you want to see changes
- Loop until a write causes your transaction to abort
* Note: Transactions are never guaranteed to commit

- Might overflow cache, get false sharing, see weird processor issue

- Means abort path must always be able to perform transaction
(e.g., you do need a lock on your hash table)

39/44

https://software.intel.com/en-us/blogs/2013/07/25/fun-with-intel-transactional-synchronization-extensions

Hardware lock elision (HLE)

* ldea: make it so spinlocks rarely need to spin

Begin a transaction when you acquire lock

Other CPUs won't see lock acquired, can also enter critical section
Okay not to have mutual exclusion when no memory conflicts!

On conflict, abort and restart without transaction, thereby visibly
acquiring lock (and aborting other concurrent transactions)

* Intel support:

- Use xacquire prefix before xchgl (used for test and set)

- Use xrelease prefix before movl that releases lock

- Prefixes chosen to be noops on older CPUs (binary compatibility)
* Hash table example:

- Use xacquire xchgl in table-wide test-and-set spinlock

- Works correctly on older CPUs (with coarse-grained lock)

- Allows safe concurrent accesses on newer CPUs!

40/44

@ Rrcu

@ Improving spinlock performance
© Kernelinterface for sleeping locks
@ Deadlock

© Transactions

@ Scalable interface design

41/44

Scalable interfaces

* Not all interfaces can scale
¢ How to tell which can and which can’t?

* Scalable Commutativity Rule: “Whenever interface operations
commute, they can be implemented in a way that scales”

[Clements]

42/44

http://www.scs.stanford.edu/20wi-cs140/sched/readings/scalable-commutativity.pdf

Are fork(), execve() broadly commutative?

pid_t pid = fork();
if (1pid)
execlp("bash", "bash", NULL);

43/44

Are fork(), execve() broadly commutative?

pid_t pid = fork();
if (1pid)
execlp("bash", "bash", NULL);

* No, fork() doesn’t commute with memory writes, many file
descriptor operations, and all address space operations

- E.g.,close(fd); fork(); vs. fork(); close(£d);
e execve() often follows fork () and undoes most of fork()’s
sub operations

* posix_spawn(), which combines fork() and execve() into a
single operation, is broadly commutative

- But obviously more complex, less flexible
- Maybe Microsoft will have the last laugh?

43/44

Is open() broadly commutative?

int fdi
int fd2

open("foo", O_RDONLY);
open("bar", O_RDONLY);

44 /44

Is open() broadly commutative?

open("foo", O_RDONLY);
open("bar", O0_RDONLY);

int fdi
int f£d2

Actually open () does not broadly commute!

Does not commute with any system call (including itself) that
creates a file descriptor

Why? POSIX requires new descriptors to be assigned the
lowest available integer

If we fixed this, open () would commute, as long as it is not
creating a file in the same directory as another operation

4444

	RCU
	Improving spinlock performance
	Kernel interface for sleeping locks
	Deadlock
	Transactions
	Scalable interface design

