CS140 – Operating Systems

Instructor: David Mazières

CAs: Christian Gabor, Advay Pal, and Ailyn Tong

Stanford University

Outline

1 Administrivia

2 Substance

Remote teaching

- Please open the Participants tab to raise hand
 - I'll monitor the Participants for raised hands
 - Chat not a great way to get my attention because font too small
- Please just interrupt me if something is wrong
- Audio quality can help with remote collaboration
 - Fewer brain cycles on signal processing, more on OS kernel
 - Wired USB lapel mics are good (~\$18)—assistance available
 - Bluetooth not great (A2DP good, but HSP [for mic] lower-quality)
 - Irregular surfaces improve acoustics (books at alternating depths)
- Enable your camera in class if you feel comfortable
 - Please enable virtual backgrounds if available
- Feel free to join lecture under a pseudonym
 - Don't have to be logged into Stanford to join given link/password

Administrivia

- Class web page: http://cs140.scs.stanford.edu/
 - All assignments, handouts, lecture notes on-line
- Textbook: Operating System Concepts, 8th Edition, by Silberschatz, Galvin, and Gagne
 - Trying to ween class from textbook, so highly optional
- Goal is to make lecture slides the primary reference
 - Almost everything I talk about will be on slides
 - PDF slides contain links to further reading about topics
 - Please download slides from class web page
 - Will try to post before lecture for taking notes (but avoid calling out answers if you read them from slides)

Administrivia 2

- Google group 21wi-cs140 is main discussion forum
- Staff mailing list: cs140-staff@scs.stanford.edu
 - Please use google group for questions other people might have
 - Otherwise, please mail staff list, not individual staff members
- Key dates:
 - Lectures: MW 1:00pm-2:20pm, zoom only
 - Section: 4 Fridays, 1:00pm-1:50pm starting this Friday
 - No exams because of COVID19

Course topics

- Threads & Processes
- Concurrency & Synchronization
- Scheduling
- Virtual Memory
- I/O
- Disks, File systems
- Protection & Security
- Virtual machines
- Note: Lectures will often take Unix as an example
 - Most current and future OSes heavily influenced by Unix
 - Won't talk much about Windows

Course goals

- Introduce you to operating system concepts
 - Hard to use a computer without interacting with OS
 - Understanding the OS makes you a more effective programmer
- Cover important systems concepts in general
 - Caching, concurrency, memory management, I/O, protection
- Teach you to deal with larger software systems
 - Programming assignments much larger than many courses
 - Warning: Many people will consider course very hard
 - In past, majority of people report ≥15 hours/week
- Prepare you to take graduate OS classes (CS240, 240[a-z])

Programming Assignments

- Implement parts of Pintos operating system
 - Built for x86 hardware, you will use hardware emulators
- One setup homework (lab 0) due this Friday
- Four two-week implementation projects:
 - Threads
 - User processes
 - Virtual memory
 - File system
- Lab 1 distributed at end of this week
 - Attend section this Friday for project 1 overview
- Implement projects in groups of up to 3 people
 - Please disclose if you are planning to take class pass/fail
- Try Nooks to meet potential partners
 - Suggest: immediately after lecture today, and 6pm Wednesday

Grading

- No incompletes
 - Talk to instructor ASAP if you run into real problems
- Final grades posted March 23
- ∼90% of grade from projects since no exams
- Most people's projects pass most test cases
 - Please, please, please turn in working code, or **no credit** here
- Means design and style matter a lot
 - Large software systems not just about producing working code
 - Need to produce code other people can understand
 - That's why we have group projects
- ullet \sim 10% from short homeworks due midnight day after lecture
 - First assignment due tomorrow night (11:59pm Tuesday + 1 min)
 - Submit on gradescope
 - Use code BP25R5 to sign up (if not autosynced from canvas)

Style

Must turn in a design document along with code

- We supply you with templates for each project's design doc

CAs will manually inspect code for correctness

- E.g., must actually implement the design
- Must handle corner cases (e.g., handle malloc failure)

Will deduct points for error-prone code w/o errors

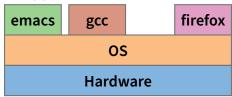
- Don't use global variables if automatic ones suffice
- Don't use deceptive names for variables

Code must be easy to read

- Indent code, keep lines and (when possible) functions short
- Use a uniform coding style (try to match existing code)
- Put comments on structure members, globals, functions
- Don't leave in reams of commented-out garbage code

Assignment requirements

- Do not look at other people's solutions to projects
 - We reserve the right to run MOSS on present and past submissions
 - Do not publish your own solutions in violation of the honor code
 - That means using (public) github can get you in big trouble
- You may read but not copy other OSes
 - E.g., Linux, OpenBSD/FreeBSD, etc.
- Cite any code that inspired your code
 - As long as you cite what you used, it's not cheating
 - In worst case, we deduct points if it undermines the assignment
- Projects due 12pm Fridays
- Ask cs140-staff for extension if you run into trouble
 - Be sure to tell us: How much have you done? How much is left? When can you finish by?


Outline

1 Administrivia

2 Substance

What is an operating system?

Layer between applications and hardware

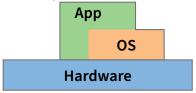
- Makes hardware useful to the programmer
- [Usually] Provides abstractions for applications
 - Manages and hides details of hardware
 - Accesses hardware through low/level interfaces unavailable to applications
- [Often] Provides protection
 - Prevents one process/user from clobbering another

Why study operating systems?

Operating systems are a mature field

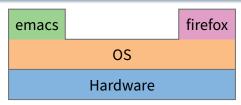
- Most people use a handful of mature OSes
- Hard to get people to switch operating systems
- Hard to have impact with a new OS

Still open questions in operating systems


- Security Hard to achieve security without a solid foundation
- Scalability How to adapt concepts when hardware scales 10×
 (fast networks, low service times, high core counts, big data...)

High-performance servers are an OS issue

- Face many of the same issues as OSes, sometimes bypass OS
- Resource consumption is an OS issue
 - Battery life, radio spectrum, etc.
- New "smart" devices need new OSes


Primitive Operating Systems

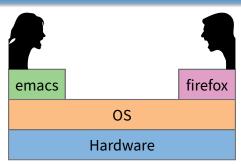
Just a library of standard services [no protection]

- Standard interface above hardware-specific drivers, etc.
- Simplifying assumptions
 - System runs one program at a time
 - No bad users or programs (often bad assumption)
- Problem: Poor utilization
 - ... of hardware (e.g., CPU idle while waiting for disk)
 - ... of human user (must wait for each program to finish)

Multitasking


- Idea: More than one process can be running at once
 - When one process blocks (waiting for disk, network, user input, etc.) run another process
- Problem: What can ill-behaved process do?

Multitasking


- Idea: More than one process can be running at once
 - When one process blocks (waiting for disk, network, user input, etc.) run another process
- Problem: What can ill-behaved process do?
 - Go into infinite loop and never relinquish CPU
 - Scribble over other processes' memory to make them fail
- OS provides mechanisms to address these problems
 - Preemption take CPU away from looping process
 - Memory protection protect processes' memory from one another

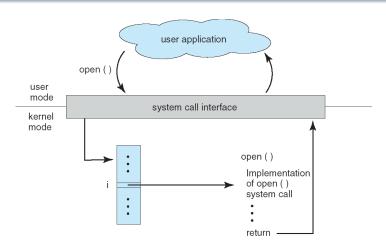
Multi-user OSes

- Many OSes use protection to serve distrustful users/apps
- Idea: With N users, system not N times slower
 - Users' demands for CPU, memory, etc. are bursty
 - Win by giving resources to users who actually need them
- What can go wrong?

Multi-user OSes

- Many OSes use protection to serve distrustful users/apps
- Idea: With N users, system not N times slower
 - Users' demands for CPU, memory, etc. are bursty
 - Win by giving resources to users who actually need them
- What can go wrong?
 - Users are gluttons, use too much CPU, etc. (need policies)
 - Total memory usage greater than machine's RAM (must virtualize)
 - Super-linear slowdown with increasing demand (thrashing)

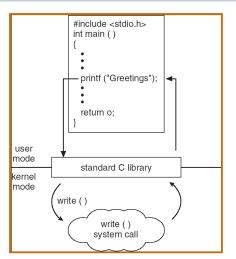
Protection


- Mechanisms that isolate bad programs and people
- Pre-emption:
 - Give application a resource, take it away if needed elsewhere
- Interposition/mediation:
 - Place OS between application and "stuff"
 - Track all pieces that application allowed to use (e.g., in table)
 - On every access, look in table to check that access legal
- Privileged & unprivileged modes in CPUs:
 - Applications unprivileged (unprivileged *user* mode)
 - OS privileged (privileged supervisor/kernel mode)
 - Protection operations can only be done in privileged mode

Typical OS structure

- Most software runs as user-level processes (P[1-4])
 - process \approx instance of a program
- OS kernel runs in privileged mode (orange)
 - Creates/deletes processes
 - Provides access to hardware

System calls



- Applications can invoke kernel through system calls
 - Special instruction transfers control to kernel
 - ...which dispatches to one of few hundred syscall handlers

System calls (continued)

- Goal: Do things application can't do in unprivileged mode
 - Like a library call, but into more privileged kernel code
- Kernel supplies well-defined system call interface
 - Applications set up syscall arguments and trap to kernel
 - Kernel performs operation and returns result
- Higher-level functions built on syscall interface
 - printf, scanf, fgets, etc. all user-level code
- Example: POSIX/UNIX interface
 - open, close, read, write, ...

System call example

- Standard library implemented in terms of syscalls
 - printf in libc, has same privileges as application
 - calls write in kernel, which can send bits out serial port

UNIX file system calls

- Applications "open" files (or devices) by name
 - I/O happens through open files
- int open(char *path, int flags, /*int mode*/...);
 - flags: O_RDONLY, O_WRONLY, O_RDWR
 - O_CREAT: create the file if non-existent
 - O_EXCL: (w. O_CREAT) create if file exists already
 - O_TRUNC: Truncate the file
 - O_APPEND: Start writing from end of file
 - mode: final argument with O_CREAT
- Returns file descriptor—used for all I/O to file

Error returns

- What if open fails? Returns -1 (invalid fd)
- Most system calls return -1 on failure
 - Specific kind of error in global int errno
 - In retrospect, bad design decision for threads/modularity
- #include <sys/errno.h> for possible values
 - 2 = ENOENT "No such file or directory"
 - 13 = EACCES "Permission Denied"
- perror function prints human-readable message
 - perror ("initfile");
 → "initfile: No such file or directory"

Operations on file descriptors

```
• int read (int fd, void *buf, int nbytes);

    Returns number of bytes read

    Returns 0 bytes at end of file, or -1 on error

• int write (int fd, const void *buf, int nbytes);

    Returns number of bytes written, -1 on error

off_t lseek (int fd, off_t pos, int whence);
   whence: 0 – start, 1 – current, 2 – end
       Returns previous file offset, or -1 on error
int close (int fd);
```

File descriptor numbers

- File descriptors are inherited by processes
 - When one process spawns another, same fds by default
- Descriptors 0, 1, and 2 have special meaning
 - 0 "standard input" (stdin in ANSI C)
 - 1 "standard output" (stdout, printf in ANSIC)
 - 2 "standard error" (stderr, perror in ANSIC)
 - Normally all three attached to terminal
- Example: type.c
 - Prints the contents of a file to stdout

type.c

```
void
typefile (char *filename)
 int fd, nread;
 char buf [1024];
 fd = open (filename, O_RDONLY);
 if (fd == -1) {
   perror (filename);
   return;
 while ((nread = read (fd, buf, sizeof (buf))) > 0)
   write (1, buf, nread);
 close (fd):
```

Can see system calls using strace utility (ktrace on BSD)

Protection example: CPU preemption

- Protection mechanism to prevent monopolizing CPU
- E.g., kernel programs timer to interrupt every 10 ms
 - Must be in supervisor mode to write appropriate I/O registers
 - User code cannot re-program interval timer
- Kernel sets interrupt to vector back to kernel
 - Regains control whenever interval timer fires
 - Gives CPU to another process if someone else needs it
 - Note: must be in supervisor mode to set interrupt entry points
 - No way for user code to hijack interrupt handler
- Result: Cannot monopolize CPU with infinite loop
 - At worst get 1/N of CPU with N CPU-hungry processes

Protection is not security

• How can you monopolize CPU?

Protection is not security

- How can you monopolize CPU?
- Use multiple processes
- For many years, could wedge most OSes with

```
int main() { while(1) fork(); }
```

- Keeps creating more processes until system out of proc. slots
- Other techniques: use all memory (chill program)
- Typically solved with technical/social combination
 - Technical solution: Limit processes per user
 - Social: Reboot and yell at annoying users
 - Social: Ban harmful apps from play store

Address translation

- Protect memory of one program from actions of another
- Definitions
 - Address space: all memory locations a program can name
 - Virtual address: addresses in process' address space
 - Physical address: address of real memory
 - Translation: map virtual to physical addresses
- Translation done on every load and store
 - Modern CPUs do this in hardware for speed
- Idea: If you can't name it, you can't touch it
 - Ensure one process's translations don't include any other process's memory

More memory protection

CPU allows kernel-only virtual addresses

- Kernel typically part of all address spaces,
 e.g., to handle system call in same address space
- But must ensure apps can't touch kernel memory

CPU lets OS disable (invalidate) particular virtual addresses

- Catch and halt buggy program that makes wild accesses
- Make virtual memory seem bigger than physical (e.g., bring a page in from disk only when accessed)

CPU enforced read-only virtual addresses useful

- E.g., allows sharing of code pages between processes
- Plus many other optimizations

CPU enforced execute disable of VAs

Makes certain code injection attacks harder

Different system contexts

- At any point, a CPU (core) is in one of several contexts
- User-level CPU in user mode running application
- Kernel process context
 - Running kernel code on behalf of a particular process
 - E.g., performing system call
 - Also exception (memory fault, numeric exception, etc.)
 - Or executing a kernel-only process (e.g., network file server)
- Kernel code not associated with a process
 - Timer interrupt (hardclock)
 - Device interrupt
 - "Softirqs", "Tasklets" (Linux-specific terms)
- Context switch code change which process is running
 - Requires changing the current address space
- Idle nothing to do (might put CPU in low-power state)

Transitions between contexts

- User \rightarrow kernel process context: syscall, page fault, ...
- User/process context → interrupt handler: hardware
- Process context → user/context switch: return
- Process context → context switch: sleep
- Context switch → user/process context

Resource allocation & performance

- Multitasking permits higher resource utilization
- Simple example:
 - Process downloading large file mostly waits for network
 - You play a game while downloading the file
 - Higher CPU utilization than if just downloading
- Complexity arises with cost of switching
- Example: Say disk 1,000 times slower than memory
 - 1 GB memory in machine
 - 2 Processes want to run, each use 1 GB
 - Can switch processes by swapping them out to disk
 - Faster to run one at a time than keep context switching

Useful properties to exploit

Skew

- 80% of time taken by 20% of code
- 10% of memory absorbs 90% of references
- Basis behind cache: place 10% in fast memory, 90% in slow, usually looks like one big fast memory

Past predicts future (a.k.a. temporal locality)

- What's the best cache entry to replace?
- If past pprox future, then least-recently-used entry

Note conflict between fairness & throughput

- Higher throughput (fewer cache misses, etc.) to keep running same process
- But fairness says should periodically preempt CPU and give it to next process