
View access control as a matrix

• Subjects (processes/users) access objects (e.g., files)
• Each cell of matrix has allowed permissions
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Two ways to slice the matrix

• Along columns:
- Kernel stores list of who can access object along with object
- Most systems you’ve used probably do this
- Examples: Unix file permissions, Access Control Lists (ACLs)

• Along rows:
- Capability systems do this
- More on these later. . .
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Example: Unix protection

• Each process has a User ID & one or more group IDs
• System stores with each file:

- User who owns the file and group file is in
- Permissions for user, any one in file group, and other

• Shown by output of ls -l command:

-

user︷︸︸︷
rw-

group︷︸︸︷
rw-

other︷︸︸︷
r--

owner︷︸︸︷
dm

group︷ ︸︸ ︷
cs140 ... index.html

- Each group of three letters specifies a subset of
read, write, and execute permissions

- User permissions apply to processes with same user ID
- Else, group permissions apply to processes in same group
- Else, other permissions apply
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Unix continued

• Directories have permission bits, too
- Need write permission on a directory to create or delete a file
- Execute permission means ability to use pathnames in the

directory, separate from read permission which allows listing
• Special user root (UID 0) has all privileges

- E.g., Read/write any file, change owners of files
- Required for administration (backup, creating new users, etc.)

• Example:
- drwxr-xr-x 56 root wheel 4096 Apr 4 10:08 /etc
- Directory writable only by root, readable by everyone
- Means non-root users cannot directly delete files in /etc
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Non-file permissions in Unix

• Many devices show up in file system
- E.g., /dev/tty1 permissions just like for files

• Other access controls not represented in file system
• E.g., must usually be root to do the following:

- Bind any TCP or UDP port number less than 1024
- Change the current process’s user or group ID
- Mount or unmount most file systems
- Create device nodes (such as /dev/tty1) in the file system
- Change the owner of a file
- Set the time-of-day clock; halt or reboot machine
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Example: Login runs as root

• Unix users typically stored in files in /etc
- Files passwd, group, and o�en shadow or master.passwd

• For each user, files contain:
- Textual username (e.g., “dm”, or “root”)
- Numeric user ID, and group ID(s)
- One-way hash of user’s password: {salt,H(salt,passwd)}
- Should have tunable di�iculty d: {d, salt,Hd(salt,passwd)}
- Other information, such as user’s full name, login shell, etc.

• /usr/bin/login runs as root
- Reads username & password from terminal
- Looks up username in /etc/passwd, etc.
- Computes H(salt, typed password) & checks that it matches
- If matches, sets group ID & user ID corresponding to username
- Execute user’s shell with execve system call
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Setuid

• Some legitimate actions require more privs than UID
- E.g., how should users change their passwords?
- Stored in root-owned /etc/passwd & /etc/shadow files

• Solution: Setuid/setgid programs
- Run with privileges of file’s owner or group
- Each process has real and e�ective UID/GID
- real is user who launched setuid program
- e�ective is owner/group of file, used in access checks
- Actual rules and interfaces somewhat complicated [Chen]

• Shown as “s” in file listings
- -rws--x--x 1 root root 52528 Oct 29 08:54 /bin/passwd
- Obviously need to own file to set the setuid bit
- Need to own file and be in group to set setgid bit
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Setuid (continued)

• Examples
- passwd – changes user’s password
- su – acquire new user ID (given correct password)
- sudo – run one command as root
- ping (historically) – uses raw IP sockets to send/receive ICMP

• Have to be very careful when writing setuid code
- Attackers can run setuid programs any time (no need to wait for

root to run a vulnerable job)
- Attacker controls many aspects of program’s environment

• Example attacks when running a setuid program
- Change PATH or IFS if setuid prog calls system(3)
- Set maximum file size to zero (if app rebuilds DB)
- Close fd 2 before running program—may accidentally send error

message into protected file
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Linux capabilities
• Wireshark needs network access, not ability to delete all files
• Linux subdivides root’s privileges into∼ 40 capabilities, e.g.:

- cap_net_admin – configure network interfaces (IP address, etc.)
- cap_net_raw – use raw sockets (bypassing UDP/TCP)
- cap_sys_boot – reboot; cap_sys_time – adjust system clock

• Usually root gets all, but behavior can be modified by
“securebits” (see prctl(2))
• Capabilities don’t survive execve unless bits are set in both

thread & inode (exception: ambient capabilities)
• “E�ective” bit in inode acts like setuid for capability
$ ls -al /usr/bin/dumpcap
-rwxr-xr-- 1 root wireshark 116808 Jan 30 06:23 /usr/bin/dumpcap
$ getcap /usr/bin/dumpcap
/usr/bin/dumpcap cap_dac_override,cap_net_admin,cap_net_raw=eip
[Oops, cap_dac_override ≈ root! neeeded for USB capture]
• See also: getcap(8), setcap(8), capsh(1)
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Other permissions

• When can process A send a signal to process B with kill?
- Allow if sender and receiver have same e�ective UID
- But need ability to kill processes you launch even if suid
- So allow if real UIDs match, as well
- Can also send SIGCONT w/o UID match if in same session

• Debugger system call ptrace
- Lets one process modify another’s memory
- Setuid gives a program more privilege than invoking user
- So don’t let a process ptrace a more privileged process
- E.g., Require sender to match real & e�ective UID of target
- Also disable/ignore setuid if ptraced target calls exec
- Exception: root can ptrace anyone
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A security hole

• Even without root or setuid, attackers can trick root owned
processes into doing things. . .
• Example: Want to clear unused files in /tmp

• Every night, automatically run this command as root:
find /tmp -atime +3 -exec rm -f -- {} \;

• find identifies files not accessed in 3 days
- executes rm, replacing {} with file name

• rm -f -- path deletes file path
- Note “--” prevents path from being parsed as option

• What’s wrong here?
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An attack

find/rm Attacker
mkdir (“/tmp/badetc”)
creat (“/tmp/badetc/passwd”)

readdir (“/tmp”)→ “badetc”
lstat (“/tmp/badetc”)→ DIRECTORY
readdir (“/tmp/badetc”)→ “passwd”

rename (“/tmp/badetc”→ “/tmp/x”)
symlink (“/etc”, “/tmp/badetc”)

unlink (“/tmp/badetc/passwd”)

• Time-of-check-to-time-of-use bug
- find checks that /tmp/badetc is not symlink
- But meaning of file name changes before it is used
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xterm command

• Provides a terminal window in X-windows
• Used to run with setuid root privileges

- Requires kernel pseudo-terminal (pty) device
- Required root privs to change ownership of pty to user
- Also writes protected utmp/wtmp files to record users

• Had feature to log terminal session to file

if (access (logfile, W_OK) < 0)
return ERROR;

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);
/* ... */

• What’s wrong here?

• xterm is root, but shouldn’t log to file user can’t write
• access call avoids dangerous security hole

- Does permission check with real, not e�ective UID
- Wrong: Another TOCTTOU bug
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An attack

xterm Attacker
creat (“/tmp/log”)

access (“/tmp/log”)→ OK
unlink (“/tmp/log”)
symlink (“/tmp/log”→ “/etc/passwd”)

open (“/tmp/log”)

• Attacker changes /tmp/log between check and use
- xterm unwittingly overwrites /etc/passwd
- Another TOCTTOU bug

• OpenBSD man page: “CAVEATS: access() is a potential
security hole and should never be used.”
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Preventing TOCCTOU

• Use new APIs that are relative to an opened directory fd
- openat, renameat, unlinkat, symlinkat, faccessat
- fchown, fchownat, fchmod, fchmodat, fstat, fstatat
- O_NOFOLLOW flag to open avoids symbolic links in last component
- But can still have TOCTTOU problems with hardlinks

• Lock resources, though most systems only lock files (and
locks are typically advisory)
• Wrap groups of operations in OS transactions

- Microso� supports for transactions on Windows Vista and newer
CreateTransaction, CommitTransaction, RollbackTransaction

- A few research projects for POSIX [Valor] [TxOS]
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SSH configuration files

• SSH 1.2.12 client ran as root for several reasons:
- Needed to bind TCP port under 1024 (privileged operation)
- Needed to read client private key (for host authentication)

• Also needed to read & write files owned by user
- Read configuration file ~/.ssh/config
- Record server keys in ~/.ssh/known_hosts

• So�ware structured to avoid TOCTTOU bugs:
- First bind socket & read root-owned secret key file
- Second drop all privileges—set real, & e�ective UIDs to user
- Only then access user files
- Idea: avoid using any user-controlled arguments/files until you

have no more privileges than the user
- What might still have gone wrong?
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Trick question: ptrace bug

• Actually do have more privileges than user!
- Bound privileged port and read host private key

• Dropping privs allows user to “debug” SSH
- Depends on OS, but at the time several had ptrace

implementations that made SSH vulnerable
• Once in debugger

- Could use privileged port to connect anywhere
- Could read secret host key from memory
- Could overwrite local user name to get privs of other user

• The fix: restructure into 3 processes!
- Perhaps overkill, but really wanted to avoid problems

• Today some linux distros restrict ptrace with Yama
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A Linux security hole

• Some programs acquire then release privileges
- E.g., su user is setuid root, becomes user if password correct

• Consider the following:
- A and B unprivileged processes owned by attacker
- A ptraces B (works even with Yama, as B could be child of A)
- A executes “su user” to its own identity
- With e�ective UID (EUID) 0, su asks for password & waits
- While A’s EUID is 0, B execs su root

(B’s exec honors setuid—not disabled—since A’s EUID is 0)
- A types password, gets shell, and is attached to su root
- Can manipulate su root’s memory to get root shell

20 / 44

Editorial

• Previous examples show two limitations of Unix
• Many OS security policies subjective not objective

- When can you signal/debug process? Re-bind network port?
- Rules for non-file operations somewhat incoherent
- Even some file rules weird (creating hard links to files)

• Correct code is much harder to write than incorrect
- Delete file without traversing symbolic link
- Read SSH configuration file (requires 3 processes??)
- Write mailbox owned by user in dir owned by root/mail

• Don’t just blame the application writers
- Must also blame the interfaces they program to
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Another security problem [Hardy]

• Setting: A multi-user time sharing system
- This time it’s not Unix

• Wanted Fortran compiler to keep statistics
- Modified compiler /sysx/fort to record stats in /sysx/stat
- Gave compiler “home files license”—allows writing to anything in
/sysx (kind of like Unix setuid)

• What’s wrong here?
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A confused deputy

• Attacker could overwrite any files in /sysx

- System billing records kept in /sysx/bill got wiped
- Probably command like fort -o /sysx/bill file.f

• Is this a bug in the compiler fort?
- Original implementors did not anticipate extra rights
- Can’t blame them for unchecked output file

• Compiler is a “confused deputy”
- Inherits privileges from invoking user (e.g., read file.f)
- Also inherits privileges from home files license
- Which master is it serving on any given system call?
- OS doesn’t know if it just sees open ("/sysx/bill", ...)
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Recall access control matrix
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Capabilities

• Slicing matrix along rows yields capabilities
- E.g., For each process, store a list of objects it can access
- Process explicitly invokes particular capabilities

• Can help avoid confused deputy problem
- E.g., Must give compiler an argument that both specifies the

output file and conveys the capability to write the file
(think about passing a file descriptor, not a file name)

- So compiler uses no ambient authority to write file
• Three general approaches to capabilities:

- Hardware enforced (Tagged architectures like M-machine)
- Kernel-enforced (Hydra, KeyKOS)
- Self-authenticating capabilities (like Amoeba)

• Good history in [Levy]
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Hydra [Wulf]

• Machine & programing environment built at CMU in ’70s
• OS enforced object modularity with capabilities

- Could only call object methods with a capability
• Augmentation let methods manipulate objects

- A method executes with the capability list of the object, not the
caller

• Template methods take capabilities from caller
- So method can access objects specified by caller
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KeyKOS [Bomberger]

• Capability system developed in the early 1980s
- Inspired many later systems: EROS, Coyotos

• Goal: Extreme security, reliability, and availability
• Structured as a “nanokernel”

- Kernel proper only 20,000 likes of C, 100KB footprint
- Avoids many problems with traditional kernels
- Traditional OS interfaces implemented outside the kernel

(including binary compatibility with existing OSes)
• Basic idea: No privileges other than capabilities

- Means kernel provides purely objective security mechanism
- As objective as pointers to objects in OO languages
- In fact, partition system into many processes akin to objects
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Unique features of KeyKOS

• Single-level store
- Everything is persistent: memory, processes, . . .
- System periodically checkpoints its entire state
- A�er power outage, everything comes back up as it was

(may just lose the last few characters you typed)
• “Stateless” kernel design only caches information

- All kernel state reconstructible from persistent data
• Simplifies kernel and makes it more robust

- Kernel never runs out of space in memory allocation
- No message queues, etc. in kernel
- Run out of memory? Just checkpoint system
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KeyKOS capabilities

• Refered to as “keys” for short
• Types of keys:

- devices – Low-level hardware access
- pages – Persistent page of memory (can be mapped)
- nodes – Container for 16 capabilities
- segments – Pages & segments glued together with nodes
- meters – right to consume CPU time
- domains – a thread context

• Anyone possessing a key can grant it to others
- But creating a key is a privileged operation
- E.g., requires “prime meter” to divide it into submeters
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Capability details

• Each domain has a number of key “slots”:
- 16 general-purpose key slots
- address slot – contains segment with process VM
- meter slot – contains key for CPU time
- keeper slot – contains key for exceptions

• Segments also have an associated keeper
- Process that gets invoked on invalid reference

• Meter keeper (allows creative scheduling policies)
• Calls generate return key for calling domain

- (Not required—other forms of message don’t do this)
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KeyNIX: UNIX on KeyKOS

• “One kernel per process” architecture
- Hard to crash kernel
- Even harder to crash system

• A process’s kernel is its keeper
- Unmodified Unix binary makes Unix syscall
- Invalid KeyKOS syscall, transfers control to Unix keeper

• Of course, kernels need to share state
- Use shared segment for process and file tables
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KeyNIX overview
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Keynix I/O

• Every file is a di�erent process
- Elegant, and fault isolated
- Small files can live in a node, not a segment
- Makes the namei() function very expensive

• Pipes require queues
- This turned out to be complicated and ine�icient
- Interaction with signals complicated

• Other OS features perform very well, though
- E.g., fork is six times faster than Mach 2.5
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Self-authenticating capabilities

• Every access must be accompanied by a capability
- For each object, OS stores random check value
- Capability is: {Object,Rights,MAC(check,Rights)}

(MAC = cryptographic Message Authentication Code)
• OS gives processes capabilities

- Process creating resource gets full access rights
- Can ask OS to generate capability with restricted rights

• Makes sharing very easy in distributed systems
• To revoke rights, must change check value

- Need some way for everyone else to reacquire capabilities
• Hard to control propagation

35 / 44

Amoeba

• A distributed OS, based on capabilities of form:
- server port, object ID, rights, check

• Any server can listen on any machine
- Server port is hash of secret
- Kernel won’t let you listen if you don’t know secret

• Many types of object have capabilities
- Files, directories, processes, devices, servers (E.g., X windows)

• Separate file and directory servers
- Can implement your own file server, or store other object types in

directories, which is cool
• Check is like a secret password for the object

- Server records check value for capabilities with all rights
- Restricted capability’s check is hash of old check, rights
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Limitations of capabilities

• IPC performance a losing battle with CPU makers
- CPUs optimized for “common” code, not context switches
- Capability systems usually involve many IPCs

• Capability model never fully took o� as kernel API
- Requires changes throughout application so�ware
- Call capabilities “file descriptors” or “Java pointers” and people

will use them
- But discipline of pure capability system challenging so far
- People sometimes quip that capabilities are an OS concept of the

future and always will be
• But real systems do use capabilities

- Firefox security based on language-level object capabilities
- FreeBSD now ships with Capsicum, making capabilities available
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Capsicum [Watson]

• Capability API in FreeBSD 9
• cap_enter enters a process into capability mode

- Can no longer use absolute pathnames, “..”, etc.
• cap_new turns file descriptors into restricted capabilities

- ∼60 individual permissions can be restricted per capability
- E.g., disallow fchmod (which works on read-only fds)

• Used by various base system binaries
• Supported by a growing number of applications
• Patches exist to use Capsicum for Chrome’s sandboxing
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Cache timing attacks

const char *table;

int
victim (int secret_byte)
{

return table[secret_byte*64];
}

• Accessing memory based on secret data can leak the data
• Approach 1: Flush/Evict + Reload

- Share table with victim process (shared lib or deduplication)
- Flush table from cache (clflush instruction, or overflow cache)
- A�er victim time reads of table, fast line tells you secret_byte

• Approach 2: Prime + Probe
- No shared memory, but attacker primes cache with its own bu�er
- Victim’s table access evicts one of attacker’s cache lines
- Slow cache line (+ cache mapping) reveals secret data
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Speculative execution key to performance

unsigned char *array1, *array2;
int array1_size, array2_size;

int lookup (int input)
{
if (input < array1_size)
return array2[array1[input] * 4096];

return -1;
}

• CPU predicts branches to mask memory latency
- E.g., predict input < array_size even if array1_size not cached
- Wait to get array1_size from memory before retiring instructions
- Squash incorrectly predicted instructions by reverting registers
- But can’t revert cache state, only registers

• Example: intel Haswell
- Specutatively executes up to 192 micro-ops
- Indexes branch target bu�er by bottom 31 bits of branch address
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Spectre attack [Kocher]

unsigned char *array1, *array2;
int array1_size, array2_size;

int lookup (int input)
{
if (input < array1_size)
return array2[array1[input] * 4096];

return -1;
}

• Say attacker supplies input, wants to read array1[input]
- input can exceed bounds, reference any byte in address space

• Ensure array1 cached, but array1_size and array2 uncached
• Flush+reload attack on array2 now reveals array1[input]

- CPU will likely predict branch taken (don’t usually overflow)
- Speculatively load from array2 before seeing array1_size
- Reloaded cache line reveals array1[input]
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Many more variants of Spectre

• Attack on JavaScript JIT
- Malicious JavaScript reads secrets outside of JavaScript sandbox

• eBPF compiles packet filters in kernel (e.g., for tcpdump)
- Can generate code to reveal arbitrary kernel memory

• Can even use victim code that’s not supposed to be executed
- Mistrain branch predictor on indirect branch
- Speculatively execute arbitrary “spectre gadget” in victim process
- Same cache impact even if gadget execution entirely squashed
- Has been used to leak host memory from inside virtual machine

• Use other speculation channels
- E.g., CPU predicts that previous store does not conflict with a load
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Mitigation

• Replace array bounds checks with index masking (used by
Chrome)

- return array2[array1[input&0xffff] * 4096]
- Limits distance of bounds violation

• Place JavaScript sandbox in separate address space
• XOR pointers with type-dependent poison values (in JITs)

- Branch mispredictions on type checks XOR wrong values
• Make CPUs a bit better about leaking state through side

channels
• Insert “gratuitous” memory barriers to prevent speculation

on sensitive data
• Unfortunately general solution still an open problem

44 / 44


