
View access control as a matrix

• Subjects (processes/users) access objects (e.g., files)
• Each cell of matrix has allowed permissions

1 / 44

Two ways to slice the matrix

• Along columns:
- Kernel stores list of who can access object along with object
- Most systems you’ve used probably do this
- Examples: Unix file permissions, Access Control Lists (ACLs)

• Along rows:
- Capability systems do this
- More on these later. . .

2 / 44

Outline

1 Unix protection

2 Unix security holes

3 Capability-based protection

4 Microarchitectural attacks

3 / 44

Example: Unix protection

• Each process has a User ID & one or more group IDs
• System stores with each file:

- User who owns the file and group file is in
- Permissions for user, any one in file group, and other

• Shown by output of ls -l command:

-

user︷︸︸︷
rw-

group︷︸︸︷
rw-

other︷︸︸︷
r--

owner︷︸︸︷
dm

group︷ ︸︸ ︷
cs140 ... index.html

- Each group of three letters specifies a subset of
read, write, and execute permissions

- User permissions apply to processes with same user ID
- Else, group permissions apply to processes in same group
- Else, other permissions apply

4 / 44

Unix continued

• Directories have permission bits, too
- Need write permission on a directory to create or delete a file
- Execute permission means ability to use pathnames in the

directory, separate from read permission which allows listing
• Special user root (UID 0) has all privileges

- E.g., Read/write any file, change owners of files
- Required for administration (backup, creating new users, etc.)

• Example:
- drwxr-xr-x 56 root wheel 4096 Apr 4 10:08 /etc
- Directory writable only by root, readable by everyone
- Means non-root users cannot directly delete files in /etc

5 / 44

Non-file permissions in Unix

• Many devices show up in file system
- E.g., /dev/tty1 permissions just like for files

• Other access controls not represented in file system
• E.g., must usually be root to do the following:

- Bind any TCP or UDP port number less than 1024
- Change the current process’s user or group ID
- Mount or unmount most file systems
- Create device nodes (such as /dev/tty1) in the file system
- Change the owner of a file
- Set the time-of-day clock; halt or reboot machine

6 / 44

Example: Login runs as root

• Unix users typically stored in files in /etc
- Files passwd, group, and o�en shadow or master.passwd

• For each user, files contain:
- Textual username (e.g., “dm”, or “root”)
- Numeric user ID, and group ID(s)
- One-way hash of user’s password: {salt,H(salt,passwd)}
- Should have tunable di�iculty d: {d, salt,Hd(salt,passwd)}
- Other information, such as user’s full name, login shell, etc.

• /usr/bin/login runs as root
- Reads username & password from terminal
- Looks up username in /etc/passwd, etc.
- Computes H(salt, typed password) & checks that it matches
- If matches, sets group ID & user ID corresponding to username
- Execute user’s shell with execve system call

7 / 44

Setuid

• Some legitimate actions require more privs than UID
- E.g., how should users change their passwords?
- Stored in root-owned /etc/passwd & /etc/shadow files

• Solution: Setuid/setgid programs
- Run with privileges of file’s owner or group
- Each process has real and e�ective UID/GID
- real is user who launched setuid program
- e�ective is owner/group of file, used in access checks
- Actual rules and interfaces somewhat complicated [Chen]

• Shown as “s” in file listings
- -rws--x--x 1 root root 52528 Oct 29 08:54 /bin/passwd
- Obviously need to own file to set the setuid bit
- Need to own file and be in group to set setgid bit

8 / 44

Setuid (continued)

• Examples
- passwd – changes user’s password
- su – acquire new user ID (given correct password)
- sudo – run one command as root
- ping (historically) – uses raw IP sockets to send/receive ICMP

• Have to be very careful when writing setuid code
- Attackers can run setuid programs any time (no need to wait for

root to run a vulnerable job)
- Attacker controls many aspects of program’s environment

• Example attacks when running a setuid program
- Change PATH or IFS if setuid prog calls system(3)
- Set maximum file size to zero (if app rebuilds DB)
- Close fd 2 before running program—may accidentally send error

message into protected file
9 / 44

Linux capabilities
• Wireshark needs network access, not ability to delete all files
• Linux subdivides root’s privileges into∼ 40 capabilities, e.g.:

- cap_net_admin – configure network interfaces (IP address, etc.)
- cap_net_raw – use raw sockets (bypassing UDP/TCP)
- cap_sys_boot – reboot; cap_sys_time – adjust system clock

• Usually root gets all, but behavior can be modified by
“securebits” (see prctl(2))
• Capabilities don’t survive execve unless bits are set in both

thread & inode (exception: ambient capabilities)
• “E�ective” bit in inode acts like setuid for capability
$ ls -al /usr/bin/dumpcap
-rwxr-xr-- 1 root wireshark 116808 Jan 30 06:23 /usr/bin/dumpcap
$ getcap /usr/bin/dumpcap
/usr/bin/dumpcap cap_dac_override,cap_net_admin,cap_net_raw=eip
[Oops, cap_dac_override ≈ root! neeeded for USB capture]
• See also: getcap(8), setcap(8), capsh(1)

10 / 44

Other permissions

• When can process A send a signal to process B with kill?
- Allow if sender and receiver have same e�ective UID
- But need ability to kill processes you launch even if suid
- So allow if real UIDs match, as well
- Can also send SIGCONT w/o UID match if in same session

• Debugger system call ptrace
- Lets one process modify another’s memory
- Setuid gives a program more privilege than invoking user
- So don’t let a process ptrace a more privileged process
- E.g., Require sender to match real & e�ective UID of target
- Also disable/ignore setuid if ptraced target calls exec
- Exception: root can ptrace anyone

11 / 44

Outline

1 Unix protection

2 Unix security holes

3 Capability-based protection

4 Microarchitectural attacks

12 / 44

A security hole

• Even without root or setuid, attackers can trick root owned
processes into doing things. . .
• Example: Want to clear unused files in /tmp

• Every night, automatically run this command as root:
find /tmp -atime +3 -exec rm -f -- {} \;

• find identifies files not accessed in 3 days
- executes rm, replacing {} with file name

• rm -f -- path deletes file path
- Note “--” prevents path from being parsed as option

• What’s wrong here?

13 / 44

An attack

find/rm Attacker
mkdir (“/tmp/badetc”)
creat (“/tmp/badetc/passwd”)

readdir (“/tmp”)→ “badetc”
lstat (“/tmp/badetc”)→ DIRECTORY
readdir (“/tmp/badetc”)→ “passwd”

rename (“/tmp/badetc”→ “/tmp/x”)
symlink (“/etc”, “/tmp/badetc”)

unlink (“/tmp/badetc/passwd”)

• Time-of-check-to-time-of-use bug
- find checks that /tmp/badetc is not symlink
- But meaning of file name changes before it is used

14 / 44

An attack

find/rm Attacker
mkdir (“/tmp/badetc”)
creat (“/tmp/badetc/passwd”)

readdir (“/tmp”)→ “badetc”
lstat (“/tmp/badetc”)→ DIRECTORY
readdir (“/tmp/badetc”)→ “passwd”

rename (“/tmp/badetc”→ “/tmp/x”)
symlink (“/etc”, “/tmp/badetc”)

unlink (“/tmp/badetc/passwd”)

• Time-of-check-to-time-of-use [TOCTTOU] bug
- find checks that /tmp/badetc is not symlink
- But meaning of file name changes before it is used

14 / 44

xterm command

• Provides a terminal window in X-windows
• Used to run with setuid root privileges

- Requires kernel pseudo-terminal (pty) device
- Required root privs to change ownership of pty to user
- Also writes protected utmp/wtmp files to record users

• Had feature to log terminal session to file

if (access (logfile, W_OK) < 0)
return ERROR;

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);
/* ... */

• What’s wrong here?

• xterm is root, but shouldn’t log to file user can’t write
• access call avoids dangerous security hole

- Does permission check with real, not e�ective UID
- Wrong: Another TOCTTOU bug

15 / 44

xterm command

• Provides a terminal window in X-windows
• Used to run with setuid root privileges

- Requires kernel pseudo-terminal (pty) device
- Required root privs to change ownership of pty to user
- Also writes protected utmp/wtmp files to record users

• Had feature to log terminal session to file
if (access (logfile, W_OK) < 0)
return ERROR;

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);
/* ... */

• xterm is root, but shouldn’t log to file user can’t write
• access call avoids dangerous security hole

- Does permission check with real, not e�ective UID

- Wrong: Another TOCTTOU bug

15 / 44

xterm command

• Provides a terminal window in X-windows
• Used to run with setuid root privileges

- Requires kernel pseudo-terminal (pty) device
- Required root privs to change ownership of pty to user
- Also writes protected utmp/wtmp files to record users

• Had feature to log terminal session to file
if (access (logfile, W_OK) < 0)
return ERROR;

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);
/* ... */

• xterm is root, but shouldn’t log to file user can’t write
• access call avoids dangerous security hole

- Does permission check with real, not e�ective UID
- Wrong: Another TOCTTOU bug

15 / 44

An attack

xterm Attacker
creat (“/tmp/log”)

access (“/tmp/log”)→ OK
unlink (“/tmp/log”)
symlink (“/tmp/log”→ “/etc/passwd”)

open (“/tmp/log”)

• Attacker changes /tmp/log between check and use
- xterm unwittingly overwrites /etc/passwd
- Another TOCTTOU bug

• OpenBSD man page: “CAVEATS: access() is a potential
security hole and should never be used.”

16 / 44

Preventing TOCCTOU

• Use new APIs that are relative to an opened directory fd
- openat, renameat, unlinkat, symlinkat, faccessat
- fchown, fchownat, fchmod, fchmodat, fstat, fstatat
- O_NOFOLLOW flag to open avoids symbolic links in last component
- But can still have TOCTTOU problems with hardlinks

• Lock resources, though most systems only lock files (and
locks are typically advisory)
• Wrap groups of operations in OS transactions

- Microso� supports for transactions on Windows Vista and newer
CreateTransaction, CommitTransaction, RollbackTransaction

- A few research projects for POSIX [Valor] [TxOS]

17 / 44

SSH configuration files

• SSH 1.2.12 client ran as root for several reasons:
- Needed to bind TCP port under 1024 (privileged operation)
- Needed to read client private key (for host authentication)

• Also needed to read & write files owned by user
- Read configuration file ~/.ssh/config
- Record server keys in ~/.ssh/known_hosts

• So�ware structured to avoid TOCTTOU bugs:
- First bind socket & read root-owned secret key file
- Second drop all privileges—set real, & e�ective UIDs to user
- Only then access user files
- Idea: avoid using any user-controlled arguments/files until you

have no more privileges than the user
- What might still have gone wrong?

18 / 44

Trick question: ptrace bug

• Actually do have more privileges than user!
- Bound privileged port and read host private key

• Dropping privs allows user to “debug” SSH
- Depends on OS, but at the time several had ptrace

implementations that made SSH vulnerable
• Once in debugger

- Could use privileged port to connect anywhere
- Could read secret host key from memory
- Could overwrite local user name to get privs of other user

• The fix: restructure into 3 processes!
- Perhaps overkill, but really wanted to avoid problems

• Today some linux distros restrict ptrace with Yama

19 / 44

A Linux security hole

• Some programs acquire then release privileges
- E.g., su user is setuid root, becomes user if password correct

• Consider the following:
- A and B unprivileged processes owned by attacker
- A ptraces B (works even with Yama, as B could be child of A)
- A executes “su user” to its own identity
- With e�ective UID (EUID) 0, su asks for password & waits
- While A’s EUID is 0, B execs su root

(B’s exec honors setuid—not disabled—since A’s EUID is 0)
- A types password, gets shell, and is attached to su root
- Can manipulate su root’s memory to get root shell

20 / 44

Editorial

• Previous examples show two limitations of Unix
• Many OS security policies subjective not objective

- When can you signal/debug process? Re-bind network port?
- Rules for non-file operations somewhat incoherent
- Even some file rules weird (creating hard links to files)

• Correct code is much harder to write than incorrect
- Delete file without traversing symbolic link
- Read SSH configuration file (requires 3 processes??)
- Write mailbox owned by user in dir owned by root/mail

• Don’t just blame the application writers
- Must also blame the interfaces they program to

21 / 44

Outline

1 Unix protection

2 Unix security holes

3 Capability-based protection

4 Microarchitectural attacks

22 / 44

Another security problem [Hardy]

• Setting: A multi-user time sharing system
- This time it’s not Unix

• Wanted Fortran compiler to keep statistics
- Modified compiler /sysx/fort to record stats in /sysx/stat
- Gave compiler “home files license”—allows writing to anything in
/sysx (kind of like Unix setuid)

• What’s wrong here?

23 / 44

A confused deputy

• Attacker could overwrite any files in /sysx

- System billing records kept in /sysx/bill got wiped
- Probably command like fort -o /sysx/bill file.f

• Is this a bug in the compiler fort?
- Original implementors did not anticipate extra rights
- Can’t blame them for unchecked output file

• Compiler is a “confused deputy”
- Inherits privileges from invoking user (e.g., read file.f)
- Also inherits privileges from home files license
- Which master is it serving on any given system call?
- OS doesn’t know if it just sees open ("/sysx/bill", ...)

24 / 44

Recall access control matrix

25 / 44

Capabilities

• Slicing matrix along rows yields capabilities
- E.g., For each process, store a list of objects it can access
- Process explicitly invokes particular capabilities

• Can help avoid confused deputy problem
- E.g., Must give compiler an argument that both specifies the

output file and conveys the capability to write the file
(think about passing a file descriptor, not a file name)

- So compiler uses no ambient authority to write file
• Three general approaches to capabilities:

- Hardware enforced (Tagged architectures like M-machine)
- Kernel-enforced (Hydra, KeyKOS)
- Self-authenticating capabilities (like Amoeba)

• Good history in [Levy]
26 / 44

Hydra [Wulf]

• Machine & programing environment built at CMU in ’70s
• OS enforced object modularity with capabilities

- Could only call object methods with a capability
• Augmentation let methods manipulate objects

- A method executes with the capability list of the object, not the
caller

• Template methods take capabilities from caller
- So method can access objects specified by caller

27 / 44

KeyKOS [Bomberger]

• Capability system developed in the early 1980s
- Inspired many later systems: EROS, Coyotos

• Goal: Extreme security, reliability, and availability
• Structured as a “nanokernel”

- Kernel proper only 20,000 likes of C, 100KB footprint
- Avoids many problems with traditional kernels
- Traditional OS interfaces implemented outside the kernel

(including binary compatibility with existing OSes)
• Basic idea: No privileges other than capabilities

- Means kernel provides purely objective security mechanism
- As objective as pointers to objects in OO languages
- In fact, partition system into many processes akin to objects

28 / 44

Unique features of KeyKOS

• Single-level store
- Everything is persistent: memory, processes, . . .
- System periodically checkpoints its entire state
- A�er power outage, everything comes back up as it was

(may just lose the last few characters you typed)
• “Stateless” kernel design only caches information

- All kernel state reconstructible from persistent data
• Simplifies kernel and makes it more robust

- Kernel never runs out of space in memory allocation
- No message queues, etc. in kernel
- Run out of memory? Just checkpoint system

29 / 44

KeyKOS capabilities

• Refered to as “keys” for short
• Types of keys:

- devices – Low-level hardware access
- pages – Persistent page of memory (can be mapped)
- nodes – Container for 16 capabilities
- segments – Pages & segments glued together with nodes
- meters – right to consume CPU time
- domains – a thread context

• Anyone possessing a key can grant it to others
- But creating a key is a privileged operation
- E.g., requires “prime meter” to divide it into submeters

30 / 44

Capability details

• Each domain has a number of key “slots”:
- 16 general-purpose key slots
- address slot – contains segment with process VM
- meter slot – contains key for CPU time
- keeper slot – contains key for exceptions

• Segments also have an associated keeper
- Process that gets invoked on invalid reference

• Meter keeper (allows creative scheduling policies)
• Calls generate return key for calling domain

- (Not required—other forms of message don’t do this)

31 / 44

KeyNIX: UNIX on KeyKOS

• “One kernel per process” architecture
- Hard to crash kernel
- Even harder to crash system

• A process’s kernel is its keeper
- Unmodified Unix binary makes Unix syscall
- Invalid KeyKOS syscall, transfers control to Unix keeper

• Of course, kernels need to share state
- Use shared segment for process and file tables

32 / 44

KeyNIX overview

Device
Driver

Domain

Device
Driver

Domain

Device
Driver

Domain

Device
Table

Domain

Device System

Btree
Domain

Inode
Domain

Inode
Domain

Inode
Domain

Inode
Domain

File

File

File

File System

UNIX
Keeper

Queue
Domain

Sleep
Timer

Domain

UNIX
Process

Address Space
Segment

Segment
Keeper

Process
and

Open File
Table

segment

domain

33 / 44

Keynix I/O

• Every file is a di�erent process
- Elegant, and fault isolated
- Small files can live in a node, not a segment
- Makes the namei() function very expensive

• Pipes require queues
- This turned out to be complicated and ine�icient
- Interaction with signals complicated

• Other OS features perform very well, though
- E.g., fork is six times faster than Mach 2.5

34 / 44

Self-authenticating capabilities

• Every access must be accompanied by a capability
- For each object, OS stores random check value
- Capability is: {Object,Rights,MAC(check,Rights)}

(MAC = cryptographic Message Authentication Code)
• OS gives processes capabilities

- Process creating resource gets full access rights
- Can ask OS to generate capability with restricted rights

• Makes sharing very easy in distributed systems
• To revoke rights, must change check value

- Need some way for everyone else to reacquire capabilities
• Hard to control propagation

35 / 44

Amoeba

• A distributed OS, based on capabilities of form:
- server port, object ID, rights, check

• Any server can listen on any machine
- Server port is hash of secret
- Kernel won’t let you listen if you don’t know secret

• Many types of object have capabilities
- Files, directories, processes, devices, servers (E.g., X windows)

• Separate file and directory servers
- Can implement your own file server, or store other object types in

directories, which is cool
• Check is like a secret password for the object

- Server records check value for capabilities with all rights
- Restricted capability’s check is hash of old check, rights

36 / 44

Limitations of capabilities

• IPC performance a losing battle with CPU makers
- CPUs optimized for “common” code, not context switches
- Capability systems usually involve many IPCs

• Capability model never fully took o� as kernel API
- Requires changes throughout application so�ware
- Call capabilities “file descriptors” or “Java pointers” and people

will use them
- But discipline of pure capability system challenging so far
- People sometimes quip that capabilities are an OS concept of the

future and always will be
• But real systems do use capabilities

- Firefox security based on language-level object capabilities
- FreeBSD now ships with Capsicum, making capabilities available

37 / 44

Capsicum [Watson]

• Capability API in FreeBSD 9
• cap_enter enters a process into capability mode

- Can no longer use absolute pathnames, “..”, etc.
• cap_new turns file descriptors into restricted capabilities

- ∼60 individual permissions can be restricted per capability
- E.g., disallow fchmod (which works on read-only fds)

• Used by various base system binaries
• Supported by a growing number of applications
• Patches exist to use Capsicum for Chrome’s sandboxing

38 / 44

Outline

1 Unix protection

2 Unix security holes

3 Capability-based protection

4 Microarchitectural attacks

39 / 44

Cache timing attacks

const char *table;

int
victim (int secret_byte)
{

return table[secret_byte*64];
}

• Accessing memory based on secret data can leak the data
• Approach 1: Flush/Evict + Reload

- Share table with victim process (shared lib or deduplication)
- Flush table from cache (clflush instruction, or overflow cache)
- A�er victim time reads of table, fast line tells you secret_byte

• Approach 2: Prime + Probe
- No shared memory, but attacker primes cache with its own bu�er
- Victim’s table access evicts one of attacker’s cache lines
- Slow cache line (+ cache mapping) reveals secret data

40 / 44

Speculative execution key to performance

unsigned char *array1, *array2;
int array1_size, array2_size;

int lookup (int input)
{
if (input < array1_size)
return array2[array1[input] * 4096];

return -1;
}

• CPU predicts branches to mask memory latency
- E.g., predict input < array_size even if array1_size not cached
- Wait to get array1_size from memory before retiring instructions
- Squash incorrectly predicted instructions by reverting registers
- But can’t revert cache state, only registers

• Example: intel Haswell
- Specutatively executes up to 192 micro-ops
- Indexes branch target bu�er by bottom 31 bits of branch address

41 / 44

Spectre attack [Kocher]

unsigned char *array1, *array2;
int array1_size, array2_size;

int lookup (int input)
{
if (input < array1_size)
return array2[array1[input] * 4096];

return -1;
}

• Say attacker supplies input, wants to read array1[input]
- input can exceed bounds, reference any byte in address space

• Ensure array1 cached, but array1_size and array2 uncached
• Flush+reload attack on array2 now reveals array1[input]

- CPU will likely predict branch taken (don’t usually overflow)
- Speculatively load from array2 before seeing array1_size
- Reloaded cache line reveals array1[input]

42 / 44

Many more variants of Spectre

• Attack on JavaScript JIT
- Malicious JavaScript reads secrets outside of JavaScript sandbox

• eBPF compiles packet filters in kernel (e.g., for tcpdump)
- Can generate code to reveal arbitrary kernel memory

• Can even use victim code that’s not supposed to be executed
- Mistrain branch predictor on indirect branch
- Speculatively execute arbitrary “spectre gadget” in victim process
- Same cache impact even if gadget execution entirely squashed
- Has been used to leak host memory from inside virtual machine

• Use other speculation channels
- E.g., CPU predicts that previous store does not conflict with a load

43 / 44

Mitigation

• Replace array bounds checks with index masking (used by
Chrome)

- return array2[array1[input&0xffff] * 4096]
- Limits distance of bounds violation

• Place JavaScript sandbox in separate address space
• XOR pointers with type-dependent poison values (in JITs)

- Branch mispredictions on type checks XOR wrong values
• Make CPUs a bit better about leaking state through side

channels
• Insert “gratuitous” memory barriers to prevent speculation

on sensitive data
• Unfortunately general solution still an open problem

44 / 44

