
 CS 140 Project 4: File Systems
 February 26, 2021

 Today’s Topics
 ● Overview
 ● Project 4 Requirements
 ○ Buffer Cache
 ○ Indexed and Extensible Files
 ○ Subdirectories
 ○ Synchronization
 ● Getting Started

 Project Overview
 ● Build on top of project 2 or project 3
 ○ Up to 5% extra credit if you enable VM
 ○ Edit ‘ filesys/Make.vars ’ to enable VM
 ● Remove the severe limitations of the basic file system
 ○ No internal synchronization
 ○ File size is fixed at creation time
 ○ File data is allocated on contiguous range of disk sectors
 ○ No subdirectory

 Project Overview
 Reference Implementation:

	Makefile.build	 |	 5
	devices/timer.c	 |	 42		++
	filesys/Make.vars	 |	 6
	filesys/cache.c	 |		473		+++++++++++++++++++++++++
	filesys/cache.h	 |	 23		+
	filesys/directory.c		|	99		++++-
	filesys/directory.h		|	3
	filesys/file.c	 |	 4
	filesys/filesys.c	 |		194		+++++++++-
	filesys/filesys.h	 |	 5
	filesys/free-map.c	|	 45		+-
	filesys/free-map.h	|	 4
	filesys/fsutil.c	 |	 8
	filesys/inode.c	 |		444		++++++++++++++++++-----
	filesys/inode.h	 |	 11
	...		snip		...

 Today’s Topics
 ● Overview
 ● Project 4 Requirements
 ○ Buffer Cache
 ○ Indexed and Extensible Files
 ○ Subdirectories
 ○ Synchronization
 ● Getting Started

 Buffer Cache
 ● Modify the file system to keep a cache of file blocks
 ○ Reduce expensive disk I/O
 ○ No more than 64 sectors (including inode and file data)!
 ● Get rid of the “bounce buffer” in inode_{read,write}_at()	
 ○ Used to implement read/write in byte-granularity
 ○ Interact with the buffer cache instead
 ● Cache replacement algorithm
 ○ Must be at least as good as the “clock” algorithm
 ○ Maybe give higher priorities to metadata (i.e., inode) over file data?

 Buffer Cache, Cont’d
 ● Your cache should be write-behind
 ○ Keep dirty blocks in cache
 ○ Write to disk on cache eviction
 ○ Periodically flush dirty blocks back to disk
 ○ Don’t forget to flush when Pintos halts (in filesys_done())
 ● Your cache should also be read-ahead
 ○ Prefetch the next block of a file when one block of file is read
 ○ Only meaningful when done asynchronously, in the background

 Remove inode_disk from inode
 /*		On-disk		inode.	
	 Must		be		exactly		BLOCK_SECTOR_SIZE		bytes		long.		*/	
	 struct		inode_disk	
	 {

	block_sector_t		start;	/*		First		data		sector.		*/
	off_t		length;	 /*		File		size		in		bytes.		*/
	unsigned		magic;	 /*		Magic		number.		*/
	uint32_t		unused[125];	/*		Not		used.		*/

	 };	
	/*		In-memory		inode.		*/	
	struct		inode	
	 {	
	 …		unrelated		fields		omitted		…

 ⬇ YOU SHOULD REMOVE THIS FIELD
	 struct		inode_disk		data;		/*		Inode		content.		*/	
 };

 Indexed and Extensible Files
 ● The basic file system suffers from external fragmentation
 ○ Always allocates files as a single extent
 ○ Dictated by the current representation of an inode
	 /*		On-disk		inode.	
	 Must		be		exactly		BLOCK_SECTOR_SIZE		bytes		long.		*/	
	 struct		inode_disk	
	 {

	block_sector_t		start;	/*		First		data		sector.		*/
	off_t		length;	 /*		File		size		in		bytes.		*/
	unsigned		magic;	 /*		Magic		number.		*/
	uint32_t		unused[125];	/*		Not		used.		*/

	};

 Indexed and Extensible Files, Cont’d
 ● Modify struct		inode_disk to use an index structure
 ○ Use a combination of direct, indirect, and doubly indirect blocks
 ○ Support file size up to 8MB

 Indexed and Extensible Files, Cont’d
 ● Support file growth
 ○ There should be no predetermined limit on the size of a file
 ○ File size starts as 0; expanded every time user writes beyond EOF
 ○ Details in Section 5.3.2
 ● Directory can grow too: remove the 16-file limit in the root directory
 ○ “dir_create(ROOT_DIR_SECTOR	,		16)” in filesys.c:do_format(void)
 ● Use the “free map” (free-map.c) to keep track of free disk sectors
 ○ Hard-coded to be kept at disk sector 0 (i.e., “ #define FREE_MAP_SECTOR 0”)
 ○ Note: You can keep a cached copy permanently in memory

 Subdirectories
 ● Implement a hierarchical name space
 ○ E.g., “ /foo/bar/../baz/./a ”
 ○ Directory entries (i.e., struct dir_entry) can point to files or other directories
 ● Each process has its own current directory
 ○ Set to the root directory at startup
 ○ Inherited by the child process started by the exec system call
 ● Implement path resolution
 ○ Update existing syscalls to take path names (absolute or relative) as inputs
 ○ Support special file names ‘.’ and ‘..’

 Subdirectories, Cont’d
 ● Update existing system calls
 ○ Update open to open directories
 ○ Update remove to delete empty directories
 ○ …
 ○ Many more details in Section 5.3.3
 ● More system calls
 ○ Implement chdir, mkdir, readdir, isdir, and inumber
 ○ User programs ls , mkdir , and pwd should work now

 Synchronization
 ● No more global file system lock
 ○ Operations on different buffer cache blocks must be independent
 ○ E.g., process A can read cache block 3 while process B is replacing block 7
 ● Multiple processes must be able to access the same file concurrently
 ○ When the file size is fixed: read can see partial change; writes can interleave
 ○ But extending a file and writing data into the new section must be atomic
 ● Operations on the same directory must be serialized
 ○ Operations on different directories are independent

 Today’s Topics
 ● Overview
 ● Project 4 Requirements
 ○ Buffer Cache
 ○ Indexed and Extensible Files
 ○ Subdirectories
 ○ Synchronization
 ● Getting Started

 Getting Started
 ● New code to work with
 ○ directory.h/c : Performs directory operations using inodes
 ○ inode.h/c : Data structures representing the layout of a file’s data on disk
 ○ file.h/c : Translates file reads and writes to disk sector reads and writes
 ○ Details in Section 5.1.1
 ● Testing file system persistence
 ○ Invoke Pintos a second time to copy files out of the Pintos file system
 ○ Grading scripts check if the contents of the file meet expectation
 ○ Won’t pass the extended file system tests until you support tar
 ○ Details in Section 5.1.2

 Suggested Order of Implementation
 ● Buffer cache
 ○ All tests from project 2 (or project 3) should still pass
 ● Extensible files
 ○ Pass the file growth tests
 ● Subdirectories
 ○ Pass the directory tests
 ○ Can be done more or less in parallel with extensible files
 Think about synchronization from the beginning.

 Questions?

