@ Mandatory access control
@) Labels and lattices
© LOMAC

@ SELinux

1/43

DAC vs. MAC

* Most people are familiar with discretionary access control
(DAC)
- Unix permission bits are an example

- E.g., might set file private so that only group friends can read it:
-rw-r--- 1 dm friends 1254 Feb 11 20:22 private

- Anyone with access to information can further propagate that
information at his/her discretion:
$ Mail sigint@enemy.gov < private

* Mandatory access control (MAC) can restrict propagation

- Security administrator may allow you to read but not disclose file

- Not to be confused with Message Authentication Codes and
Medium Access Control, also both “MAC”

2/43

MAC motivation

* Prevent users from disclosing sensitive information (whether
accidentally or maliciously)

- E.g., classified information requires such protection
* Prevent software from surreptitiously leaking data

- Seemingly innocuous software may steal secrets in the
background

- Such a program is known as a trojan horse
¢ Case study: Symantec AntiVirus 10

- Contained a remote exploit (attacker could run arbitrary code)
- Inherently required access to all of a user’s files to scan them
- Can an OS protect private file contents under such circumstances?

3/43

Example: Anti-virus software
AV AV User Update
Helper Scanner — Daemon
/tmp User Data Virus DB Network

» Scanner - checks for virus signatures

* Update daemon - downloads new virus signatures
* How can OS enforce security without trusting AV software?

- Must not leak contents of your files to network

- Must not tamper with contents of your files
4/43

Example: Anti-virus software

AV AV User Update
Helper Scanner TTY Daemon

/tmp User Data Virus DB Network

* Scanner can write your private data to network

* Prevent scanner from invoking any system call that might
send a network messages?

4/43

Example: Anti-virus software

AV AV User Update
Helper Scanner TTY Daemon

!

/tmp User Data Virus DB Network

¢ Scanner can send private data to update daemon
¢ Update daemon sends data over network
- Can cleverly disguise secrets in order/timing of update requests

¢ Block IPC & shared memory system calls in scanner?

4/43

Example: Anti-virus software

T

AV AV User Update
Helper Scanner TTY Daemon
/tmp User Data Virus DB Network

e Scanner can write data to world-readable file in /tmp
¢ Update daemon later reads and discloses file
* Prevent update daemon from using /tmp?

4/43

Example: Anti-virus software

AV User Update
Helper Scanner Daemon

N

/ tmp User Data Virus DB Network

e Scanner can acquire read locks on virus database

- Encode secret user data by locking various ranges of file
¢ Update daemon decodes data by detecting locks

- Discloses private data over the network

* Have trusted software copy virus DB for scanner?
4/43

The list goes on

* Scanner can call setproctitle with user data
- Update daemon extracts data by running ps
Scanner can bind particular TCP or UDP port numbers
- Sends no network traffic, but detectable by update daemon

Scanner can relay data through another process

- Call ptrace to take over process, then write to network
- Use sendmail, httpd, or portmap to reveal data

Disclose data by modulating free disk space

e Can we ever convince ourselves we’ve covered all possible
communication channels?

- Not without a more systematic approach to the problem

5/43

@ Mandatory access control
@ Labels and lattices
© LOMAC

@ SELinux

6/43

Bell-La Padula model [BL]

* View the system as subjects accessing objects
- Access control: take requests as input and output decisions

* Four modes of access are possible:
- execute - no observation or alteration
- read - observation
- append - alteration
- write - both observation and modification
* An access matrix M encodes permissible access types
- Asin last lecture, subjects are rows, objects are columns
* The current access set, b, is (subj, obj, attr) triples

- Encodes accesses in progress (e.g., open files)
- Ata minimum, (S, 0,A) € b requires A permitted by cell Ms o

7/43

https://www.scs.stanford.edu/21wi-cs140/sched/readings/bell-lapadula.pdf

Security levels

* Asecurity level or label is a pair (c,s) where:
- ¢ = classification - E.g.,
1 = unclassified, 2 = secret, 3 = topsecret
- s = category-set - E.g., Nuclear, Crypto
* (c1,S1) dominates (c,,s;) iffc; > c,ands; O's;
- Ly dominates L, is sometimes written L; o Ly orL; J L,
- Labels then form a lattice (partial order with lub & glb)
* Inverse of dominates relation is can flow to, written C
- L; C L, (“Ly canflowto L,”) means L, dominates [;

* Subjects and objects are assigned security levels
- level(S), level(O) - security level of subject/object
- current-level(S) - subject may operate at lower level
- level(S) bounds current-level(S) (current-level(S) C level(S))
- Since level(S) is max, sometimes called S’s clearance

8/43

Security properties

Two access control properties with respect to labels:
* The simple security or ss-property (DAC):
- Forany (S,0,A) € b, if Aincludes observation, then level(S) must
dominate level(0), i.e., level(O) C level(S)
- E.g., an unclassified user cannot read a top-secret document

* The star security or x-property (MAC):
- If any subject observes O; and modifies O,, then level(0,)
dominates level(0,), i.e., level(0;) C level(O,).
- E.g., no subject can read a top secret file, then write a secret file
- More precisely, given (S, 0,A) € b:
if A= r then level(O) C current-level(S) “noread up”

if A= a then current-level(S) C level(O) “no write down”
if A= w then current-level(S) = level(0)

9/43

Labels form a lattice [Denning]

(top-secret, {Nuclear, Crypto})

/’

(top-secret, {Nuclear})

~

N

(top-secret, {Crypto})

/‘

(top-secret, ()

(secret, {Nuclear})

™~

Ll —_ L2
meansl; C L,

(secret, ()

AN
A}
v
1

* (secret, {Crypto})

I
1

A4

AN
X

v

(unclassified, 0)

10/43

https://www.scs.stanford.edu/21wi-cs140/sched/readings/lattice.pdf

Labels form a lattice [Denning]

(top-secret, {Nuclear, Crypto})
(top-secret, {Nuclear}) (top-secret, {Crypto})

~~~ "4
~

SO
(top-secret, ()

N

-

(secret, {Nuclear}) ;: \’_‘ (secret, {Crypto})

G e

Ll e L2
meansL; C L, (unclassified, 0)

10/43


https://www.scs.stanford.edu/21wi-cs140/sched/readings/lattice.pdf

Labels form a lattice [Denning]

(top-secret, {Nuclear, Crypto})

/’

(top-secret, {Nuclear})

~

4

N

~

(top-secret, {Crypto})

/‘

(top-secret, ()

X

(secret, {Nuclear})

Ll —_ L2
meansl; C L,

4

N

LIS

x“i
(secret, {Crypto})

(unclassified, 0)

10/43


https://www.scs.stanford.edu/21wi-cs140/sched/readings/lattice.pdf

C is transitive

Userg‘ _______________ K- > Internet

Ly Ly IZ Lnet
Lnet

* Transitivity makes it easier to reason about security

* Example: Label user data so it cannot flow to Internet
- Policy holds regardless of what other software does

11/43



C is transitive

LY
b #-%
User data. Internet
Ly

Lbug
Lnet
* Transitivity makes it easier to reason about security

* Example: Label user data so it cannot flow to Internet
- Policy holds regardless of what other software does

e Suppose untrustworthy software reads file

11/43



C is transitive

Lbug ,Z Lnet

L Q@

ety My e

User daﬂ/ " Internet
Ly

Lbug
Lnet
* Transitivity makes it easier to reason about security
* Example: Label user data so it cannot flow to Internet
- Policy holds regardless of what other software does

e Suppose untrustworthy software reads file

- Process labeled Ly,g reads file, so must have Ly £ L,
- If Ly C Lpyg and Ly Z Ly, it follows that Lyyg Z Lnet.

11/43



* Transitivity makes it easier to reason about security

* Example: Label user data so it cannot flow to Internet
- Policy holds regardless of what other software does

* Conversely, a process that can write to the network cannot
read the file

11/43



Straw man MAC implementation

Take an ordinary Unix system

Put labels on all files and directories to track levels

Each user U assigned a security clearance, level(U), on login

Determine current security level dynamically

- When U logs in, start with lowest curent-level

- Increase current-level as higher-level files are observed
(sometimes called a floating label system)

- If U’s level does not dominate current-level, kill program
- Kill program that writes to file if current label can’t flow to file
label

Is this secure?

12/43



No: Covert channels

System rife with covert storage channels
- Low current-level process executes another program
- New program reads sensitive file, gets high current-level
- High program exploits covert channels to pass data to low

E.g., high program inherits file descriptor
- Can pass 4-bytes of information to low program in file offset

Other storage channels:
- Exit value, signals, file locks, terminal escape codes, ...

If we eliminate storage channels, is system secure?

13/43



¢ Example: CPU utilization
- To send a 0 bit, use 100% of CPU in busy-loop
- To send a1 bit, sleep and relinquish CPU
- Repeat to transfer more bits
¢ Example: Resource exhaustion
- High program allocates all physical memory if bit is 1
- If low program slow from paging, knows less memory available

* More examples: Disk head position, processor cache/TLB
polution,...

14/43



Reducing covert channels

* Observation: Covert channels come from sharing
- If you have no shared resources, no covert channels
- Extreme example: Just use two computers (common in DoD)
* Problem: Sharing needed
- E.g., read unclassified data when preparing classified
* In general, can only hope to bound bandwidth of covert
channels
* One approach: Strict partitioning of resources
- Strictly partition and schedule resources between levels
- Occasionally reapportion resources based on usage [Browne]

- Do so infrequently to bound leaked information
- Approach still not so good if many security levels possible

15/43


https://www.scs.stanford.edu/21wi-cs140/sched/readings/mode-security.pdf

Declassification

* Sometimes need to prepare unclassified report from
classified data

* Declassification happens outside of traditional access control
model
- Present file to security officer for downgrade

* Job of declassification often not trivial
- E.g., Microsoft word saves a lot of undo information
- This might be all the secret stuff you cut from document

- Another bad mistake: Redact PDF using black censor bars over or
under text, leaving text selectable (e.g., [Cluley])

16/43


http://nakedsecurity.sophos.com/2011/10/09/how-redact-pdf-air-defence-radar-secrets-spilled/

Biba integrity model [Biba]

* Problem: How to protect integrity

- Suppose text editor gets trojaned, subtly modifies files
- Might mess up attack plans even without leaking anything

* Observation: Integrity is the converse of secrecy

- In secrecy, want to avoid writing to lower-secrecy files

- Inintegrity, want to avoid writing higher-integrity files
¢ Use integrity hierarchy parallel to secrecy one

- Now security level is a (c, i, s) triple, where j = integrity

- <C1,i1,$1> C <C2,i2,$2> if'fC]_ <G and il > iz and 51Csy

- Only trusted users can operate at higher integrity
(which is visually lower in the lattice—opposite of secrecy)

- Ifyou read less authentic data, your current integrity level gets
lowered (putting you up higher in the lattice), and you can no
longer write higher-integrity files

17/43


https://www.scs.stanford.edu/21wi-cs140/sched/readings/biba.pdf

@ Mandatory access control
@) Labels and lattices
©® LOMAC

@ SELinux

18/43



LOMAC [Fraser]

* MAC not widely accepted outside military

LOMAC’s goal: make MAC more palatable
- Stands for Low water Mark Access Control

Concentrates on Integrity
- More important goal for many settings
- E.g.,don’t want viruses tampering with all your files
- Also don’t have to worry as much about covert channels

Provides reasonable defaults (minimally obtrusive)

Has actually had impact

- Originally available for Linux (2.2)
- Now ships with FreeBSD
- Windows introduced similar Mandatory Integrity Control (MIC)

19/43


https://www.scs.stanford.edu/21wi-cs140/sched/readings/lomac.pdf
http://www.freebsd.org/cgi/man.cgi?query=mac_lomac&sektion=4
http://msdn.microsoft.com/en-us/library/bb625964.aspx

LOMAC overview

Subjects are jobs (essentially processes)

- Each subject labeled with an integrity number (e.g., 1, 2)

- Higher numbers mean more integrity
(so unfortunately 2 C 1 by earlier notation)

- Subjects can be reclassified on observation of low-integrity data

Objects (files, pipes, etc.) also labeled w. integrity level
- Object integrity level is fixed and cannot change

Security: Low-integrity subjects cannot write to high integrity
objects

New objects have level of their creator

20/43



LOMAC defaults

o remote
ttyl 2 ethl ——— management

. link
[note: can-flow-to is /bin, /etc, WWW\)
downward; opposite of \ downloads. email /
. . w s i
earlier diagram] untrusted

external net

ttyS0 1 eth) ———
N~

Two levels: 1 and 2
Level 2 (high-integrity) contains:
- FreeBSD/Linux files intact from distro, static web server config
- The console, trusted terminals, trusted network
Level 1 (low-integrity) contains
- NICs connected to Internet, untrusted terminals, etc.
Idea: Suppose worm compromises your web server
- Worm comes from network — level 1
- Won’t be able to muck with system files or web server config

21/43



The self-revocation problem

* Want to integrate with Unix unobtrusively

* Problem: Application expectations

- Kernel access checks usually done at file open time

- Legacy applications don’t pre-declare they will observe
low-integrity data

- An application can “taint” itself unexpectedly, revoking its own
permission to access an object it created

22/43



Self-revocation example

¢ User has high-integrity (level 2) shell

® Runs:ps | grep user
- Pipe created before ps reads low-integrity data
- ps becomes tainted, can no longer write to grep

level 2 level 2 level 2

23/43



Self-revocation example

¢ User has high-integrity (level 2) shell

® Runs:ps | grep user
- Pipe created before ps reads low-integrity data
- ps becomes tainted, can no longer write to grep

level 2 level 2 level 2

/n\

/proc/327
level 1

23/43



Self-revocation example

¢ User has high-integrity (level 2) shell

® Runs:ps | grep user
- Pipe created before ps reads low-integrity data
- ps becomes tainted, can no longer write to grep

level 1 level 2 level 2

23/43



Self-revocation example

¢ User has high-integrity (level 2) shell

® Runs:ps | grep user
- Pipe created before ps reads low-integrity data
- ps becomes tainted, can no longer write to grep

level 1 level 2 level 2

O ==

23/43



Don’t consider pipes to be real objects

Join multiple processes together in a “job”
- Pipe ties processes together in job
- Any processes tied to job when they read or write to pipe
- So will lower integrity of both ps and grep

Similar idea applies to shared memory and IPC

* Summary: LOMAC applies MAC to non-military systems

- But doesn’t allow military-style security policies
(i.e., with secrecy, various categories, etc.)

24/43



@ Mandatory access control
@) Labels and lattices
© LOMAC

@ SELinux

25/43



The flask security architecture

Problem: Military needs adequate secure systems
- How to create civilian demand for systems military can use?

Idea: Separate policy from enforcement mechanism
- Most people will plug in simple DAC policies
- Military can take system off-the-shelf, plug in new policy
* Requires putting adequate hooks in the system

- Each object has manager that guards access to the object
- Conceptually, manager consults security server on each access

Flask security architecture prototyped in fluke
- Now part of SElinux

Following figures from [Spencer]

26/43


https://www.scs.stanford.edu/21wi-cs140/sched/readings/flask.pdf

Client

A\ J |
Object Request I

'd I 'd

Object Manager | Query Security Server
] g : y

[
|

Policy

Enforcement

Security
Policy
Decisionl

_ Y, | _

I
Enforcement | Policy

* Kernel mediates access to objects at “interesting” points
* Kicks decision up to external (user-level) security server

27/43



Challenges

¢ Performance
- Adding hooks on every operation
- People who don’t need security don’t want slowdown
* Using generic enough data structures
- Object managers independent of policy still need to associate
data structures (e.g., labels) with objects
* Revocation
- May interact in a complicated way with any access caching
- Once revocation completes, new policy must be in effect

- Bad guy cannot be allowed to delay revocation completion
indefinitely

28/43



Basic flask concepts

* All objects are labeled with a security context

- Security context is an arbitrary string—opaque to object manager
in the kernel

¢ Labels abbreviated with security IDs (SIDs)

- 32-bitinteger, interpretable only by security server

- Not valid across reboots (can’t store in file system)

- Fixed size makes it easier for object manager to handle
* Queries to server done in terms of SIDs

- Create (client SID, old obj SID, obj type)? — SID
- Allow (client SID, obj SID, perms)? — {yes, no}

29/43



Creating new object

g Y
Client (SID C)
- J I
(C) \y Create Object Request I
e N I
Object Manager : Security Server
Objects ! SID/Context
Obj| o Obj|al | New I Map
217 | ovi |
|
New| SID . .
New SID | ew: Policy Logic
(SID, SID, Obj Type) I New SID|Request Label Rules
N\ / |

Enforcement | Policy

30/43



Security server interface [Loscocco]

int security_compute_av(
security_id_t ssid, security_id_t tsid,
security_class_t tclass, access_vector_t requested,
access_vector_t *allowed, access_vector_t *decided,

__u32 xseqno);
® ssid, tsid - source and target SIDs

* tclass - type of target

- E.g., regularfile, device, raw IP socket, TCP socket, ...
e Server can decide more than it is asked for

- access_vector_t is a bitmask of permissions

- decided can contain more than requested

- Effectively implements decision prefetching
* seqno used for revocation (in a few slides)

31/43


https://www.scs.stanford.edu/21wi-cs140/sched/readings/selinux.pdf

Access vector cache (AVC)

¢ Want to minimize calls into security server
* AVC caches results of previous decisions
- Note: Relies on simple enumerated permissions
* Decisions therefore cannot depend on parameters:
X Andy can authorize expenses up to $999.99
X Bob can run processes at priority 10 or higher
* Decisions also limited to two SIDs

- Complicates file relabeling, which requires 3 checks:
Source Target Permission checked
Subject SID | Old file SID | Relabel-From

Subject SID | New file SID | Relabel-To

Old file SID | New file SID | Transition-From

32/43



AVC in a query

Enforcement

' N
Client (SID C)
- J
|
(C) \[ Modify Object Request I
4 N\ I
. s N
Object Manager : Security Server
Objects
. ! . ! SID/Context
Obj ol . ... .. Obj E] | Map
] %] |
AccessIQuery
AVC ' Policy Logic
Access Check | v o8
(SID, SID, Perms) — |
\ J Access Ruling
N J | . J
|
I

Policy

33/43



AVC interface

int avc_has_perm_ref (
security_id_t ssid, security_id_t tsid,
security_class_t tclass, access_vector_t requested,
avc_entry_ref_t *aeref);

® avc_entry_ref_t points to cached decision

- Contains ssid, tsid, tclass, decision vec., & recently used info
® aeref argumentis hint

- After first call, will be set to relevent AVC entry
- On subsequent calls speeds up lookup

¢ Example: New kernel check when binding a socket:

ret = avc_has_perm_ref (
current->sid, sk->sid, sk->sclass,
SOCKET__BIND, &sk->avcr);

- Now sk->avcr is likely to be speed up next socket op
34/43



Revocation support

* Decisions may be cached in AVC entries

* Decisions may implicitly be cached in migrated permissions
E.g., Unix checks file write permission on open

But may want to disallow future writes even on open file

- Write permission migrated into file descriptor

May also migrate into page tables/TLB w. mmap

- Also may migrate into open sockets/pipes, or operations in
progress

e AVC contains hooks for callbacks

- After revoking in AVC, AVC makes callbacks to revoke migrated
permissions
- seqno can be used to ensure strict ordering of policy changes

35/43



[ Secure File Server | File System

OSKit File ] Filesystem
. Label

PSID/Security
Context Map

Inode/PSID
Map
Directories Ill
and Fi

d Files

—

Inode Table

SID/PSID
Map

Context <—>SID

[ Security Server ] -

* Must label persistent objects in file system

- Persistently map each file/directory to a security context
- Security contexts are variable length, so add level of indirection
- “Persistent SIDs” (PSIDs) - numbers local to each file system

36/43



Transitioning SIDs

* May need to relabel objects
- E.g., files in file system
* Processes may also want to transition their SIDs

- Depends on existing permission, but also on program
- SElinux allows programs to be defined as entrypoints

- Thus, can restrict with which programs users enter a new SID
(similar to the way setuid transitions uid on program entry)

37/43



* In practice, SElinux contexts have four parts:

user role type level

—
system_u: system_r :sshd_t: sO

* useris not Unix userID, e.g.:
$ id
uid=1000(dm) gid=1000(dm) groups=1000(dm) 119(admin)
context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c255
$ /bin/su
Password:
# id
uid=0(root) gid=0(root) groups=0(root)
context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c255
# newrole -r system_r -t sysadm_t
Password:
# id -Z
unconfined_u:system_r:sysadm_t:s0-s0:c0.c255

38/43



Users, roles, types

¢ SElinux user is assigned on login, based on rules

# semanage login -1

Login Name SELinux User MLS/MCS Range
__default__ unconfined_u s0-80:c0.c255
root root_u s0-s0:c0.c255

e Auseris allowed to assume different roles w. newrole

* Butroles are restricted by SElinux (not Unix) users

# semanage user -1

SELinux User ... SELinux Roles
root staff_r sysadm_r system_r
unconfined_u system_r unconfined_r

user_u user_r

39/43



¢ Each role allows only certain types
- Cancheck with seinfo -x --role=name
* Types allow non-hierarchical security policies

- Each subject is assigned a domain, each object a type
- Policy stated in terms of what each domain can to do each type

* Example: Suppose you wish to enforce that each invoice
undergoes the following processing:

- Receipt of the invoice recorded by a clerk
- Receipt of of the merchandise verified by purchase officer
- Payment of invoice approved by supervisor

* Can encode state of invoice by its type
- Set transition rules to enforce all steps of process

40/43



Example: Loading kernel modules

(1) allow sysadm_t insmod_exec_t:file x_file_perms;

(2) allow sysadm_t insmod_t:process transition;

(3) allow insmod_t insmod_exec_t:process { entrypoint execute };
(4) allow insmod_t sysadm_t:fd inherit_fd_perms;

(5) allow insmod_t self:capability sys_module;

(6) allow insmod_t sysadm_t:process sigchld;

1. Allow sysadm domain to run insmod
. Allow sysadm domain to transition to insmod
. Allow insmod program to be entrypoint for insmod domain

. Letinsmod use CAP_SYS_MODULE (load a kernel module)

2

3

4. Letinsmod inherit file descriptors from sysadm

5

6. Letinsmod signal sysadm with SIGCHLD when done

41/43



Policy specification

* Very complicated sets of rules

- E.g.,on Fedora, sesearch --all | wc -1shows73Krules
- Rules based mostly on types

* Allowed/restricted transitions very important

- E.g., init can run initscripts, can run httpd

- Nowadays systemd needs to be able to transition to arbitrary
types

- httpd program has special httpd_exec_t type, allows process to
have httpd_t type.

Might label public_html directories so httpd can access them,
but not access rest of home directory

e Can also use levels to enforce MLS

- E.g., “:s0-80:c0.c255” means process is at sensitivity s0 with no
categories, but has all categories in clearance.

42/43



Policy construction

te-file check- | d-file — semodule_
module package
if-file
fc-file
policy.29 cil-file «——— semodule «+—— pp-file
cil-file
cil-file

* Very low quality tooling around policy construction
- Broken build systems, incompatible kernel policy formats, ...

* Hard to check /sys/fs/selinux/policy matches expectations
- No single-pass decompilation, tools seem to hang on real policies

- Even rebuilding from source is hard (e.g., actual compilation
happens during RPM install, using tons of spec macros)
43/43



	Mandatory access control
	Labels and lattices
	LOMAC
	SELinux

