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Paging

• Use disk to simulate larger virtual than physical mem
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Working set model
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• Disk much, much slower than memory

- Goal: run at memory speed, not disk speed
• 80/20 rule: 20% of memory gets 80% of memory accesses

- Keep the hot 20% in memory
- Keep the cold 80% on disk
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Paging challenges

• How to resume a process a�er a fault?
- Need to save state and resume
- Process may have been in the middle of an instruction!

• What to fetch from disk?
- Just needed page or more?

• What to eject?
- How to allocate physical pages amongst processes?
- Which of a particular process’s pages to keep in memory?
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Re-starting instructions

• Hardware must allow resuming a�er a fault
• Hardware provides kernel with information about page fault

- Faulting virtual address (In %cr2 reg on x86—may see it if you
modify Pintos page_fault and use fault_addr)

- Address of instruction that caused fault
- Was the access a read or write? Was it an instruction fetch?

Was it caused by user access to kernel-only memory?
• Observation: Idempotent instructions are easy to restart

- E.g., simple load or store instruction can be restarted
- Just re-execute any instruction that only accesses one address

• Complex instructions must be re-started, too
- E.g., x86 move string instructions
- Specify src, dst, count in %esi, %edi, %ecx registers
- On fault, registers adjusted to resume where move le� o�
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What to fetch

• Bring in page that caused page fault
• Pre-fetch surrounding pages?

- Reading two disk blocks approximately as fast as reading one
- As long as no track/head switch, seek time dominates
- If application exhibits spacial locality, then big win to store and

read multiple contiguous pages
• Also pre-zero unused pages in idle loop

- Need 0-filled pages for stack, heap, anonymously mmapped
memory

- Zeroing them only on demand is slower
- Hence, many OSes zero freed pages while CPU is idle
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Selecting physical pages

• May need to eject some pages
- More on eviction policy in two slides

• May also have a choice of physical pages
• Direct-mapped physical caches

- Virtual→ Physical mapping can a�ect performance
- In old days: Physical address A conflicts with kC+ A

(where k is any integer, C is cache size)
- Applications can conflict with each other or themselves
- Scientific applications benefit if consecutive virtual pages do not

conflict in the cache
- Many other applications do better with random mapping
- These days: CPUs more sophisticated than kC+ A [Hund]
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Superpages

• How should OS make use of “large” mappings
- x86 has 2/4MiB pages that might be useful
- Alpha has even more choices: 8KiB, 64KiB, 512KiB, 4MiB

• Sometimes more pages in L2 cache than TLB entries
- Don’t want costly TLB misses going to main memory
- Try cpuid tool to find CPU’s TLB configuration on linux. . .

then compare to cache size reported by lscpu
• Or have two-level TLBs

- Want to maximize hit rate in faster L1 TLB
• OS can transparently support superpages [Navarro]

- “Reserve” appropriate physical pages if possible
- Promote contiguous pages to superpages
- Does complicate evicting (esp. dirty pages) – demote
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Straw man: FIFO eviction

• Evict oldest fetched page in system
• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 3 physical pages: 9 page faults
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Belady’s Anomaly

• More physical memory doesn’t always mean fewer faults
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Optimal page replacement

• What is optimal (if you knew the future)?

- Replace page that will not be used for longest period of time
• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• With 4 physical pages:

• What do we do when an OS can’t predict the future?
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LRU page replacement

• Approximate optimal with least recently used
- Because past o�en predicts the future

• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• With 4 physical pages: 8 page faults

• Problem 1: Can be pessimal – example?

- Looping over memory (then want MRU eviction)

• Problem 2: How to implement?
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Straw man LRU implementations

• Stamp PTEs with timer value
- E.g., CPU has cycle counter
- Automatically writes value to PTE on each page access
- Scan page table to find oldest counter value = LRU page
- Problem: Would double memory tra�ic!

• Keep doubly-linked list of pages
- On access remove page, place at tail of list
- Problem: again, very expensive

• What to do?
- Just approximate LRU, don’t try to do it exactly
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Clock algorithm

• Use accessed bit supported by most hardware
- E.g., x86 will write 1 to A bit in PTE on first access
- So�ware managed TLBs like MIPS can do the same

• Do FIFO but skip accessed pages
• Keep pages in circular FIFO list
• Scan:

- page’s A bit = 1, set to 0 & skip
- else if A = 0, evict

• A.k.a. second-chance replacement

A = 0

A = 0

A = 1

A = 0

A = 1

A = 1
A = 0

A = 0

A = 1

A = 0
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Clock algorithm (continued)

• Large memory may be a problem
- Most pages referenced in long interval

• Add a second clock hand
- Two hands move in lockstep
- Leading hand clears A bits
- Trailing hand evicts pages with A=0

A = 0

A = 0

A = 1

A = 0

A = 1

A = 1
A = 0

A = 0

A = 1

A = 0

A = 1

A = 1

• Can also take advantage of hardware Dirty bit
- Each page can be (Unaccessed, Clean), (Unaccessed, Dirty),

(Accessed, Clean), or (Accessed, Dirty)
- Consider clean pages for eviction before dirty

• Or use n-bit accessed count instead just A bit
- On sweep: count = (A << (n− 1)) | (count >> 1)
- Evict page with lowest count

16 / 47



Clock algorithm (continued)

• Large memory may be a problem
- Most pages referenced in long interval

• Add a second clock hand
- Two hands move in lockstep
- Leading hand clears A bits
- Trailing hand evicts pages with A=0

A = 0

A = 0

A = 1

A = 0

A = 1

A = 1
A = 0

A = 0

A = 1

A = 0

A = 0

A = 1

• Can also take advantage of hardware Dirty bit
- Each page can be (Unaccessed, Clean), (Unaccessed, Dirty),

(Accessed, Clean), or (Accessed, Dirty)
- Consider clean pages for eviction before dirty

• Or use n-bit accessed count instead just A bit
- On sweep: count = (A << (n− 1)) | (count >> 1)
- Evict page with lowest count

16 / 47



Clock algorithm (continued)

• Large memory may be a problem
- Most pages referenced in long interval

• Add a second clock hand
- Two hands move in lockstep
- Leading hand clears A bits
- Trailing hand evicts pages with A=0

A = 0

A = 0

A = 1

A = 0

A = 1

A = 1
A = 0

A = 0

A = 1

A = 0

A = 0

A = 1

• Can also take advantage of hardware Dirty bit
- Each page can be (Unaccessed, Clean), (Unaccessed, Dirty),

(Accessed, Clean), or (Accessed, Dirty)
- Consider clean pages for eviction before dirty

• Or use n-bit accessed count instead just A bit
- On sweep: count = (A << (n− 1)) | (count >> 1)
- Evict page with lowest count

16 / 47



Other replacement algorithms

• Random eviction
- Dirt simple to implement
- Not overly horrible (avoids Belady & pathological cases)

• LFU (least frequently used) eviction
- Instead of just A bit, count # times each page accessed
- Least frequently accessed must not be very useful

(or maybe was just brought in and is about to be used)
- Decay usage counts over time (for pages that fall out of usage)

• MFU (most frequently used) algorithm
- Because page with the smallest count was probably just brought

in and has yet to be used
• Neither LFU nor MFU used very commonly
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Naïve paging

• Naïve page replacement: 2 disk I/Os per page fault
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Page bu�ering

• Idea: reduce # of I/Os on the critical path
• Keep pool of free page frames

- On fault, still select victim page to evict
- But read fetched page into already free page
- Can resume execution while writing out victim page
- Then add victim page to free pool

• Can also yank pages back from free pool
- Contains only clean pages, but may still have data
- If page fault on page still in free pool, recycle
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Page allocation

• Allocation can be global or local
• Global allocation doesn’t consider page ownership

- E.g., with LRU, evict least recently used page of any proc
- Works well if P1 needs 20% of memory and P2 needs 70%:

P1 P2

- Doesn’t protect you from memory pigs
(imagine P2 keeps looping through array that is size of mem)

• Local allocation isolates processes (or users)
- Separately determine how much memory each process should

have
- Then use LRU/clock/etc. to determine which pages to evict within

each process
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Thrashing

• Processes require more memory than system has
- Each time one page is brought in, another page, whose contents

will soon be referenced, is thrown out
- Processes will spend all of their time blocked, waiting for pages

to be fetched from disk
- Disk at 100% utilization, but system not getting much useful work

done
• What we wanted: virtual memory the size of disk with access

time the speed of physical memory
• What we got: memory with access time of disk
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Reasons for thrashing

• Access pattern has no temporal locality (past 6= future)

(80/20 rule has broken down)
• Hot memory does not fit in physical memory

P1

memory

• Each process fits individually, but too many for system
P1 P2

P3 P4
P5 P6

P7 P8
P9 P10

P11P12
P13P14

P15P16

memory

- At least this case is possible to address
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Multiprogramming & Thrashing

• Must shed load when thrashing
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Dealing with thrashing

• Approach 1: working set
- Thrashing viewed from a caching perspective: given locality of

reference, how big a cache does the process need?
- Or: how much memory does the process need in order to make

reasonable progress (its working set)?
- Only run processes whose memory requirements can be satisfied

• Approach 2: page fault frequency
- Thrashing viewed as poor ratio of fetch to work
- PFF = page faults / instructions executed
- If PFF rises above threshold, process needs more memory.

Not enough memory on the system? Swap out.
- If PFF sinks below threshold, memory can be taken away
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Transitions

• Working set changes across phases
- Baloons during phase transitions
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Calculating the working set

• Working set: all pages that process will access in next T time
- Can’t calculate without predicting future

• Approximate by assuming past predicts future
- So working set≈ pages accessed in last T time

• Keep idle time for each page
• Periodically scan all resident pages in system

- A bit set? Clear it and clear the page’s idle time
- A bit clear? Add CPU consumed since last scan to idle time
- Working set is pages with idle time < T
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Two-level scheduler

• Divide processes into active & inactive
- Active – means working set resident in memory
- Inactive – working set intentionally not loaded

• Balance set: union of all active working sets
- Must keep balance set smaller than physical memory

• Use long-term scheduler [recall from lecture 4]
- Moves procs active→ inactive until balance set small enough
- Periodically allows inactive to become active
- As working set changes, must update balance set

• Complications
- How to chose idle time threshold T?
- How to pick processes for active set
- How to count shared memory (e.g., libc.so)
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Some complications of paging

• What happens to available memory?
- Some physical memory tied up by kernel VM structures

• What happens to user/kernel crossings?
- More crossings into kernel
- Pointers in syscall arguments must be checked

(can’t just kill process if page not present—might need to page in)
• What happens to IPC?

- Must change hardware address space
- Increases TLB misses
- Context switch flushes TLB entirely on old x86 machines

(But not on MIPS. . .Why?)
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64-bit address spaces

• Recall x86-64 only has 48-bit virtual address space
• What if you want a 64-bit virtual address space?

- Straight hierarchical page tables not e�icient
- But so�ware TLBs (like MIPS) allow other possibilities

• Solution 1: Hashed page tables
- Store Virtual→ Physical translations in hash table
- Table size proportional to physical memory
- Clustering makes this more e�icient [Talluri]

• Solution 2: Guarded page tables [Liedtke]
- Omit intermediary tables with only one entry
- Add predicate in high level tables, stating the only virtual address

range mapped underneath + # bits to skip
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Recall typical virtual address space

kernel
stack

heap
uninitialized data (bss)

initialized data
read-only data

code (text)

breakpoint

• Dynamically allocated memory goes in heap
• Top of heap called breakpoint

- Addresses between breakpoint and stack all invalid
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Early VM system calls

• OS keeps “Breakpoint” – top of heap
- Memory regions between breakpoint & stack fault on access

• char *brk (const char *addr);

- Set and return new value of breakpoint
• char *sbrk (int incr);

- Increment value of the breakpoint & return old value
• Can implement malloc in terms of sbrk

- But hard to “give back” physical memory to system
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Memory mapped files

kernel
stack

heap
uninitialized data (bss)

initialized data
read-only data

code (text)

mmapped
regions

• Other memory objects between heap and stack
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mmap system call

• void *mmap (void *addr, size_t len, int prot,
int flags, int fd, off_t offset)

- Map file specified by fd at virtual address addr
- If addr is NULL, let kernel choose the address

• prot – protection of region
- OR of PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE

• flags

- MAP_ANON – anonymous memory (fd should be -1)
- MAP_PRIVATE – modifications are private
- MAP_SHARED – modifications seen by everyone
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More VM system calls

• int msync(void *addr, size_t len, int flags);

- Flush changes of mmapped file to backing store
• int munmap(void *addr, size_t len)

- Removes memory-mapped object
• int mprotect(void *addr, size_t len, int prot)

- Changes protection on pages to bitwise or of some PROT_. . .values
• int mincore(void *addr, size_t len, char *vec)

- Returns in vec which pages present
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Exposing page faults

struct sigaction {
union { /* signal handler */
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);

};
sigset_t sa_mask; /* signal mask to apply */
int sa_flags;

};

int sigaction (int sig, const struct sigaction *act,
struct sigaction *oact)

• Can specify function to run on SIGSEGV
(Unix signal raised on invalid memory access)
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Example: OpenBSD/i386 siginfo

struct sigcontext {
int sc_gs; int sc_fs; int sc_es; int sc_ds;
int sc_edi; int sc_esi; int sc_ebp; int sc_ebx;
int sc_edx; int sc_ecx; int sc_eax;

int sc_eip; int sc_cs; /* instruction pointer */
int sc_eflags; /* condition codes, etc. */
int sc_esp; int sc_ss; /* stack pointer */

int sc_onstack; /* sigstack state to restore */
int sc_mask; /* signal mask to restore */

int sc_trapno;
int sc_err;

};

• Linux uses ucontext_t – same idea, just uses nested
structures that won’t all fit on one slide
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VM tricks at user level

• Combination of mprotect/sigaction very powerful
- Can use OS VM tricks in user-level programs [Appel]
- E.g., fault, unprotect page, return from signal handler

• Technique used in object-oriented databases
- Bring in objects on demand
- Keep track of which objects may be dirty
- Manage memory as a cache for much larger object DB

• Other interesting applications
- Useful for some garbage collection algorithms
- Snapshot processes (copy on write)
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4.4 BSD VM system [McKusick]1

• Each process has a vmspace structure containing
- vm_map – machine-independent virtual address space
- vm_pmap – machine-dependent data structures
- statistics – e.g., for syscalls like getrusage ()

• vm_map is a linked list of vm_map_entry structs
- vm_map_entry covers contiguous virtual memory
- points to vm_object struct

• vm_object is source of data
- e.g. vnode object for memory mapped file
- points to list of vm_page structs (one per mapped page)
- shadow objects point to other objects for copy on write

1Use link on searchworks page for access
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4.4 BSD VM data structures

vm_map_entry

vm_map_entry

vm_map_entry

vm_map_entry

shadow
object

vm_page

object

vnode/

shadow
object

vm_page

vnode/

object

vnode/

object

vm_page

vm_page

vm_page

vm_page

vm_page

vm_map

vm_pmap

stats

vmspace
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Pmap (machine-dependent) layer

• Pmap layer holds architecture-specific VM code
• VM layer invokes pmap layer

- On page faults to install mappings
- To protect or unmap pages
- To ask for dirty/accessed bits

• Pmap layer is lazy and can discard mappings
- No need to notify VM layer
- Process will fault and VM layer must reinstall mapping

• Pmap handles restrictions imposed by cache
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Example uses

• vm_map_entry structs for a process
- r/o text segment→ file object
- r/w data segment→ shadow object→ file object
- r/w stack→ anonymous object

• New vm_map_entry objects a�er a fork:
- Share text segment directly (read-only)
- Share data through two new shadow objects

(must share pre-fork but not post-fork changes)
- Share stack through two new shadow objects

• Must discard/collapse superfluous shadows
- E.g., when child process exits
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What happens on a fault?

• Traverse vm_map_entry list to get appropriate entry
- No entry? Protection violation? Send process a SIGSEGV

• Traverse list of [shadow] objects
• For each object, traverse vm_page structs
• Found a vm_page for this object?

- If first vm_object in chain, map page
- If read fault, install page read only
- Else if write fault, install copy of page

• Else get page from object
- Page in from file, zero-fill new page, etc.
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Paging in day-to-day use

• Demand paging
- Read pages from vm_object of executable file

• Copy-on-write (fork, mmap, etc.)
- Use shadow objects

• Growing the stack, BSS page allocation
- A bit like copy-on-write for /dev/zero
- Can have a single read-only zero page for reading
- Special-case write handling with pre-zeroed pages

• Shared text, shared libraries
- Share vm_object (shadow will be empty where read-only)

• Shared memory
- Two processes mmap same file, have same vm_object (no shadow)
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