
Final Review Section

Josh Cho

2023-03-17 Fri



Outline

Admin

Memory Allocation

I/O and Disks

File Systems

Advanced FS (L13)

Networking

Protection

Advanced Security

VM



Admin

Time: Wednesday, March 22nd, 3:30pm-6:30pm
Place: Skilling Auditorium
"The exam is open-note–you can bring any printed materials
you want except for the textbook–but you may not use any
electronic devices during the exam."



Agenda
Covered in Midterm Review
▶ Processes and Threads
▶ Virtual Memory
▶ Concurrency
▶ Synchronization
▶ Linking

Today
▶ Memory Allocation
▶ Device I/O
▶ File Systems
▶ Networking
▶ Security
▶ Virtual Machines



Agenda

I will focus on content in lectures that were not covered in
projects (e.g. discussion on indexed files will be short).



Memory Allocation (L10)

minimize fragmentation
▶ different lifetimes
▶ different sizes

allocation strategies (e.g. best fit, first fit)
▶ tradeoffs/pathologies based on workload characteristics

ramps, peaks, and plateaus
▶ e.g. arena allocation



Faults and GC (L10)

fault + resumption = power
▶ level of indirection
▶ e.g. sub-page permissions, vm, concurrent snapshotting,

mmap
garbage collection
▶ e.g. stop & copy without stop gc

▶ mutator runs & collector collects, uses fault +
resumption

▶ dealing with reference counts (e.g. ownership in Rust)



How to communicate with device (L11)

Memory-mapped device registers
▶ regular read/write interface except access device’s

registers directly
Memory-mapped device memory
▶ regular read/write interface except access device’s

internal memory
Special instructions (e.g. inb, outb)
▶ communicates using port numbers

DMA (direct memory access)
▶ CPU offloads read/write of main memory to device/DMA

engine



Device Driver (L11)

1. Polling
▶ loop until some condition X is true

2. Interrupt-driven devices
▶ ask card to interrupt CPU on events



Disk (L11)

▶ remember that placement & ordering of disk requests is
important
▶ sector is the unit of atomicity
▶ sequential I/O is much faster than random
▶ long seeks much slower than short ones
▶ see slides 22-29 in L11 for more details on properties of

disk



Disk Scheduling (L11)

▶ FCFS (First come first serve)
▶ SPTF (Shortest positioning time first)
▶ "Elevator" Scheduling (or SCAN)

▶ seek must be in the same direction



Flash Memory (L11)

▶ flash memory has completely solid state (no moving
parts)
▶ e.g. NAND flash, NOR flash, SLC, MLC
▶ limited # of overwrites

▶ solved with FTL (Flash Translation Layer, see slides
41-45)

▶ limited durability



File Systems (L12)

▶ Contiguous Files (strawman)
▶ Linked Files

▶ FAT (file allocation table)
▶ Key optimization for pointer chasing

▶ Indexed Files
▶ Fixed but large size



Directories (L12)

▶ "Everything is a file." (UNIX)
▶ directories are files with special format

▶ root directory is always inode #2 (0 and 1 are reserved)
▶ each process has a current working directory "cwd"



Hard and Soft Links (L12)

▶ Hard link
▶ allows more than one dir entry to refer to a file

▶ Soft/symbolic link
▶ synonyms for names
▶ inode has special "symlink" bit set and name of link

target



Speeding up FS (L12)

▶ Fragments
▶ allows large block size (smaller file index), but also

solving internal fragmentation
▶ Cylinder clustering

▶ increase spatial locality wrt filesys objects
▶ Free map



Handling Crashes (L13)

▶ must handle shutdown at any point
▶ data loss is okay, but corruption is not!
▶ fsck to fix corruption

▶ e.g. scans over the entire disk looking for orphaned files,
leaked disk blocks



Minimizing Corruption (L13)

▶ Ordered updates
▶ to ensure fsck works
▶ e.g. write new inode to disk before directory entry

▶ Soft updates
▶ update order may create cycles
▶ break cycles by temporarily rolling back all changes that

created the cycle
▶ Journaling

▶ allow operations to act as though they are atomic
▶ use a write-ahead log, then replay the log on crash



Networking (L14)

▶ allow two applications on different machines to
communicate

▶ OS provides abstraction for communication
▶ Handles packaging, sending, unpacking, and delivering of

information
▶ TCP implemented by the kernel to provide a “reliable

pipe” abstraction over an unreliable network
▶ The user-level interface provided is called a socket
▶ Endpoints are named by an IP-address and 16-bit port



Network Layering (L14)

▶ Networking protocols are organized in layers
▶ Application data wrapped in TCP layer

▶ Contains information for implementing reliable delivery
▶ TCP packet wrapped in IP packet

▶ Contains information for routing packets between
networks

▶ IP packet wrapped in link layer protocol (typically
ethernet)
▶ Contains information for delivering packets within a

network
▶ Layers are unwrapped to deliver data to the application



Networking Implementation (L14)

▶ mbuf used to store packet data
▶ Packets made up of multiple mbufs
▶ mbufs are basically linked-lists of small buffers

▶ protosw structure as abstract network protocol interface
▶ Goal: abstract away differences between protocols
▶ In C++, might use virtual functions on a generic socket

struct
▶ Here just put function pointers in protosw structure



Network File Systems (L14)

▶ file system where data is potentially stored on other
machines

▶ vnodes
▶ virtualize the file system
▶ designed for "stateless" operation
▶ vnode operations perform RPC (Remote Procedure

Calls)
▶ request over the network



General Protection (L15)

▶ how do you limit access to resources (files, devices, etc.)?
▶ Access Control Lists

▶ each "object" has an associated list of who can access
"subject"

▶ OS checks that the user is on the list
▶ in Unix, each process has a user id & one or more group

id’s



Basic Security Issues (L15)

▶ setuid: how to allow partial privileges?
▶ e.g. what to allow the user to change their own password

in the password file but don’t want the allow reading the
password file

▶ setuid allows a program to run at with the effective
permissions of the files owner

▶ TOCTOU (Time-of-check, Time-of-use) bug
▶ e.g. first check if you are allowed to execute, then

execute
▶ Problem: attacker can change the state between the

check and the execution



Capability-based Approach (L15)

▶ Confused deputy problem
▶ inheriting multiple privileges

▶ for each process, store a list of objects it can access
▶ process explicitly invokes particular capabilities
▶ solves confused deputy problem



Advanced Security (L16)

▶ Discretionary Access Control (DAC)
▶ Prevents unauthorized access to resource
▶ Does NOT prevent authorized access from leaking

information
▶ e.g. ACL

▶ Mandatory Access Control (MAC)
▶ Prevents both unauthorized access and unauthorized

disclosure
▶ e.g. stop a infected virus scanner from leaking your data



MAC (Mandatory Access Control) (L16)

▶ A security level or label is a pair(c,s) where:
▶ c=classification – e.g., 1=unclassified, 2=secret,

3=topsecret
▶ s=category-set – e.g., Nuclear, Crypto

▶ (c1,s1) dominates (c2,s2) iff c1 ≥ c2 and s1 ⊇ s2
▶ Subjects and objects are assigned security levels
▶ Prevent leaking classified by checking the dominates

relationship
▶ e.g. kill any process that attempts to write to a with

security level (c’,s’) if it has already read from a file with
security level (c,s) where (c,s) dominates (c’,s’)



LOMAC (Low water Mark Access Control) (L16)

▶ LOMAC’s goal: make MAC more palatable
▶ Concentrates on Integrity

▶ More important goal for many settings
▶ E.g., don’t want viruses tampering with all your file

▶ Security: Low-integrity subjects cannot write to high
integrity objects

▶ Subjects are jobs (essentially processes)
▶ Each subject labeled with an integrity number (e.g., 1, 2)
▶ Higher numbers mean more integrity



OS vs. VM (L17)

▶ OS and Virtual Machine allow sharing of hardware with
protections
▶ OS exposes hardware through a process abstraction

▶ Makes finite resources (memory, # CPU cores) appear
much larger

▶ Abstracts hardware to makes applications portable
▶ Protects processes and users from one another

▶ Virtual machine exposes hardware through a hardware
abstraction
▶ Makes hardware resources appear larger or smaller
▶ Allows almost any software {OS + Apps} to run
▶ Protects {OS + Apps} from each other



Virtual Machines (L17)

▶ Benefits
▶ Software compatibility: any OS/App can run (even really

old ones)
▶ Hardware sharing: allow multiple servers to run on the

same hardware
▶ Ways to virtualize

▶ Complete Machine Simulation (too slow)
▶ Basics
▶ Binary Translation
▶ Hardware-assisted virtualization



VMM Basics (L17)

▶ CPU Virtualization
▶ Guest OS to runs in user mode
▶ Trap to VMM when Guest OS does sensitive things

▶ Virtual Memory Virtualization
▶ Guest OS controls Guest Virtual to Guest Physical

Address mapping
▶ VMM controls Guest Physical to Host Physical Mapping

▶ I/O Device Virtualization
▶ Simulate device behavior



Virtual Machine Implementations (L17)

▶ Binary translation
▶ Dynamically rewrite code to replace sensitive instructions

with jumps into the VMM
▶ Most instructions are not sensitive so they can be

translated identically
▶ Hardware-assisted virtualization

▶ Hardware supports “guest mode”
▶ VMM transfers control to guest using new “vmrun”

instruction
▶ Hardware defines VMCB control bits to tell the CPU

which instructions should cause guest mode to “EXIT”



Recap

▶ Processes and Threads
▶ Virtual Memory
▶ Concurrency
▶ Synchronization
▶ Linking
▶ Memory Allocation
▶ Device I/O
▶ File Systems
▶ Networking
▶ Security
▶ Virtual Machines


	Admin
	Memory Allocation
	I/O and Disks
	File Systems
	Advanced FS (L13)
	Networking
	Protection
	Advanced Security
	VM

