
CS 212 Midterm Review
Winter 2023

Admin

Lab 2 was due at 10 am unless a member of your team is here now or you were granted an extension

Midterm

● When?
○ On Monday Feb 13th (1:30 pm PST) at Skilling

● How long?
○ 80 minutes

● What can you use?
○ Open notes
○ No textbook or electronics

● What?
○ Anything from the beginning to Wednesday’s lecture

● How does it factor into your grade?
○ 50% of CS212 grade: max (midterm > 0 ? final : 0, (midterm + final) /2)

Agenda

1. Review of Midterm topics
2. General Tips

Midterm Content

● Threads & Processes
● Concurrency
● Scheduling
● Virtual Memory
● Synchronization
● Linking

Process

- Instance of a program running
- Why?

- Increased CPU utilization
- Reduced latency

- Process control block (PCB)
- Stores state, registers, open files, etc
- Equivalent: struct thread in pintos

Processes Cont’d

Each process has its view of the machine

Process interaction can happen through

- Through files
- Passing messages through kernel
- Sharing a region of physical memory
- Through asynchronous signals and alerts

Threads

- Schedulable execution context
- Why?

- Concurrency
- Multi-core execution

- Kernel threads
- More scheduling control
- Heavy weight
- Everything must go through kernel

- User threads
- Lightweight and flexible
- Less control

Context Switches

- Change which process is running
- How?
- When?

- State change
- Blocking call
- Device Interrupt

- Can preempt when kernel gets control
- Traps: system call, page fault, illegal instruction
- Periodic timer interrupt

- Cost?
- CPU time
- cache, buffer cache, TLB misses

Concurrency

- Data races
- Critical Section

- Mutual Exclusion
- Progress
- Bounded Waiting

- Mutexes
- Pintos uses struct lock

- Condition Variables
- How are they useful in consumer-producer situations?
- Avoid busy waiting

- Semaphores
- How are they different from condition variables?
- Counter

Implementing Synchronization

- Disable Interrupts
- Bad for multiprocessors
- May be efficient for uniprocessors

- Spinlocks
- Wastes CPU

- CPU locks memory system around read and write
- Modern OSes design for multiprocessors

- Need fine-grained locks

Scheduling

- Problem
- Given n > 1 processes, which do we run

- Goals
- Throughput (number of process that complete per unit time)
- Turnaround time (time for each process to complete)
- Response time
- CPU Utilization (fraction of time CPU doing productive work)
- Waiting time

- Context switch costs
- CPU time in kernel
- Indirect costs

Scheduling cont’d

- FCFS
- CPU-bound vs IO-bound jobs

- Shortest job first
- Unfairness and starvation

- Round-robin
- Same-sized jobs

- Priority Scheduling
- MLFWS (multilevel feedback queues)

Multiprocessor Scheduling

- Which CPUs do we run our process on?
- Consider

- Load balancing
- Minimize direct/indirect costs

- Approaches
- Affinity scheduling

- Keep processes on same CPU
- Gang scheduling

- Schedule related processes/threads together

Virtual Memory

How should processes interact with memory?

- Goals
- Each process -> own virtual address space
- Protection, Transparency, No resource exhaustion

- Memory Management Unit (MMU)

Mapping Memory

- Base + bound
- Physical address = virtual address + base

- Segmentation
- Divide memory into segments

- Demand Paging
- Divide memory into small, equal-sized pages
- Each process has its own page table

- Multilevel
- Translation Lookaside Buffer (TLB) caches recently used translations

- Any process can have a page
- What happens during a page fault?
- Eviction?

- LRU: Use past to predict future

Considerations

- Fragmentation
- Inability to use free memory
- External fragmentation

- Many small holes between memory segments
- Internal fragmentation

- Unused memory within allocated segments

- Speed
- Disk much slower than memory
- 80/20 rule

- Hot 20 in memory = “working set”

- Local or global page allocation
- Thrashing

Memory System

- Coherence
- Concerns access to single memory location
- Multiple processes writing to same variable

- Consistency
- Concerns ordering across multiple memory locations

- If x=1,y=2, A reads x,y and B writes x=3,y=4, could A ever see x=1,y=4?
- Sequential consistency matches our intuition

Misc Synchronization

- Multicore cache coherence
- MESI coherence protocol

- Test and set spinlock
- Simple, one memory location
- Lots of traffic over memory interconnect

- Fine-grained locks allow for more parallelism
- Coarse-grained locks are good for global data
- C11 atomics -> direct access to synchronized lower level operations

- Atomic counters
- X-Y fence = operations of type X sequenced before the fence happen before operations of type Y

sequences after the fence
- Read-copy update

- Data is read more often than written
- Relies on dependency ordering in hardware

Considerations

- Amdahl’s law
- Necessary conditions for data race

- Multiple threads access same data
- At least one access is a write

- Necessary conditions for deadlock
- Limited access
- No preemption
- Multiple independent requests
- Circle existing in graph of requests

- Fixing deadlocks
- Restart/examine/partial order/transactions/eliminate one condition

Program Lifecycle

- Source code -> program running
- Compiler/Assembler

- Generate one object file for each source file (main.c -> main.o)
- References to other files are incomplete (printf is in stdio.o)

- Linker
- Combines all object files into executable file

- OS Loader
- Reads executable into memory

Linker

- Goal
- Object files -> executable

- How
- Pass 1

- Coalesce like segments
- Construct global symbol table
- Compute virtual address of each segment

- Pass 2
- Fix addresses of code and data using global symbol table

Dynamic Linking

- Linked at runtime
- Helps with shared libraries
- May lead to runtime failure
- No type checking

Advice

- Old exams won’t necessarily cover the same material or have the same format
- Notice what is/isn’t specified in a question (and state assumptions)

- Sequential consistency

- Rely on notes
- Might be time-constrained
- Create a cheat sheet instead of printing all lecture slides (or print both?)

- Deep understanding of most material >> cursory understanding of all
- When reviewing the material, it may be helpful to think about the labs to connect the

dots (not always the case though, VM hasn’t been covered in labs yet)
- Get a good night’s sleep! You may have to stare at code/memory

models/hexadecimals during the exam

Good luck!
(Don’t panic if things go wrong)

