
CS 112/212 Section 1,
Project 1: Threads
January 13th, 2023

Goal: Extend functionality of the simple
given thread system in Pintos

Requirements

1. Alarm Clock
a. Re-implement timer_sleep() without busy waiting

2. Priority Scheduler
a. Threads set their own priorities, and run according to these priorities

b. Priority donation for locks

3. Advanced Scheduler
a. Thread priorities are calculated by the system, and run according to these priorities

b. No priority donation

4. Design Doc

a. Answer questions regarding your design and implementation for parts 1-3

Grading

● 50% tests, 50% design quality (including your design doc)

Questions?

1. Alarm Clock

Alarm Clock: Overview

● When a thread calls timer_sleep(), it needs to sleep for a given # of ticks

● Currently is implemented by busy waiting

● Your job is to re-implement timer_sleep() without busy waiting

Alarm Clock: Key Questions

● How will you avoid busy waiting?

● How will you keep track of sleeping threads?

● Where in the code will you wake up sleeping threads?

● Check out the design doc to see what race conditions you should watch out for!

Questions?

2. Priority Scheduling

Priority Scheduling: Overview

1. Threads with higher priority should be run first (0 = minimum priority, 63 = maximum

priority)

2. When threads are waiting for a lock, semaphore, or condition variable, the highest

priority waiting thread should be awakened first

3. Implement priority donation for locks to partially fix priority inversion

Priority Scheduling: Overview

1. Threads with higher priority should be run first (0 = minimum priority, 63 = maximum

priority)

2. When threads are waiting for a lock, semaphore, or condition variable, the highest

priority waiting thread should be awakened first

3. Implement priority donation for locks to partially fix priority inversion

The Priority Inversion Problem

Thread L

Original priority: 1

Lock

Holder = NULL

The Priority Inversion Problem

Thread L (RUNNING)

Original priority: 1

Lock

Holder = Thread L

The Priority Inversion Problem

Thread L

Original priority: 1

Thread M

Original priority: 35

Lock

Holder = Thread L

Thread H (RUNNING)

Original priority: 63

The Priority Inversion Problem

Thread L

Original priority: 1

Thread M (RUNNING)

Original priority: 35

Lock

Holder = Thread L

Thread H

Original priority: 63

● Thread H is taken off of CPU,
because it is waiting for Lock

● Thread M will run because it has a
higher priority than Thread L

● Therefore, Thread L will not release
the lock → Thread H will not get to
run

waiting on

Priority Donation: Example 1 (to Fix Priority Inversion)

Thread L (RUNNING)
Donated Priority (from Thread H): 63
Original priority: 1

Thread M

Original priority: 35

Lock

Holder = Thread L

Thread H

Original priority: 63

● When Thread H tries to
acquire Lock, it donates its
priority to Thread L

● Now, Thread L will get to run

waiting on

Priority Donation: Example 1

Thread L

Original priority: 1

Thread M

Original priority: 35

Lock

Holder = Thread H

Thread H

Original priority: 63

● When Thread L releases Lock, it releases
the priority donations as well

● Thread H now acquires Lock

Priority Donation Example 2: Multiple Donations

Thread L (RUNNING)

Original priority: 1

Lock 1

Holder = Thread L

Lock 2

Holder = Thread L

Priority Donation Example 2: Multiple Donations

Thread L (RUNNING)
Donated Priority: 35
Original priority: 1

Lock 1

Holder = Thread L

Lock 2

Holder = Thread L
Thread M

Original priority: 35

Thread M tries to acquire Lock 1, so
donates its priority to Thread L

waiti
ng on

Priority Donation Example 2: Multiple Donations

Thread L (RUNNING)
Donated Priority: 63, 35
Original priority: 1

Lock 1

Holder = Thread L

Lock 2

Holder = Thread L
Thread M

Original priority: 35

Thread H

Original priority: 63

Thread H tries to acquire Lock 2, so
donates its priority to Thread L

waiti
ng on

waiti
ng on

Priority Donation Example 2: Multiple Donations

Thread L (RUNNING)
Donated Priority: 63
Original priority: 1

Lock 1

Holder = Thread M

Lock 2

Holder = Thread L
Thread M

Original priority: 35

Thread H

Original priority: 63

waiti
ng on

Thread L releases Lock 1 and gives
back its donation

Priority Donation Example 2: Multiple Donations

Thread L

Original priority: 1

Lock 1

Holder = Thread M

Lock 2

Holder = Thread H
Thread M

Original priority: 35

Thread H (RUNNING)

Original priority: 63

Thread L releases Lock 2 and gives
back its donation

Priority Donation Example 3: Nested Donations

Thread L

Original priority: 1

Thread M (RUNNING)

Original priority: 35

Lock 1

Holder = Thread L

Lock 2

Holder = Thread M

Priority Donation Example 3: Nested Donations

Thread L (RUNNING)
Donated priority: 35
Original priority: 1

Thread M

Original priority: 35

Lock 1

Holder = Thread L

Lock 2

Holder = Thread M

waiting on

Priority Donation Example 3: Nested Donations

Thread L (RUNNING)
Donated priority: 63
Original priority: 1

Thread M
Donated priority: 63
Original priority: 35

Lock 1

Holder = Thread L

Thread H

Original priority: 63

Lock 2

Holder = Thread M

waiting on

waiting on

Note: You may impose a reasonable
limit on depth of nested priority donation,
such as 8 levels

Priority Scheduler: Key Questions

● What data structure will you use to track priority donations?

● When are priority donations given, and when are they returned?

● How will you ensure that the highest priority thread waiting for a lock, semaphore, or

condition variable is woken up?

Questions?

3. Advanced Scheduler

Advanced Scheduler: Overview
(a multilevel feedback queue scheduler)

Q0

Q63

Q62

T1 T5 T4

T0

T2 T3

. .
 .

● Scheduler chooses a thread from the
highest-priority non-empty queue

● If the highest-priority queue contains
multiple threads, then they run in "round
robin" order

Advanced Scheduler: Overview

● Thread priority is dynamically determined by the scheduler using a formula given
below, recalculated once every fourth timer tick for every thread for which
recent_cpu has changed
○ priority = PRI_MAX - (recent_cpu / 4) - (nice * 2)
○ Detailed explanations of how/when to calculate recent_cpu and nice are here: B. 4.4BSD

Scheduler
○ No priority donation

● We recommend that you have the priority scheduler working, except possibly for
priority donation, before you start work on the advanced scheduler

https://www.scs.stanford.edu/23wi-cs212/pintos/pintos_7.html#SEC131
https://www.scs.stanford.edu/23wi-cs212/pintos/pintos_7.html#SEC131

Advanced Scheduler: Fixed Point Math

● Calculations for the advanced scheduler involve both integers and real numbers

● Floating-point arithmetic in the kernel would complicate and slow the kernel →

Pintos and other real kernels do not support it → calculations on real quantities must

be simulated using integers

● You will have to carefully implement fixed point arithmetic to perform calculations
for your advanced scheduler

Questions?

4. Design Doc

Design Doc

● Read through the design doc first – it will help you understand the important design

problems you need to solve

● Remember: design quality, including the design doc, is 50% of your project grade!!!
Do not wait until the last minute to write it.

Questions?

Getting Started

Getting Started

● Make sure to read the spec thoroughly, including FAQs!
● Design/style is important – make sure to write a good design doc.
● Directories you will be working in: src/threads, src/devices
● A good hint for where to start reading code (summary of reference solution changes from the

spec):

● Check out lib and lib/kernel for useful library routines!

General Advice

● Start early!

● Integrate code changes early and often (do NOT just divide tasks and combine code

last minute!)

● Spend time reading code BEFORE writing any code!

● Pay attention and conform to the style of the given code!!!

