CS 112/212 Section 1, Project 1: Threads

January 13th, 2023

Goal: Extend functionality of the simple given thread system in Pintos

Requirements

- 1. Alarm Clock
 - a. Re-implement timer_sleep() without busy waiting
- 2. Priority Scheduler
 - a. Threads set their own priorities, and run according to these priorities
 - b. Priority donation for locks
- 3. Advanced Scheduler
 - a. Thread priorities are calculated by the system, and run according to these priorities
 - b. No priority donation
- 4. Design Doc
 - a. Answer questions regarding your design and implementation for parts 1-3

Grading

• 50% tests, 50% design quality (including your design doc)

Questions?

1. Alarm Clock

Alarm Clock: Overview

- When a thread calls timer_sleep(), it needs to sleep for a given # of ticks
- Currently is implemented by busy waiting
- Your job is to re-implement timer_sleep() without busy waiting

Alarm Clock: Key Questions

- How will you avoid busy waiting?
- How will you keep track of sleeping threads?
- Where in the code will you wake up sleeping threads?
- Check out the design doc to see what race conditions you should watch out for!

Questions?

2. Priority Scheduling

Priority Scheduling: Overview

- 1. Threads with higher priority should be run first (0 = minimum priority, 63 = maximum priority)
- 2. When threads are waiting for a lock, semaphore, or condition variable, the highest priority waiting thread should be awakened first
- 3. Implement priority donation for locks to partially fix priority inversion

Priority Scheduling: Overview

- 1. Threads with higher priority should be run first (0 = minimum priority, 63 = maximum priority)
- 2. When threads are waiting for a lock, semaphore, or condition variable, the highest priority waiting thread should be awakened first
- 3. Implement priority donation for locks to partially fix priority inversion

The Priority Inversion Problem

Thread L

Original priority: 1

Lock Holder = NULL

The Priority Inversion Problem

The Priority Inversion Problem

Priority Donation: Example 1 (to Fix Priority Inversion)

Priority Donation: Example 1

Thread L

Original priority: 1

Thread M

Original priority: 35

Thread H

Original priority: 63

• Thread H now acquires Lock

Thread M tries to acquire Lock 1, so donates its priority to Thread L

Thread H tries to acquire Lock 2, so donates its priority to Thread L

Thread L releases Lock 1 and gives back its donation

Thread L releases Lock 2 and gives back its donation

Priority Donation Example 3: Nested Donations

Priority Donation Example 3: Nested Donations

Note: You may impose a reasonable limit on depth of nested priority donation, such as 8 levels

Priority Donation Example 3: Nested Donations

Priority Scheduler: Key Questions

- What data structure will you use to track priority donations?
- When are priority donations given, and when are they returned?
- How will you ensure that the highest priority thread waiting for a lock, semaphore, or condition variable is woken up?

Questions?

3. Advanced Scheduler

Advanced Scheduler: Overview (a multilevel feedback queue scheduler)

- Scheduler chooses a thread from the highest-priority non-empty queue
- If the highest-priority queue contains multiple threads, then they run in "round robin" order

Q63	T1	T5	T4		
Q62	Т0				
:					
Q0	T2	Т3			

Advanced Scheduler: Overview

- Thread priority is dynamically determined by the scheduler using a formula given below, recalculated once every fourth timer tick for every thread for which recent_cpu has changed
 - priority = PRI_MAX (recent_cpu / 4) (nice * 2)
 - Detailed explanations of how/when to calculate *recent_cpu* and *nice* are here: <u>B. 4.4BSD</u>
 <u>Scheduler</u>
 - No priority donation
- We recommend that you have the priority scheduler working, except possibly for priority donation, before you start work on the advanced scheduler

Advanced Scheduler: Fixed Point Math

- Calculations for the advanced scheduler involve both integers and real numbers
- Floating-point arithmetic in the kernel would complicate and slow the kernel → Pintos and other real kernels do not support it → calculations on real quantities must be simulated using integers
- You will have to carefully implement fixed point arithmetic to perform calculations for your advanced scheduler

Questions?

Design Doc

- Read through the design doc first it will help you understand the important design problems you need to solve
- Remember: design quality, including the design doc, is 50% of your project grade!!! Do not wait until the last minute to write it.

Questions?

Getting Started

Getting Started

- Make sure to read the spec thoroughly, including FAQs!
- Design/style is important make sure to write a good design doc.
- Directories you will be working in: src/threads, src/devices
- A good hint for where to start reading code (summary of reference solution changes from the spec):

devices/timer.c	42	+++++=		
threads/fixed-point.h	120	+++++++++++++++++++++++++++++++++++++++		
threads/synch.c	88	+++++++++=		
threads/thread.c	196	+++++++++++++++++++++++++++++++++++++++		
threads/thread.h	23	+++		
5 files changed, 440 in	nsertio	ons(+), 29 deletions(-)		

• Check out lib and lib/kernel for useful library routines!

General Advice

- Start early!
- Integrate code changes early and often (do NOT just divide tasks and combine code last minute!)
- Spend time reading code BEFORE writing any code!
- Pay attention and conform to the style of the given code!!!