
Project 4: File Systems

Josh Cho

2023-03-03 Tue



Outline

Motivation

Starting Point

Buffer cache

Indexed & Extensible files

Subdirectories

Synchronization

Suggested Order of Implementation



Motivation

So far, Pintos has operated with a basic file system, with
severe limitations:
▶ No subdirectories
▶ Files can’t grow, fixed file size
▶ File data allocated contiguously, leading to fragmentation
▶ Requires external synchronization

We want to remove these limitations.



Starting Point

Build on top of Project 2 or 3.
▶ All project 2 (or 3) functionality must still work.
▶ If you build on project 3, edit filesys/Make.vars to

enable VM.
▶ Enabling VM gives you up to 5% extra credit.



Overview

Reference solution builds on top of Project 3



Tips

▶ Reuse existing systems. Look into fsutil.c/h and
previous projects.

▶ Make sure to review your grading reports for Project 1
and Project 2.

▶ Design and style matters. At this point you should have a
sense of what is elegant & inelegant design of systems
(and how the different parts work together).

▶ Do a lot of design work beforehand



Requirements

▶ Buffer cache (tip: integrate the cache into design early)
▶ Indexed & Extensible files
▶ Subdirectories
▶ Synchronization



Buffer cache

Implement cache for file blocks. When a file block is read or
written, check the cache:
▶ If present, use the cache.
▶ If not present, fetch blocks from disk.

Cache size is ≤ 64 sectors (BLOCK_SECTOR_SIZE: 512 bytes).
▶ This cache size includes inode and file metadata



Buffer cache

▶ To get started, remove the "bounce buffer" in
inode_{read, write}_at().

▶ Cache replacement policy must be at least as good as the
clock algorithm.



Buffer cache

We want a cache that is:
▶ Write-behind

▶ keep dirty blocks in cache and write to disk upon cache
eviction

▶ write to disk (flush) periodically
▶ also flush on filesys_done

▶ Read-ahead
▶ automatically fetch the next block of file
▶ do this asynchronously



Indexed & Extensible files

Stored contiguously currently. Modify this struct to use index
structure.

/* On-disk inode.
Must be exactly BLOCK_SECTOR_SIZE bytes long. */

struct inode_disk
{

block_sector_t sectors[SECTOR_CNT];
enum inode_type type;
off_t length; /* File size in bytes. */
unsigned magic;

};



Indexed files

Implement direct/indirect/doubly indirect indexing. This
should enable files of size up to entire file partition (8MB).



Extensible files

Implement stack growth.
▶ Files start with size 0
▶ When write is made past EOF, grow. Files can grow to

size up to entire file partition.
▶ Zero out all bytes between old EOF and new write.
▶ (Optional) Support "sparse" files where zero blocks are

allocated lazily.



Subdirectories

Implement hierarchical namespace.
▶ e.g. /foo/bar/foobar.txt
▶ Directory entries should point to files or other directories
▶ Maintain current directory for each process

▶ Set to root on startup
▶ Child processes via exec inherit current directory of

parent



Subdirectories: Syscalls

1. Path resolution: support both absolute and relative paths
▶ Support "." and ".."
▶ No limit on path length, but optional 14-character limit

on filenames
2. Update existing system calls to support directories

▶ open() opens a directory
▶ close() closes a directory
▶ remove() deletes any empty directory (except root)

3. Implement new system calls
▶ chdir, mkdir, readdir, isdir, inumber
▶ See 5.3.3 Subdirectories for more details



Synchronization

Remove need for external synchronization.
▶ No more global filesys lock

Implement finer-grained synchronization strategy.
▶ Operations on independent entities should be independent



Synchronization

1. Operations on different cache blocks should be
independent.

2. Multiple processes must be able to access a single file at
once.
▶ Multiple reads should not wait on each other
▶ Multiple writes without file extension should not wait on

each other (data may be interleaved)
▶ A read of a file by one process when the file is being

written by another is allowed to show none, all, or part of
the write

▶ Writes that extend file must be atomic.



Synchronization

Operations on different directories must be independent.
▶ Operations on same directory may wait for one another

▶ Note this does NOT mean operations on the files of the
directory!



Suggested Order of Implementation

1. Buffer cache
▶ After implementation, all Project 2 (or if enabled, 3)

tests should pass
2. Indexed & Extensible files

▶ After implementation, all file growth tests (grow-)
should pass

3. Subdirectories
▶ After implementation, all directory tests (dir-) should

pass



Debugging Tips

1. Isolate the problem
2. Don’t be afraid to change different parts of the system
3. Return with a fresh perspective



Questions

Any questions?


	Motivation
	Starting Point
	Buffer cache
	Indexed & Extensible files
	Subdirectories
	Synchronization
	Suggested Order of Implementation

