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Old-school memory and I/O buses

I/O bus
1880Mbps 1056Mbps

Crossbar

Memory

CPU

• CPU accesses physical memory over a bus
• Devices access memory over I/O bus with DMA
• Devices can appear to be a region of memory
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Realistic ~2005 PC architecture
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Modern PC architecture (intel)
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[intel]

DMI

PCI express
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CPU now entirely subsumes IOH [intel]
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AMD EPYC is essentially an SoC

• 4094 pins: both memory controller and 128 lanes PCIe
directly on chip!
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What is memory?

• SRAM – Static RAM
- Like two NOT gates circularly wired input-to-output
- 4–6 transistors per bit, actively holds its value
- Very fast, used to cache slower memory

• DRAM – Dynamic RAM
- A capacitor + gate, holds charge to indicate bit value
- 1 transistor per bit – extremely dense storage
- Charge leaks – need slow comparator to decide if bit 1 or 0
- Must re-write charge after reading, and periodically refresh

• VRAM – “Video RAM”
- Dual ported DRAM, can write while someone else reads
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What is I/O bus? E.g., PCI
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Communicating with a device

• Memory-mapped device registers
- Certain physical addresses correspond to device registers
- Load/store gets status/sends instructions – not real memory

• Device memory – device may have memory OS can write to
directly on other side of I/O bus

• Special I/O instructions
- Some CPUs (e.g., x86) have special I/O instructions
- Like load & store, but asserts special I/O pin on CPU
- OS can allow user-mode access to I/O ports at byte granularity

• DMA – place instructions to card in main memory
- Typically then need to “poke” card by writing to register
- Overlaps unrelated computation with moving data over (typically

slower than memory) I/O bus
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x86 I/O instructions

static inline uint8_t
inb (uint16_t port)
{
uint8_t data;
asm volatile ("inb %w1, %b0" : "=a" (data) : "Nd" (port));
return data;

}

static inline void
outb (uint16_t port, uint8_t data)
{
asm volatile ("outb %b0, %w1" : : "a" (data), "Nd" (port));

}

static inline void
insw (uint16_t port, void *addr, size_t cnt)
{
asm volatile ("rep insw" : "+D" (addr), "+c" (cnt)

: "d" (port) : "memory");
}
...
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Example: parallel port (LPT1)
• Simple hardware has three control registers:

D7 D6 D5 D4 D3 D2 D1 D0
read/write data register (port 0x378)

BSY ACK PAP OFON ERR – – –
read-only status register (port 0x379)

– – – IRQ DSL INI ALF STR [Messmer]
read/write control register (port 0x37a)

• Every bit except IRQ corresponds to a pin on 25-pin connector:

1     
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18
19
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21
22
23
24
25 OFON

PAP
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ACK
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7
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Ground

DSL
INI

ERR
ALF
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Writing a byte to a parallel port [osdev]

void
sendbyte(uint8_t byte)
{
/* Wait until BSY bit is 1. */
while ((inb (0x379) & 0x80) == 0)
delay ();

/* Put the byte we wish to send on pins D7-0. */
outb (0x378, byte);

/* Pulse STR (strobe) line to inform the printer
* that a byte is available */
uint8_t ctrlval = inb (0x37a);
outb (0x37a, ctrlval | 0x01);
delay ();
outb (0x37a, ctrlval);

}
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IDE disk driver
void IDE_ReadSector(int disk, int off, void *buf)
{
outb(0x1F6, disk == 0 ? 0xE0 : 0xF0); // Select Drive
IDEWait();
outb(0x1F2, 1); // Read length (1 sector = 512 B)
outb(0x1F3, off); // LBA low
outb(0x1F4, off >> 8); // LBA mid
outb(0x1F5, off >> 16); // LBA high
outb(0x1F7, 0x20); // Read command
insw(0x1F0, buf, 256); // Read 256 words

}

void IDEWait()
{
// Discard status 4 times
inb(0x1F7); inb(0x1F7);
inb(0x1F7); inb(0x1F7);
// Wait for status BUSY flag to clear
while ((inb(0x1F7) & 0x80) != 0)
;
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Memory-mapped IO

• in/out instructions slow and clunky
- Instruction format restricts what registers you can use
- Only allows 216 different port numbers
- Per-port access control turns out not to be useful

(any port access allows you to disable all interrupts)
• Devices can achieve same effect with physical addresses, e.g.:

volatile int32_t *device_control
= (int32_t *) (0xc0100 + PHYS_BASE);

*device_control = 0x80;
int32_t status = *device_control;

- OS must map physical to virtual addresses, ensure non-cachable
• Assign physical addresses at boot to avoid conflicts. PCI:

- Slow/clunky way to access configuration registers on device
- Use that to assign ranges of physical addresses to device
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DMA buffers

Buffer
descriptor
list

Memory buffers

100

1400

1500

1500

1500

…

• Idea: only use CPU to transfer control requests, not data
• Include list of buffer locations in main memory

- Device reads list and accesses buffers through DMA
- Descriptions sometimes allow for scatter/gather I/O
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Example: Network Interface Card
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st
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Adaptor

Network link
Bus

interface
Link

interface

• Link interface talks to wire/fiber/antenna
- Typically does framing, link-layer CRC

• FIFOs on card provide small amount of buffering
• Bus interface logic uses DMA to move packets to and from

buffers in main memory
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Example: IDE disk read w. DMA
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Driver architecture

• Device driver provides several entry points to kernel
- Reset, ioctl, output, interrupt, read, write, strategy . . .

• How should driver synchronize with card?
- E.g., Need to know when transmit buffers free or packets arrive
- Need to know when disk request complete

• One approach: Polling
- Sent a packet? Loop asking card when buffer is free
- Waiting to receive? Keep asking card if it has packet
- Disk I/O? Keep looping until disk ready bit set

• Disadvantages of polling?

- Can’t use CPU for anything else while polling
- Schedule poll in future? High latency to receive packet or process

disk block bad for response time

19 / 45

Driver architecture

• Device driver provides several entry points to kernel
- Reset, ioctl, output, interrupt, read, write, strategy . . .

• How should driver synchronize with card?
- E.g., Need to know when transmit buffers free or packets arrive
- Need to know when disk request complete

• One approach: Polling
- Sent a packet? Loop asking card when buffer is free
- Waiting to receive? Keep asking card if it has packet
- Disk I/O? Keep looping until disk ready bit set

• Disadvantages of polling?
- Can’t use CPU for anything else while polling
- Schedule poll in future? High latency to receive packet or process

disk block bad for response time
19 / 45

Interrupt driven devices

• Instead, ask card to interrupt CPU on events
- Interrupt handler runs at high priority
- Asks card what happened (xmit buffer free, new packet)
- This is what most general-purpose OSes do

• Bad under high network packet arrival rate
- Packets can arrive faster than OS can process them
- Interrupts are expensive
- Interrupt handlers have high priority
- In worst case, can spend 100% of time in interrupt handler and

never make any progress – receive livelock
- Best: Adaptive switching between interrupts and polling

• Very good for disk requests
• Rest of today: Disks (network devices in 3 lectures)
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Anatomy of a disk [Ruemmler]

• Stack of magnetic platters
- Rotate together on a central spindle @3,600-15,000 RPM
- Drive speed drifts slowly over time
- Can’t predict rotational position after 100-200 revolutions

• Disk arm assembly
- Arms rotate around pivot, all move together
- Pivot offers some resistance to linear shocks
- One disk head per recording surface (2×platters)
- Sensitive to motion and vibration [Gregg] (demo on youtube)
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Disk
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Disk
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Disk
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Storage on a magnetic platter

• Platters divided into concentric tracks
• A stack of tracks of fixed radius is a cylinder
• Heads record and sense data along cylinders

- Significant fractions of encoded stream for error correction
• Generally only one head active at a time

- Disks usually have one set of read-write circuitry
- Must worry about cross-talk between channels
- Hard to keep multiple heads exactly aligned
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Cylinders, tracks, & sectors
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Disk positioning system

• Move head to specific track and keep it there
- Resist physical shocks, imperfect tracks, etc.

• A seek consists of up to four phases:
- speedup–accelerate arm to max speed or half way point
- coast–at max speed (for long seeks)
- slowdown–stops arm near destination
- settle–adjusts head to actual desired track

• Very short seeks dominated by settle time (∼1 ms)
• Short (200-400 cyl.) seeks dominated by speedup

- Accelerations of 40g
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Seek details

• Head switches comparable to short seeks
- May also require head adjustment
- Settles take longer for writes than for reads – Why?

If read strays from track, catch error with checksum, retry
If write strays, you’ve just clobbered some other track

• Disk keeps table of pivot motor power
- Maps seek distance to power and time
- Disk interpolates over entries in table
- Table set by periodic “thermal recalibration”
- But, e.g., ∼500 ms recalibration every ∼25 min bad for AV

• “Average seek time” quoted can be many things
- Time to seek 1/3 disk, 1/3 time to seek whole disk
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Sectors

• Disk interface presents linear array of sectors
- Historically 512 B, but 4 KiB in “advanced format” disks
- Written atomically (even if there is a power failure)

• Disk maps logical sector #s to physical sectors
- Zoning–puts more sectors on longer tracks
- Track skewing–sector 0 pos. varies by track (why?)
- Sparing–flawed sectors remapped elsewhere

• OS doesn’t know logical to physical sector mapping
- Larger logical sector # difference means longer seek time
- Highly non-linear relationship (and depends on zone)
- OS has no info on rotational positions
- Can empirically build table to estimate times
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Disk interface

• Controls hardware, mediates access
• Computer, disk often connected by bus (e.g., ATA, SCSI, SATA)

- Multiple devices may contentd for bus
• Possible disk/interface features:
• Disconnect from bus during requests
• Command queuing: Give disk multiple requests

- Disk can schedule them using rotational information
• Disk cache used for read-ahead

- Otherwise, sequential reads would incur whole revolution
- Cross track boundaries? Can’t stop a head-switch

• Some disks support write caching
- But data not stable—not suitable for all requests
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Disk performance

• Placement & ordering of requests a huge issue
- Sequential I/O much, much faster than random
- Long seeks much slower than short ones
- Power might fail any time, leaving inconsistent state

• Must be careful about order for crashes
- More on this in next two lectures

• Try to achieve contiguous accesses where possible
- E.g., make big chunks of individual files contiguous

• Try to order requests to minimize seek times
- OS can only do this if it has multiple requests to order
- Requires disk I/O concurrency
- High-performance apps try to maximize I/O concurrency

• Next: How to schedule concurrent requests
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Scheduling: FCFS

• “First Come First Served”
- Process disk requests in the order they are received

• Advantages

- Easy to implement
- Good fairness

• Disadvantages

- Cannot exploit request locality
- Increases average latency, decreasing throughput
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FCFS example

33 / 45

Shortest positioning time first (SPTF)

• Shortest positioning time first (SPTF)
- Always pick request with shortest seek time

• Also called Shortest Seek Time First (SSTF)
• Advantages

- Exploits locality of disk requests
- Higher throughput

• Disadvantages

- Starvation
- Don’t always know what request will be fastest

• Improvement?

- Give older requests higher priority
- Adjust “effective” seek time with weighting factor:

Teff = Tpos − W · Twait
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• Also called Shortest Seek Time First (SSTF)
• Advantages

- Exploits locality of disk requests
- Higher throughput
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- Don’t always know what request will be fastest
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SPTF example
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“Elevator” scheduling (SCAN)

• Sweep across disk, servicing all requests passed
- Like SPTF, but next seek must be in same direction
- Switch directions only if no further requests

• Advantages

- Takes advantage of locality
- Bounded waiting

• Disadvantages

- Cylinders in the middle get better service
- Might miss locality SPTF could exploit

• CSCAN: Only sweep in one direction
Very commonly used algorithm in Unix

• Also called LOOK/CLOOK in textbook
- (Textbook uses [C]SCAN to mean scan entire disk uselessly)
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CSCAN example

37 / 45

VSCAN(r)

• Continuum between SPTF and SCAN
- Like SPTF, but slightly changes “effective” positioning time

If request in same direction as previous seek: Teff = Tpos
Otherwise: Teff = Tpos + r · Tmax

- when r = 0, get SPTF, when r = 1, get SCAN
- E.g., r = 0.2 works well

• Advantages and disadvantages
- Those of SPTF and SCAN, depending on how r is set

• See [Worthington] for good description and evaluation of
various disk scheduling algorithms
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Flash memory

• Today, people increasingly using flash memory
• Completely solid state (no moving parts)

- Remembers data by storing charge
- Lower power consumption and heat
- No mechanical seek times to worry about

• Limited # overwrites possible
- Blocks wear out after 10,000 (MLC) – 100,000 (SLC) erases
- Requires flash translation layer (FTL) to provide wear leveling, so

repeated writes to logical block don’t wear out physical block
- FTL can seriously impact performance
- In particular, random writes very expensive [Birrell]

• Limited durability
- Charge wears out over time
- Turn off device for a year, you can potentially lose data
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Types of flash memory

• NAND flash (most prevalent for storage)
- Higher density (most used for storage)
- Faster erase and write
- More errors internally, so need error correction

• NOR flash
- Faster reads in smaller data units
- Can execute code straight out of NOR flash
- Significantly slower erases

• Single-level cell (SLC) vs. Multi-level cell (MLC)
- MLC encodes multiple (two) bits in voltage level
- MLC slower to write than SLC
- MLC has lower durability (bits decay faster)

• Nowadays, most flash drives are TLC (or even QLC)
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NAND Flash Overview

• Flash device has 2112-byte pages
- 2048 bytes of data + 64 bytes metadata & ECC

• Blocks contain 64 (SLC) or 128 (MLC) pages
• Blocks segregated into 2–4 planes

- All planes contend for same package pins
- But can access their blocks in parallel to overlap latencies

• Can read one page at a time
- Takes 25 µsec + time to get data off chip

• Must erasewhole block before programing
- Erase sets all bits to 1—very expensive (2 msec)
- Programming pre-erased block requires moving data to internal

buffer, then 200 (SLC)–800 (MLC) µsec
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Flash Characteristics [Caulfield’09]

Parameter SLC MLC
Density Per Die (GB) 4 8

Page Size (Bytes) 2048+32 2048+64
Block Size (Pages) 64 128
Read Latency (µs) 25 25
Write Latency (µs) 200 800
Erase Latency (µs) 2000 2000

40MHz, 16-bit bus Read b/w (MB/s) 75.8 75.8
Program b/w (MB/s) 20.1 5.0

133MHz Read b/w (MB/s) 126.4 126.4
Program b/w (MB/s) 20.1 5.0
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FTL straw man: in-memory map
• Keep in-memory map of logical → physical page #

- On write, pick unused page, mark previous physical page free
- Repeated writes of a logical page will hit different physical pages

• Store map in device memory, but must rebuild on power-up
• Idea: Put header on each page, scan all headers on power-up:
⟨logical page #,Allocated bit,Written bit,Obsolete bit⟩

- A-W-O = 1-1-1: free page
- A-W-O = 0-1-1: about to write page
- A-W-O = 0-0-1: successfully written page
- A-W-O = 0-0-0: obsolete page (can erase block without copying)

• Why the 0-1-1 state?

After power failure partly written ̸= free

• What’s wrong still?

- FTL requires a lot of RAM on device, plus time to scan all headers
- Some blocks still get erased more than others (w. long-lived data)
- Blocks with obsolete pages may also contain live pages
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More realistic FTL

• Store the FTL map in the flash device itself
- Add one header bit to distinguish map page from data page
- Logical read may miss map cache, require 2 flash reads
- Keep smaller “map-map” in memory, cache some map pages

• Must garbage-collect blocks with obsolete pages
- Copy live pages to a new block, erase old block
- Always need free blocks, can’t use 100% physical storage

• Problem: write amplification
- Small random writes punch holes in many blocks
- If small writes require garbage-collecting a 90%-full blocks

. . . means you are writing 10× more physical than logical data!
• Must also periodically re-write even blocks w/o holes

- Wear leveling ensures active blocks don’t wear out first
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