
Midterm results

0

5

10

15

20

25

0–9 10–19 20–29 30–39 40–49 50–59 60–69 70–79 80–89 90–99 100

• Mean: 42.21, median: 42.5
1 / 42



Midterm results

0%

20%

40%

60%

80%

100%

0 20 60 80 10042.5

• Systems students should insist on a CDF!

1 / 42



Administrivia

• Recall we will have a resurrection final
- Don’t panic if you didn’t do well on midterm
- But make sure you understand all the answers
- There may be questions on same topics on the final

• . . .but only if you got > 0 on the midterm
- Consider withdrawing if you did not take midterm

• Lab 3 section Friday

2 / 42



Outline

1 Malloc and fragmentation

2 Exploiting program behavior

3 Allocator designs

4 User-level MMU tricks

5 Garbage collection

3 / 42



Dynamic memory allocation

• Almost every useful program uses it
- Gives wonderful functionality benefits

▷ Don’t have to statically specify complex data structures
▷ Can have data grow as a function of input size
▷ Allows recursive procedures (stack growth)

- But, can have a huge impact on performance

• Today: how to implement it
- Lecture based on [Wilson]

• Some interesting facts:
- Two or three line code change can have huge, non-obvious impact

on how well allocator works (examples to come)
- Proven: impossible to construct an "always good" allocator
- Surprising result: memory management still poorly understood

4 / 42

https://www.scs.stanford.edu/23wi-cs212/sched/readings/wilson.pdf


Why is it hard?

• Satisfy arbitrary set of allocation and frees.
• Easy without free: set a pointer to the beginning of some big

chunk of memory (“heap”) and increment on each allocation:

heap (free memory)
allocation

current free position

• Problem: free creates holes (“fragmentation”)
Result? Lots of free space but cannot satisfy request!

5 / 42



More abstractly

• What an allocator must do? NULL
freelist

- Track which parts of memory in use, which parts are free
- Ideal: no wasted space, no time overhead

• What the allocator cannot do?
- Control order of the number and size of requested blocks
- Know the number, size, or lifetime of future allocations
- Move allocated regions (bad placement decisions permanent)

malloc(20)? 20 10 20 10 20

• The core fight: minimize fragmentation
- App frees blocks in any order, creating holes in “heap”
- Holes too small? cannot satisfy future requests

6 / 42



What is fragmentation really?

• Inability to use memory that is free
• Two factors required for fragmentation

1. Different lifetimes—if adjacent objects die at different times, then
fragmentation:

▷ If all objects die at the same time, then no fragmentation:

2. Different sizes: If all requests the same size, then no fragmentation
(that’s why no external fragmentation with paging):

7 / 42



Important decisions

• Placement choice: where in free memory to put a requested
block?

- Freedom: can select any memory in the heap
- Ideal: put block where it won’t cause fragmentation later

(impossible in general: requires future knowledge)
• Split free blocks to satisfy smaller requests?

- Fights internal fragmentation
- Freedom: can choose any larger block to split
- One way: choose block with smallest remainder (best fit)

• Coalescing free blocks to yield larger blocks

20 10 30 30 30

- Freedom: when to coalesce (deferring can save work)
- Fights external fragmentation

8 / 42



Impossible to “solve” fragmentation

• If you read allocation papers to find the best allocator
- All discussions revolve around tradeoffs
- The reason? There cannot be a best allocator

• Theoretical result:
- For any possible allocation algorithm, there exist streams of

allocation and deallocation requests that defeat the allocator and
force it into severe fragmentation.

• How much fragmentation should we tolerate?
- LetM = bytes of live data, nmin = smallest allocation, nmax = largest –

How much gross memory required?
- Bad allocator: M · (nmax/nmin)

▷ E.g., only ever use a memory location for a single size
▷ E.g., make all allocations of size nmax regardless of requested size

- Good allocator: ∼ M · log(nmax/nmin)

9 / 42



Pathological examples

• Suppose heap currently has 7 20-byte chunks

20 20 20 20 20 20 20

- What’s a bad stream of frees and then allocates?

- Free every other chunk, then alloc 21 bytes

• Given a 128-byte limit on malloced space
- What’s a really bad combination of mallocs & frees?

- Malloc 128 1-byte chunks, free every other
- Malloc 32 2-byte chunks, free every other (1- & 2-byte) chunk
- Malloc 16 4-byte chunks, free every other chunk. . .

• Next: two allocators (best fit, first fit) that, in practice, work
pretty well

- “pretty well” = ∼20% fragmentation under many workloads

10 / 42



Pathological examples

• Suppose heap currently has 7 20-byte chunks

20 20 20 20 20 20 20

- What’s a bad stream of frees and then allocates?
- Free every other chunk, then alloc 21 bytes

• Given a 128-byte limit on malloced space
- What’s a really bad combination of mallocs & frees?

- Malloc 128 1-byte chunks, free every other
- Malloc 32 2-byte chunks, free every other (1- & 2-byte) chunk
- Malloc 16 4-byte chunks, free every other chunk. . .

• Next: two allocators (best fit, first fit) that, in practice, work
pretty well

- “pretty well” = ∼20% fragmentation under many workloads

10 / 42



Pathological examples

• Suppose heap currently has 7 20-byte chunks

20 20 20 20 20 20 20

- What’s a bad stream of frees and then allocates?
- Free every other chunk, then alloc 21 bytes

• Given a 128-byte limit on malloced space
- What’s a really bad combination of mallocs & frees?
- Malloc 128 1-byte chunks, free every other
- Malloc 32 2-byte chunks, free every other (1- & 2-byte) chunk
- Malloc 16 4-byte chunks, free every other chunk. . .

• Next: two allocators (best fit, first fit) that, in practice, work
pretty well

- “pretty well” = ∼20% fragmentation under many workloads

10 / 42



Best fit

• Strategy: minimize fragmentation by allocating space from
block that leaves smallest fragment

- Data structure: heap is a list of free blocks, each has a header
holding block size and a pointer to the next block

20 30 30 37

- Code: Search freelist for block closest in size to the request.
(Exact match is ideal)

- During free (usually) coalesce adjacent blocks

• Potential problem: Sawdust
- Remainder so small that over time left with “sawdust” everywhere
- Fortunately not a problem in practice

11 / 42



Best fit gone wrong

• Simple bad case: allocate n,m (n < m) in alternating orders,
free all the ns, then try to allocate an n+ 1

• Example: start with 99 bytes of memory
- alloc 19, 21, 19, 21, 19

19 21 19 21 19

- free 19, 19, 19:
19 21 19 21 19

- alloc 20? Fails! (wasted space = 57 bytes)

• However, doesn’t seem to happen in practice

12 / 42



First fit

• Strategy: pick the first block that fits
- Data structure: free list, sorted LIFO, FIFO, or by address
- Code: scan list, take the first one

• LIFO: put free object on front of list.
- Simple, but causes higher fragmentation
- Potentially good for cache locality

• Address sort: order free blocks by address
- Makes coalescing easy (just check if next block is free)
- Also preserves empty/idle space (locality good when paging)

• FIFO: put free object at end of list
- Gives similar fragmentation as address sort, but unclear why

13 / 42



Subtle pathology: LIFO FF

• Storage management example of subtle impact of simple
decisions

• LIFO first fit seems good:
- Put object on front of list (cheap), hope same size used again

(cheap + good locality)

• But, has big problems for simple allocation patterns:
- E.g., repeatedly intermix short-lived 2n-byte allocations, with

long-lived (n+ 1)-byte allocations
- Each time large object freed, a small chunk will be quickly taken,

leaving useless fragment. Pathological fragmentation

14 / 42



First fit: Nuances

• First fit sorted by address order, in practice:
- Blocks at front preferentially split, ones at back only split when no

larger one found before them
- Result? Seems to roughly sort free list by size
- So? Makes first fit operationally similar to best fit: a first fit of a

sorted list = best fit!

• Problem: sawdust at beginning of the list
- Sorting of list forces a large requests to skip over many small

blocks. Need to use a scalable heap organization

• Suppose memory has free blocks: 20 15

- If allocation ops are 10 then 20, best fit wins
- When is FF better than best fit?

- Suppose allocation ops are 8, 12, then 12 =⇒ first fit wins

15 / 42



First fit: Nuances

• First fit sorted by address order, in practice:
- Blocks at front preferentially split, ones at back only split when no

larger one found before them
- Result? Seems to roughly sort free list by size
- So? Makes first fit operationally similar to best fit: a first fit of a

sorted list = best fit!

• Problem: sawdust at beginning of the list
- Sorting of list forces a large requests to skip over many small

blocks. Need to use a scalable heap organization

• Suppose memory has free blocks: 20 15

- If allocation ops are 10 then 20, best fit wins
- When is FF better than best fit?
- Suppose allocation ops are 8, 12, then 12 =⇒ first fit wins

15 / 42



Some worse ideas

• Worst-fit:
- Strategy: fight against sawdust by splitting blocks to maximize

leftover size
- In real life seems to ensure that no large blocks around

• Next fit:
- Strategy: use first fit, but remember where we found the last thing

and start searching from there
- Seems like a good idea, but tends to break down entire list

• Buddy systems:
- Round up allocations to power of 2 to make management faster
- Result? Heavy internal fragmentation

16 / 42



Outline

1 Malloc and fragmentation

2 Exploiting program behavior

3 Allocator designs

4 User-level MMU tricks

5 Garbage collection

17 / 42



Known patterns of real programs

• So far we’ve treated programs as black boxes.
• Most real programs exhibit 1 or 2 (or all 3) of the following

patterns of alloc/dealloc:
- Ramps: accumulate data monotonically over time

by
te

s

- Peaks: allocate many objects, use briefly, then free all

by
te

s

- Plateaus: allocate many objects, use for a long time

by
te

s

18 / 42



Pattern 1: ramps

• In a practical sense: ramp = no free!
- Implication for fragmentation?
- What happens if you evaluate allocator with ramp programs only?

19 / 42



Pattern 2: peaks

• Peaks: allocate many objects, use briefly, then free all
- Fragmentation a real danger
- What happens if peak allocated from contiguous memory?
- Interleave peak & ramp? Interleave two different peaks?

20 / 42



Exploiting peaks

• Peak phases: allocate a lot, then free everything
- Change allocation interface: allocate as before, but only support

free of everything all at once
- Called “arena allocation”, “obstack” (object stack), or
alloca/procedure call (by compiler people)

• Arena = a linked list of large chunks of memory
- Advantages: alloc is a pointer increment, free is “free”

No wasted space for tags or list pointers

21 / 42



Pattern 3: Plateaus

• Plateaus: allocate many objects, use for a long time
- What happens if overlap with peak or different plateau?

22 / 42



Fighting fragmentation

• Segregation = reduced fragmentation:
- Allocated at same time ∼ freed at same time
- Different type ∼ freed at different time

• Implementation observations:
- Programs allocate a small number of different sizes
- Fragmentation at peak usage more important than at low usage
- Most allocations small (< 10 words)
- Work done with allocated memory increases with size
- Implications?

23 / 42



Outline

1 Malloc and fragmentation

2 Exploiting program behavior

3 Allocator designs

4 User-level MMU tricks

5 Garbage collection

24 / 42



Slab allocation [Bonwick]

• Kernel allocates many instances of same structures
- E.g., a 1.7 kB task_struct for every process on system

• Often want contiguous physicalmemory (for DMA)
• Slab allocation optimizes for this case:

- A slab is multiple pages of contiguous physical memory
- A cache contains one or more slabs
- Each cache stores only one kind of object (fixed size)

• Each slab is full, empty, or partial
• E.g., need new task_struct?

- Look in the task_struct cache
- If there is a partial slab, pick free task_struct in that
- Else, use empty, or may need to allocate new slab for cache

• Advantages: speed, and no internal fragmentation
25 / 42

https://www.scs.stanford.edu/23wi-cs212/sched/readings/bonwick:slab.pdf


Simple, fast segregated free lists

• Array of free lists for small sizes, tree for larger
- Place blocks of same size on same page
- Have count of allocated blocks: if goes to zero, can return page

• Pro: segregate sizes, no size tag, fast small alloc
• Con: worst case waste: 1 page per size even w/o free,

After pessimal free: waste 1 page per object
• TCMalloc [Ghemawat] is a well-documented malloc like this

- Also uses “thread caching” to reduce coherence misses
26 / 42

http://goog-perftools.sourceforge.net/doc/tcmalloc.html


Typical space overheads

• Free list bookkeeping and alignment determine minimum
allocatable size:

• If not implicit in page, must store size of block
• Must store pointers to next and previous freelist element

12 16

0x40f0 0x40fc
4 byte alignment: addr % 4 = 0

• Allocator doesn’t know types
- Must align memory to conservative boundary

• Minimum allocation unit? Space overhead when allocated?
[demo mtest]

27 / 42



Getting more space from OS

• On Unix, can use sbrk
- E.g., to activate a new zero-filled page:

stack

heap
r/w data
r/o data
+ code

sbrk

/* add nbytes of valid virtual address space */
void *get_free_space(size_t nbytes) {
void *p = sbrk(nbytes);
if (p == (void *) -1)
error("virtual memory exhausted");

return p;
}

• For large allocations, sbrk a bad idea
- May want to give memory back to OS
- Can’t with sbrk unless big chunk last thing allocated
- So allocate large chunk using mmap’s MAP_ANON

28 / 42



Outline

1 Malloc and fragmentation

2 Exploiting program behavior

3 Allocator designs

4 User-level MMU tricks

5 Garbage collection

29 / 42



Faults + resumption = power

• Resuming after fault lets us emulate many things
- “All problems in CS can be solved by another layer of indirection”

• Example: sub-page protection
• To protect sub-page region in paging system:

r/o r/w

- Set entire page to most restrictive permission; record in PT

write r/o write fault

- Any access that violates permission will cause a fault
- Fault handler checks if page special, and if so, if access allowed
- Allowed? Emulate write (“tracing”), otherwise raise error

30 / 42



More fault resumption examples

• Emulate accessed bits:
- Set page permissions to “invalid”.
- On any access will get a fault: Mark as accessed

• Avoid save/restore of floating point registers
- Make first FP operation cause fault so as to detect usage

• Emulate non-existent instructions:
- Give inst an illegal opcode; OS fault handler detects and emulates

fake instruction

• Run OS on top of another OS!
- Slam OS into normal process
- When does something “privileged,” real OS

gets woken up with a fault.
- If operation is allowed, do it or emulate it; otherwise kill guest
- IBM’s VM/370. Vmware (sort of)

linux

linux linux Win98

privileged

31 / 42



Not just for kernels

• User-level code can resume after faults, too. Recall:
- mprotect – protects memory
- sigaction – catches signal after page fault
- Return from signal handler restarts faulting instruction

• Many applications detailed by [Appel & Li]
• Example: concurrent snapshotting of process

- Mark all of process’s memory read-only with mprotect
- One thread starts writing all of memory to disk
- Other thread keeps executing
- On fault – write that page to disk, make writable, resume

32 / 42

https://www.scs.stanford.edu/23wi-cs212/sched/readings/vmpup.pdf


Distributed shared memory

• Virtual memory allows us to go to memory or disk
- But, can use the same idea to go anywhere! Even to another

computer. Page across network rather than to disk. Faster, and
allows network of workstations (NOW)

33 / 42



Persistent stores

• Idea: Objects that persist across program invocations
- E.g., object-oriented database; useful for CAD/CAM type apps

• Achieve by memory-mapping a file
- Write your own “malloc” for memory in a file

• But only write changes to file at end if commit
- Use dirty bits to detect which pages must be written out
- Or emulate dirty bits withmprotect/sigaction (using write faults)

• On 32-bit machine, store can be larger than memory
- But single run of program won’t access > 4GB of objects
- Keep mapping of 32-bit memory pointers ↔ 64-bit disk offsets
- Use faults to bring in pages from disk as necessary
- After reading page, translate pointers—known as swizzling

34 / 42



Outline

1 Malloc and fragmentation

2 Exploiting program behavior

3 Allocator designs

4 User-level MMU tricks

5 Garbage collection

35 / 42



Garbage collection

• In safe languages, runtime knows about all pointers
- So can move an object if you change all the pointers

• What memory locations might a program access?
- Any globals or objects whose pointers are currently in registers
- Recursively, any pointers in objects it might access
- Anything else is unreachable, or garbage; memory can be re-used

• Example: stop-and-copy garbage collection
- Memory full? Temporarily pause program, allocate new heap
- Copy all objects pointed to by registers into new heap

▷ Mark old copied objects as copied, record new location
- Start scanning through new heap. For each pointer:

▷ Copied already? Adjust pointer to new location
▷ Not copied? Then copy it and adjust pointer

- Free old heap—program will never access it—and continue
36 / 42



Concurrent garbage collection

• Idea: Stop & copy, but without the stop
- Mutator thread runs program, collector concurrently does GC

• When collector invoked:
- Protect from space & unscanned to space from mutator
- Copy objects in registers into to space, resume mutator
- All pointers in scanned to space point to to space
- If mutator accesses unscanned area, fault, scan page, resume

1 2 3 4 5 6

to space

area
scanned

area
unscanned

mutator faults
on access

=

from space
(See [Appel & Li].)

37 / 42

https://www.scs.stanford.edu/23wi-cs212/sched/readings/vmpup.pdf


Heap overflow detection

• Many GCed languages need fast allocation
- E.g., in lisp, constantly allocating cons cells
- Allocation can be as often as every 50 instructions

• Fast allocation is just to bump a pointer

char *next_free;
char *heap_limit;

void *alloc (unsigned size) {
if (next_free + size > heap_limit) /* 1 */
invoke_garbage_collector (); /* 2 */

char *ret = next_free;
next_free += size;
return ret;

}

• But would be even faster to eliminate lines 1 & 2!
38 / 42



Heap overflow detection 2

• Mark page at end of heap inaccessible
- mprotect (heap_limit, PAGE_SIZE, PROT_NONE);

• Program will allocate memory beyond end of heap
• Program will use memory and fault

- Note: Depends on specifics of language
- But many languages will touch allocated memory immediately

• Invoke garbage collector
- Must now put just allocated object into new heap

• Note: requires more than just resumption
- Faulting instruction must be resumed
- But must resume with different target virtual address
- Doable on most architectures since GC updates registers

39 / 42



Reference counting

• Seemingly simpler GC scheme:
- Each object has “ref count” of pointers to it
- Increment when pointer set to it
- Decremented when pointer killed

(C++ destructors handy—c.f. shared_ptr)
ref = 2

a b

void foo(bar c) {
bar a b;
a = c; // c.refcnt++
b = a; // a.refcnt++
a = 0; // c.refcnt--
return; // b.refcnt--

}

- ref count == 0? Free object

• Works well for hierarchical data structures
- E.g., pages of physical memory

40 / 42

http://en.cppreference.com/w/cpp/memory/shared_ptr


Reference counting pros/cons
• Circular data structures always have ref count > 0

- No external pointers means lost memory

ref = 1 ref = 1

ref = 1

• Can do manually w/o PL support, but error-prone
• Potentially more efficient than real GC

- No need to halt program to run collector
- Avoids weird unpredictable latencies

• Potentially less efficient than real GC
- With real GC, copying a pointer is cheap
- With refcounts, must update count each time & possibly take lock

(but C++11 std::move can avoid overhead)
41 / 42

http://en.cppreference.com/w/cpp/utility/move


Ownership types

• Another approach: avoid GC by exploiting type system
- Use ownership types, which prohibit copies

• You can move a value into a new variable (e.g., copy pointer)
- But then the original variable is no longer usable

• You can borrow a value by creating a pointer to it
- But must prove pointer will not outlive borrowed value
- And can’t use original unless both are read-only (to avoid races)

• Ownership types available now in Rust language
- First serious competitor to C/C++ for OSes, browser engines

• C++11 does something similar but weaker with unique types
- std::unique_ptr, std::unique_lock,. . .
- Can std::move but not copy these

42 / 42

https://doc.rust-lang.org/book/
http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/thread/unique_lock
http://en.cppreference.com/w/cpp/utility/move

	Malloc and fragmentation
	Exploiting program behavior
	Allocator designs
	User-level MMU tricks
	Garbage collection

