
Michael J. Freedman

353 Serra Mall, Room 288 http://www.michaelfreedman.org/

Stanford, CA 94305-9025 mfreed@scs.stanford.edu

(650) 723-1863 Citizenship: US

Education New York University .. . New York, NY

Ph.D. Candidate in Computer Science Expected May 2007
Thesis title:Harnessing Widespread Cooperation to Democratize ContentDistribution
Visiting Stanford University, September 2005–May 2007
Advisor: David Mazières ; GPA: 4.0/4.0

M.S. in Computer Science .. May 2005
Advisor: David Mazières ; GPA: 4.0/4.0

Massachusetts Institute of Technology .Cambridge, MA

M.Eng. in Electrical Engineering and Computer Science June 2002
Thesis title:A Peer-to-Peer Anonymizing Network Layer
Advisor: Robert Morris ; GPA: 5.0/5.0

S.B. in Computer Science, Minor in Political Science June 2001
Thesis title:An Anonymous Communications Channel for the Free Haven Project
Advisor: Ron Rivest ; GPA: 4.9/5.0

Interests Distributed systems, security, networking, and cryptography

Research

2002–present Cooperative content distribution. Conceived and led the Coral Project. Designed and built an
Internet-scale, self-organizing web-content distribution network: CoralCDN [11] uses a network
of cooperating DNS redirectors and HTTP proxies, backed by adecentralized indexing infrastruc-
ture [18], to allow oblivious clients to transparently download content from nearby servers, while
avoiding distant or heavily-loaded ones. CoralCDN has beenin production use on 300 servers
since March 2004, currently receiving about 25 million HTTPrequests from over 1 million clients
per day, serving several terabytes of data.http://coralcdn.org/

With a focus on settings with mutually-distrustful clients, Shark [6] provides a distributed file sys-
tem that improves scalability and performance through cooperative reads, using Coral’s indexing
layer to locate files. Yet Shark preserves traditional semantics, manageability, and security. Other
research provides integrity guarantees for large files encoded with rateless erasure codes, via a
homomorphic hash function that can verify downloaded blocks on-the-fly [10].

Ongoing focus on untrusted settings for CDNs (with C. Aperjis, R. Johari, and D. Mazières), de-
vising incentive-compatible mechanisms that cause nodes to contribute bandwidth for improved
quality-of-service. This work uses market-pricing techniques and virtual currency to ensure effec-
tive bandwidth usage and network utilization, while still preventing cheating.

2005–present Anycast. Designed and built OASIS, a server-selection infrastructure that provides locality- and
load-based anycast for replicated Internet services [3] [26]. OASIS tackles the problems of lever-
aging disparate services to perform (potentially error-prone) network measurement and of scalably
managing state information about many services and their participating nodes. OASIS has been in
production use since Nov. 2005 and has been adopted by more than a dozen distributed services,
handling thousands of replicas. Performed background studies of the geographic locality of IP
prefixes [5] and the efficacy of virtual coordinate systems [16]. http://oasis.coralcdn.org/

2006–present IP analytics. By instrumenting CoralCDN, used active web content to measure and analyze the
characteristics of over 7 million clients with respect to “edge technologies” (NATs, proxies, DNS

1

and DHCP) [1]. Results quantify how Internet services can use IP addresses to identify clients and
enforce access-control decisions. Commercialized historical and real-time techniques for proxy
detection and IP geolocation; acquired by Quova, Inc. in Nov. 2006 and currently being tested at
large Internet services.http://illuminati.coralcdn.org/

2006–present Enterprise networks. Design and implementation contributions to Ethane [2] [25], a backwards-
compatible protection and management architecture for enterprise networks. Ethane network
switches provide connectivity through on-demand virtual circuits, yet they enforce security poli-
cies on a per-flow basis through centrally-managed, atomic,auditable name bindings. Deployment
at Stanford since Nov. 2006, serving hundreds of hosts.http://yuba.stanford.edu/ethane/

2005–present Reliable email. Designed and implemented the security and privacy protections in Re:, an email
acceptance system that leverages social proximity for automated whitelisting [4], using private
matching [9]. Recent analysis of privacy for social networks led to more efficient protocols based
only on symmetric-key operations (or achieving stronger properties using bilinear maps) [13].

2005–present Fault-tolerance groups. Researched abstractions for the scalable construction of fault-tolerant,
distributed systems [14]. Ongoing work with L. Subramanianon partitioning large, dynamic
systems into smaller groups, which apply fault-tolerance or reliable communication protocols.

2000–present Privacy-preserving protocols. Developed cryptographic protocols for private matching (PM),
which computes the set intersection between two or more parties’ inputs [9]. PM uses the prop-
erties of homomorphic encryption to privately evaluate a polynomial representation of input sets.
Subsequent work led to improved constructions for keyword search (KS) based on oblivious pseu-
dorandom functions [7]. Earlier research included the design and implementation of a prototype
system for anonymous cryptographic e-cash (with S. Brands and I. Goldberg), as well as consid-
erations for privacy-enabled digital rights management (DRM) systems [19] [22].

2000–2002 Anonymity systems. Designed and implemented Tarzan [12] [20], a peer-to-peer anonymous IP
network layer that is strongly resistant to traffic analysis. Helped design Free Haven, a distributed
system for the anonymous publishing, storage, and retrieval of information [23] [24] [28].

Positions

3/06–present Co-founder (with Martin Casado). Illuminics Systems, Mountain View, CA.

9/05–present Research Assistant. Stanford University (SCS Group), Stanford, CA.

5/05–8/05 Research Assistant. University of California, Berkeley, Berkeley, CA.

9/02–5/05 Research Assistant. New York University (SCS Group), New York, NY.

5/03–8/03 Research Associate. HP Labs (Trusted Systems Lab), Princeton, NJ.

9/01–6/02 Research Assistant. MIT LCS (PDOS Group), Cambridge, MA.

5/01–8/01 Research Intern. InterTrust Technologies (STAR Lab), Santa Clara, CA.

6/00–8/00 Research Intern. Zero-Knowledge Systems Labs, Montreal, Quebec.

2/99–5/01 Undergrad Researcher. MIT LCS (SLS and CIS Groups), Cambridge, MA.

6/99–8/99 Intern. Sun Microsystems (HPC Group), Burlington, MA.

6/98–8/98 Intern. Cognex Corporation, Natick, MA.

6/96–2/98 Undergrad Researcher. MIT Francis Bitter Magnet Lab, Cambridge, MA.

Service

5/03–5/05 Founder and Organizer. NYU Systems Reading Group, New York, NY.

2/04–5/05 Faculty Representative. NYU Courant Student Organization, New York, NY.

9/01–5/02 Co-organizer. MIT Applied Security Reading Group, Cambridge, MA.

9/97–5/02 President, VP, Winter School Organizer. MIT Outing Club, Cambridge, MA

2

Teaching

1/04–5/04 Teaching Assistant, Lab Instructor. V22.0480—Computer Networks, NYU.

2/02–5/02 Teaching Assistant. 6.033—Computer System Engineering, MIT.

2/01–5/01 Teaching Assistant. 6.033—Computer System Engineering, MIT

Advising

Masters Justin Pettit (Stanford), Robert Soule (NYU), JeffBorden (NYU)

Undergraduates Jeffrey Spehar (Stanford), Kevin Shanahan(NYU), Ed Kupershlak (NYU)

Professional activities

Program comm. WORLDS ’06, UPGRADE-CDN ’06, IRIS Student P2PWorkshop ’03

External reviews NSDI ’07, LATIN ’06, HotNets ’05, EUROCRYPT ’05, Usenix Technical ’05, ISC ’04, CRYPTO ’04,
IPDPS ’04, INFOCOM ’04, CCS ’03, SOSP ’03, ISC ’03, PODC ’03, EUROCRYPT ’03, WPES ’02

Journal reviews ACM Transactions on Computer Systems (TOCS), Journal of Cryptology, Journal of Parallel and
Distributed Computing (JPDC), Handbook of Internet Security - P2P Security (Wiley & Sons),
Computer Journal

Honors NDSEG (DoD) Graduate Fellow, 2002-2005
NYU McCracken Fellow, 2002-2006
Henning Biermann Award, NYU Computer Science, 2005 (for outstanding education and service)

Best demo (OASIS), WORLDS 2005.
First paper (highest-ranked), EUROCRYPT 2004 [9].
Award paper, CCS 2002 [12].

Awarded NSF Graduate Fellowship, 2001
Awarded Gordon Wu Fellowship (Princeton), 2001 ; Sterling Prize Fellowship (Yale), 2001
Awarded Graduate Fellowships (U.C.Berkeley, Carnegie-Mellon, UCSD), 2001

Coca-Cola Scholar, 1997-2001 ; Tylenol Scholar, 1997-1999; Big 33 Scholar, 1997-1998
Tau Beta Pi, 2000 ; Eta Kappa Nu, 2000 ; Sigma Xi, 2000 ; Order ofOmega, 1999
Congressional Award, Silver (1996) and Bronze (1993) medals

Refereed conference publications

[1] Martin Casado andMichael J. Freedman. Peering through the shroud: The effect of edge opacity
on IP-based client identification. InProc. 4th Symposium on Networked Systems Design and
Implementation (NSDI 07), Cambridge, MA, April 2007.

[2] Martin Casado, Tal Garfinkle, Aditya Akella,Michael J. Freedman, Dan Boneh, Nick McKe-
own, and Scott Shenker. SANE: A protection architecture forenterprise networks. InProc. 15th
USENIX Security Symposium, pages 137–151, Vancouver, BC, August 2006.

[3] Michael J. Freedman, Karthik Lakshminarayanan, and David Mazières. OASIS: Anycast for any
service. InProc. 3rd Symposium on Networked Systems Design and Implementation (NSDI 06),
pages 129–142, San Jose, CA, May 2006.

[4] Scott Garriss, Michael Kaminsky,Michael J. Freedman, Brad Karp, David Mazières, and
Haifeng Yu. Re: Reliable email. InProc. 3rd Symposium on Networked Systems Design and
Implementation (NSDI 06), pages 297–310, San Jose, CA, May 2006.

3

[5] Michael J. Freedman, Mythili Vutukuru, Nick Feamster, and Hari Balakrishnan. Geographic
locality of IP prefixes. InProc. 5th ACM SIGCOMM Conference on Internet Measurement (IMC
05), pages 153–158, Berkeley, CA, October 2005.

[6] Siddhartha Annapureddy,Michael J. Freedman, and David Mazières. Shark: Scaling file servers
via cooperative caching. InProc. 2nd Symposium on Networked Systems Design and Implemen-
tation (NSDI 05), pages 129–142, Boston, MA, May 2005.

[7] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and
oblivious pseudorandom function. InProc. 2nd Theory of Cryptography Conference (TCC 05),
pages 303–324, Cambridge, MA, February 2005.

[8] Yevgeniy Dodis,Michael J. Freedman, Stanislaw Jarecki, and Shabsi Walfish. Versatile padding
schemes for joint signature and encryption. InProc. 11th ACM Conference on Computer and
Communication Security (CCS 04), pages 344–353, Washington, D.C., October 2004.

[9] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matchingand set inter-
section. InAdvances in Cryptology — EUROCRYPT 2004, pages 1–19, Interlaken, Switzerland,
May 2004.

[10] Maxwell Krohn,Michael J. Freedman, and David Mazières. On-the-fly verification of rateless
erasure codes for efficient content distribution. InProc. IEEE Symposium on Security and Privacy,
pages 226–240, Oakland, CA, May 2004.

[11] Michael J. Freedman, Eric Freudenthal, and David Mazières. Democratizing content publication
with Coral. InProc. 1st Symposium on Networked Systems Design and Implementation (NSDI 04),
pages 239–252, San Francisco, CA, March 2004.

[12] Michael J. Freedman and Robert Morris. Tarzan: A peer-to-peer anonymizing network layer.
In Proc. 9th ACM Conference on Computer and Communications Security (CCS 2002), pages
193–206, Washington, D.C., November 2002.

Refereed workshop publications

[13] Michael J. Freedman and Antonio Nicolosi. Efficient private techniques for verifying social
proximity. In Proc. 6th International Workshop on Peer-to-Peer Systems (IPTPS 07), Bellevue,
WA, February 2007.

[14] Michael J. Freedman, Ion Stoica, David Mazières, and Scott Shenker. Group therapy for systems:
Using link-attestations to manage failures. InProc. 5th International Workshop on Peer-to-Peer
Systems (IPTPS 06), Santa Barbara, CA, February 2006.

[15] Michael J. Freedman, Karthik Lakshminarayanan, Sean Rhea, and Ion Stoica. Non-transitive
connectivity and DHTs. InProc. 2nd Workshop on Real, Large, Distributed Systems (WORLDS
05), pages 55–60, San Francisco, CA, December 2005.

[16] Kevin Shanahan andMichael J. Freedman. Locality prediction for oblivious clients. InProc.
4th International Workshop on Peer-to-Peer Systems (IPTPS05), pages 252–263, Ithaca, NY,
February 2005.

[17] Max Krohn andMichael J. Freedman. On-the-fly verification of erasure-encoded file transfers
(extended abstract). InProc. 1st IRIS Student Workshop on Peer-to-Peer Systems, Cambridge,
MA, August 2003.

[18] Michael J. Freedman and David Mazières. Sloppy hashing and self-organizing clusters. InProc.
2nd International Workshop on Peer-to-Peer Systems (IPTPS03), pages 45–55, Berkeley, CA,
February 2003.

[19] Joan Feigenbaum,Michael J. Freedman, Tomas Sander, and Adam Shostack. Economic barriers
with existing privacy technologies in e-commerce systems.In Proc. Workshop on Economics and
Information Security, Berkeley, CA, May 2002.

[20] Michael J. Freedman, Emil Sit, Josh Cates, and Robert Morris. Introducing Tarzan, a peer-to-
peer anonymizing network layer. InProc. 1st International Workshop on Peer-to-Peer Systems
(IPTPS 02), pages 121–129, Cambridge, MA, March 2002.

4

[21] Michael J. Freedman and Radek Vingralek. Efficient peer-to-peer lookup based ona distributed
trie. In Proc. 1st International Workshop on Peer-to-Peer Systems (IPTPS 02), pages 66–75,
Cambridge, MA, March 2002.

[22] Joan Feigenbaum,Michael J. Freedman, Tomas Sander, and Adam Shostack. Privacy engineer-
ing in digital rights management systems. InProc. ACM Workshop in Security and Privacy in
Digital Rights Management (DRM 01), pages 76–105, Philadelphia, PA, November 2001.

[23] Roger Dingledine,Michael J. Freedman, David Hopwood, and David Molnar. A reputation
system to increase MIX-net reliability. InProc. Information Hiding Workshop (LNCS 2137),
pages 126–141, Pittsburgh, PA, March 2001.

[24] Roger Dingledine,Michael J. Freedman, and David Molnar. The Free Haven Project: Distributed
anonymous storage service. InProc. Workshop on Design Issues in Anonymity and Unobservabil-
ity (LNCS 2009), pages 67–95, Berkeley, CA, July 2000.

In submission

[25] Martin Casado,Michael J. Freedman, Justin Pettit, Jianying Luo, Nick McKeown, and Scott
Shenker. Ethane: Taking control of the enterprise, 2007.

Unrefereed publications, book chapters

[26] Michael J. Freedman. Automating server selection with OASIS. In;login: The USENIX Maga-
zine, pages 46–52, October 2006.

[27] Roger Dingledine,Michael J. Freedman, David Molnar, and David Parkes. Reputation. In
Digital Government Civic Scenario Workshop, Cambridge, MA, April 2003.

[28] Roger Dingledine,Michael J. Freedman, and David Molnar. Peer-to-Peer: Harnessing the
Power of Disruptive Technology, chapter Accountability, pages 271–340. O’Reilly, 2001.

[29] Roger Dingledine,Michael J. Freedman, and David Molnar. Peer-to-Peer: Harnessing the
Power of Disruptive Technology, chapter Free Haven, pages 159–190. O’Reilly, 2001.

References Prof. David Mazières Prof. Frans Kaashoek
Stanford University Massachusetts Institute of Technology
Computer Science Department Stata Center, #32-G992
353 Serra Mall, #290 77 Massachusetts Avenue
Stanford, CA 94305-9025 Cambridge, MA 02139
(650) 723-8777 (617) 253-7149
rec@nospam.scs.stanford.edu kaashoek@csail.mit.edu

Prof. Ion Stoica Prof. Nick McKeown
University of California, Berkeley Stanford University
RADLab, Room 465 Computer Science Department
Soda Hall #1776 353 Serra Mall, #340
Berkeley, CA 94720-1776 Stanford, CA 94305-9025
(510) 643-4007 (650) 725-3641
istoica@cs.berkeley.edu nickm@stanford.edu

Prof. Joan Feigenbaum
Yale University
Computer Science Department
P.O. Box 208285,
New Haven, CT 06520-8285
(203) 432-6432
joan.feigenbaum@yale.edu

Stanford, CA, January 31, 2007

5

Research statement
Michael J. Freedman

My research interests span the areas of distributed
systems, security, networking, and cryptography. I
particularly enjoy devising technologies that make
new functionality broadly available. My work gener-
ally tackles systems problems by coupling principled
designs with real-world deployments.

A common thread in my research is the exten-
sion of systems designed for centralized or trusted
entities into decentralized, untrusted, unreliable, or
chaotic settings. These scenarios offer significant
challenges, yet they are ones ideally suited for aca-
demic research: Such problems or architectures do
not naturally arise from within industry, even though
the techniques often may be applied back into man-
aged environments, e.g., to survive disasters or to op-
erate safely under attack. More than that, open sys-
tems encourage further innovation.

I approach these problems through the innovative
use of cryptography, algorithms, or abstractions. By
leveraging the resulting properties, one can create
self-organizing systems out of unreliable nodes, in-
centivize proper operation, curtail the impact of ma-
licious behavior, or improve manageability to over-
come system brittleness.

Such solutions still require solid engineering, al-
ways with the end-user in mind. By providing de-
sired functionality, even research systems can attract
users, gain traction, and then truly test the system’s
mettle. Deployed systems provide real data to direct
future design decisions, and they can serve as plat-
forms for otherwise intractable experiments. While
much research relies solely on simulation and em-
ulation, only at scale can we truly evaluate many
systems—learning from their strengths, weaknesses,
and emergent properties—and thus discover new re-
search problems and directions.

Cooperative content distribution. My thesis re-
search focuses on making content delivery more
widely available by federating large numbers of un-
trusted or unreliable machines to share localized re-
sources. Content distribution networks (CDNs) are
not a new idea, but the architectures of commercial
CDNs are tightly bound to centralized control, static
deployments, and cost recovery.

My initial system, CoralCDN [1], explores how to
build a self-organizing cooperative web CDN using
unreliable hosts. Through its scalable distributed in-
dex, nodes can record and locate data without over-
loading any node, regardless of a file’s popularity or
system dynamics [1, 2]. Decentralized clustering al-
gorithms enable nodes to find nearby data without
querying more distant machines.

CoralCDN incorporates a number of engineering
mechanisms for sharing resources fairly and prevent-
ing abuse—learned through deployment and com-
munity feedback—yet the system is inherently open.
Simply modify a URL, and the requested content is
automatically retrieved and cached by CoralCDN’s
proxies. As such, it has been widely adopted in of-
ten innovative ways: by servers to dynamically off-
load flash crowds, by browser extensions to recover
from server failures, by podcasting and RSS soft-
ware, and by daily links on Slashdot and other por-
tals. CoralCDN currently handles about 25 million
requests daily from over one million clients.

One challenge in designing CoralCDN was how
to compel our unmodified clients to use nearby, un-
loaded proxies. While commercial systems also de-
ploy anycast to select servers, their techniques need
handle only a single deployment, often comprised of
a mere handful of data centers. Ideally, one public
infrastructure could provide anycast for many far-
flung services, such that the more services that use
it, the more accurate its server-selection results and
the lower the bandwidth cost per service.

I built a subsequent system, OASIS [3], that
does exactly this: OASIS currently provides any-
cast among thousands of servers from more than a
dozen distributed systems, from both the academic
and open-source communities. It flexibly supports
a variety of interfaces—currently DNS, HTTP, and
RPC—with which clients can discover good servers
belonging to the requested system. OASIS can do so
because it tackles several problems simultaneously:
using nodes from participating services to perform
network measurement, detecting and disambiguating
erroneous results, representing locality stably across
time and deployment changes, and scalably manag-
ing state information about many services.

1

This success at building content delivery from un-
reliable resources raised the question as to whether
we could extend this approach to mutually distrustful
clients. Shark [4] provides a distributed file system
that improves scalability and performance through
cooperative reads, using Coral’s indexing layer to lo-
cate content. Still, Shark preserves traditional se-
mantics and security: End-to-end cryptography en-
sures that clients need not trust one another.

We also considered security mechanisms for hosts
using rateless erasure codes for cooperative large
file distribution. Unfortunately, these codes cannot
use traditional authenticators (e.g., hash trees) that
guarantee the integrity of individual blocks. There-
fore, we devised a homomorphic hash function that
can be used to verify downloaded blocks on-the-fly,
thus preventing malicious participants from polluting
the network with garbage [5]. Implementation as-
pects mattered in this seemingly-theoretical project.
The batching of public-key operations was needed
to achieve fast verification, while disk-read strate-
gies led to encoding speeds that even exceeded those
of hash trees for non-rateless codes. Finally, for
preventing pollution in these non-rateless codes, we
showed how simple implementation changes could
replace others’ heavyweight black-box mechanisms.

Recently, I have returned to the problem of mov-
ing CoralCDN from its current deployment on Plan-
etLab onto fully untrusted nodes, as CoralCDN’s
success has led to bandwidth usage that has long sat-
urated PlanetLab’s available capacity. As digital sig-
natures can guarantee content integrity, the challenge
is ensuring that sufficient capacity exists. Our latest
design promotes resource sharing through incentive-
compatible mechanisms: Contributing nodes receive
better quality-of-service when the system is under-
provisioned. The system applies market pricing tech-
niques to efficiently use available bandwidth, but
also incorporates network costs to “play friendly”
with service providers. Malicious parties cannot
cheat as lightweight cryptographic currency accu-
rately tracks nodes’ contributions.

While most of my work on cooperative content
distribution has focused on leveraging unreliable
or untrusted resources, I am not rigid in my ap-
proach. Indeed, some of these systems use logically-
centralized components, such as the core OASIS in-
frastructure or, for each file collection in this last
system, servers that manage file prices and currency
exchange. Rather, I look where it is sensible or

economical to leverage available resources—e.g., lo-
cal bandwidth for CDNs or measurement points for
anycast—and architect systems accordingly. Indeed,
these same cost arguments are behind industry’s in-
creased interest in such architectures, albeit without
the same consideration for security.

Securing decentralized systems. When large de-
centralized systems lack the necessary security
mechanisms, things eventually go awry. The In-
ternet’s inter-domain routing protocols (BGP) lack
source authentication and thus routes have been hi-
jacked, a weakness shared by DNS. Persistent email
spam is frustrating, while false positives from spam
filters have made email unreliable. Centralized solu-
tions are not the only answer, however.

Tackling the spam false-positive problem, Re: [6]
uses proximity in a social network as a basis for auto-
whitelisting email. This approach appears promis-
ing given our analysis of large email corpora. And
by incorporating our cryptographic protocols for pri-
vate matching [7, 8], Re: ensures that two parties can
maintain privacy without third-party intervention.

In a similar vein, websites want to securely iden-
tify their users, but ubiquitous client authentication
does not exist. Thus, sites often use weaker iden-
tifiers such as IP addresses for access-control deci-
sions, even though edge technologies (NATs, prox-
ies, and DHCP) occlude a server’s view of its clients.
By instrumenting CoralCDN, we used active web
content to measure and analyze the characteristics
of over 7 million clients; our results help quantify
when and how Internet services can use IP addresses
and related information to identify clients [9]. (In
fact, our techniques for real-time proxy detection and
geolocation were acquired by a leading IP analytics
company [10].) Here we see how a system, once
widely used, can become a vehicle for otherwise in-
feasible research. Indeed, we are starting to investi-
gate advertisement click fraud using this platform.

Enterprise networks similarly lack comprehensive
security “from the ground up.” Instead, a bewil-
dering array of mechanisms (firewalls, NATs, and
VLANs) have been retrofitted over the years, lead-
ing to brittle, inflexible networks. Begun as a clean-
slate design [11], Ethane provides a backwards-
compatible protection and management architecture
for enterprise networks, where switches establish vir-
tual circuits per flow, after using a domain controller
to enforce security policies. Because Ethane sim-

2

plifies so many network management tasks—testing
new policies, deploying new appliances or topolo-
gies, performing forensics or fault diagnosis, es-
tablishing network isolation classes—its architecture
empowers innovation and change within networks. I
am further interested in extending such techniques to
the wider area for managing autonomous systems.

Future work. Given the challenges of securing
and managing networked systems, I have begun to
think about new ways to simplify this task.

How can we determine when, where, and why per-
formance or persistent faults in distributed systems
occur? I intend to explore lightweight distributed
tracing to track transactions across hosts and within
processes. By tainting network communication and
annotating code, we can generate system-wide “call
graphs” during run-time. Of particular interest are
identifying normal and anomalous system behav-
ior, possibly through machine learning, and building
feedback loops for automated reconfiguration. Other
approaches to fault monitoring, detection, and diag-
nosis may be similarly promising. Of course, hav-
ing deployed systems to test such tools is a critical
advantage to experience the vagaries of failures in
production environments. (In fact, others have used
CoralCDN for exactly this [12].)

What new abstractions can provide better relia-
bility in the face of failures? I am currently think-
ing about how to partition large systems into smaller
groups, which can then apply heavyweight fault-
tolerance or detection protocols [13]. (Such par-
titioning appears necessary for scalability.) While
handling malicious parties in dynamic settings
presents many difficult problems, the goal remains
for better operation on faulty resources.

Finally, what privacy-preserving technologies can
promote greater information sharing? Researchers,
operators, and end-users can all benefit from greater
access to data, whether inter-domain routing policies
for traffic engineering, patient records for medical
research, census and other polling data for the so-
cial sciences, or social information for cooperative
filtering [6]. Unfortunately, privacy concerns often
limit data availability, leading to suggestions such
as private matching [7] for merging terrorist watch
lists [14]. Yet current general-purpose cryptographic
solutions are too inefficient for large datasets, while
statistical methods are often not sound. I am inter-
ested in leveraging specific application contexts to

build better protocols (as done in [8]), as well as ex-
ploring interface and architecture design for privacy-
preserving systems.

While technology trends may incrementally im-
prove system performance, new techniques are
needed to enhance security, scalability, reliability,
and manageability. I tackle these problems by ap-
plying methods from cryptography, distributed algo-
rithms, game theory, and other principled sources.
But real solutions require real testing: My research
will embrace both strong design and engineering
components, even as new problems arise over time.
This unusual dual approach already has enabled my
research systems to provide tens of millions of peo-
ple with their Internet fix, often in surprising ways.
Through such deployments we can discover new
problems, encourage further innovation, and ulti-
mately make new functionality broadly available.

References
[1] M. Freedman, E. Freudenthal, and D. Mazières. De-

mocratizing content publication with Coral. In Proc. Net-
worked Systems Design and Implementation (NSDI), pages
239–252, Mar 2004.

[2] M. Freedman and D. Mazières. Sloppy hashing and self-
organizing clusters. In Proc. International Workshop on
Peer-to-Peer Systems (IPTPS), pages 45–55, Feb 2003.

[3] M. Freedman, K. Lakshminarayanan, and D. Mazières.
OASIS: Anycast for any service. In Proc. NSDI, pages
129–142, May 2006.

[4] S. Annapureddy, M. Freedman, and D. Mazières. Shark:
Scaling file servers via cooperative caching. In Proc.
NSDI, pages 129–142, May 2005.

[5] M. Krohn, M. Freedman, and D. Mazières. On-the-fly
verification of rateless erasure codes for efficient content
distribution. In Proc. IEEE Security and Privacy, pages
226–240, May 2004.

[6] S. Garriss, M. Kaminsky, M. Freedman, B. Karp, D. Maz-
ières, and H. Yu. Re: Reliable email. In Proc. NSDI, pages
297–310, May 2006.

[7] M. Freedman, K. Nissim, and B. Pinkas. Efficient private
matching and set intersection. In Advances in Cryptology
— EUROCRYPT 2004, pages 1–19, May 2004.

[8] M. Freedman and A. Nicolosi. Efficient private tech-
niques for verifying social proximity. In Proc. IPTPS, Feb
2007.

[9] M. Casado and M. Freedman. Peering through the
shroud: The effect of edge opacity on IP-based client iden-
tification. In Proc. NSDI, Apr 2007.

[10] Quova. http://www.quova.com/, 2006.
[11] M. Casado, T. Garfinkle, A. Akella, M. Freedman,

D. Boneh, N. McKeown, and S. Shenker. SANE: A protec-
tion architecture for enterprise networks. In Proc. USENIX
Security Symposium, pages 137–151, Aug 2006.

[12] P. Reynolds, J. Wiener, J. Mogul, M. Aguilera, and A. Vah-
dat. WAP5: Black-box performance debugging for wide-
area systems. In Proc. WWW, May 2006.

[13] M. Freedman, I. Stoica, D. Mazières, and S. Shenker.
Group therapy for systems: Using link-attestations to man-
age failures. In Proc. IPTPS, Feb 2006.

[14] J. Dempsey and P. Rosenzweig. Technologies that can pro-
tect privacy as information is shared to combat terrorism.
Heritage Foundation Legal Memo #11, May 26 2004.

3

Teaching statement
Michael J. Freedman

My greatest joy in teaching is helping passionate, hard-working students gain the appropriate tools,
knowledge, and skepticism to become independent thinkers and researchers. Given my research interests,
this largely translates to sharing my enthusiasm for tackling challenging systems problems and building
complete solutions. Designing and building systems requires a broad background in understanding potential
approaches, recognizing design tradeoffs, and recalling past successes and failures, much of which can be
learned through coursework. But equally critical is the judgment one gains fromdoing: conceptualizing the
interplay of various system components, approaches, and often devilish details, and identifying a system’s
shortcomings through analysis in order to improve it.

My goal, both as an advisor and as a teacher, is to empower students to make their own design decisions
and, ultimately, to discover their own interesting problems to tackle. During graduate school, I had the
opportunity to supervise research projects for six students, both masters and undergraduates. The challenge
was to offer well-defined problems when students needed more supervision, sometimes proposing one or
more promising approaches and incremental milestones. Still, I found it important to maintain some vision
or open-ended problems that students could work towards.

The students’ research experiences helped lead some of them to pursue further graduate education
(Robert Soule is now a PhD student at NYU), while it gave others their first experience at writing aca-
demic papers (Kevin Shanahan was the first author of a workshop paper on peer-to-peer localization). The
most successful outcomes emerged from situations where students ultimately were excited by their research
and identified their concrete contributions. Especially motivating were projects that impacted a large au-
dience,e.g., one student built a data collection infrastructure for CoralCDN, knowing that his code would
touch data from tens of millions of users. My personal experience has been very similar: My academic
highlights from college were the research projects where I played an important role; my worst time was a
summer largely spent hacking makefiles written by physicists over two decades.

Beyond supervising independent research, I similarly enjoy teaching students within the classroom set-
ting. I first served as a teaching assistant for the core “Computer System Engineering” course at MIT for two
consecutive years. Unfortunately, TAs traditionally only played the role of holding office hours and grading
assignments for this course, as faculty taught even recitation sections. Thus, in my second year, I proposed
holding an additional weekly small-group tutorial section to help students better learn course concepts and
readings—as well as to allow TAs to actually teach—a practice still being done five years later. At NYU, I
served as the teaching assistant, lab instructor, and occasional lecturer for the new advanced undergraduate
course “Computer Networks,” which coupled system programming assignments with academic readings. I
also organized and helped teach the MIT Outing Club’s month-long winter mountaineering course, which
attracted nearly 100 participants. While not academic in nature, the time-intensive experience was gratify-
ing both from my ability to educate others (here, literally, on how to survive) and from deepening my own
knowledge in the process. This class, much like project courses, focused on doing, not only on knowing.

Given my research background, I am qualified to teach a variety of courses, including distributed sys-
tems, operating or storage systems, security and cryptography, networking, or even software engineering. I
am also excited to hold more advanced graduate courses or seminars related to my research areas. I am a
strong proponent of project-heavy classes for both advanced undergraduate and graduate students; these go
directly towards “hands-on” systems experience and often provide a useful segue into further research.

1

Finally, I believe that seminars and reading groups play an important role both in staying abreast with the
latest research and in learning how to evaluate it critically. At MIT, I helped co-organize an applied security
reading group. At NYU, I began a weekly systems seminar and organized it for two years, inviting both
outside speakers to present their research and internal volunteers to present others’ work. I also served as a
student representative at NYU CS faculty meetings, gaining important insight into the concerns and wants
of both students and faculty, as well as helping to recruit both new students and faculty to the growing de-
partment. The NYU computer science department recognized my contributions with the Henning Biermann
award for “outstanding contributions to education and service to the department.”

My research statement mentions that I think even academic systems should be user-centric. I am sim-
ilarly drawn to the eminently “user-centric” nature of teaching. After all, professors ultimately are tasked
with producing both researchandstudents.

2

Democratizing content publication with Coral

Michael J. Freedman, Eric Freudenthal, David Mazières
New York University

http://www.scs.cs.nyu.edu/coral/

Abstract

CoralCDN is a peer-to-peer content distribution network
that allows a user to run a web site that offers high
performance and meets huge demand, all for the price of
a cheap broadband Internet connection. Volunteer sites
that run CoralCDN automatically replicate content as
a side effect of users accessing it. Publishing through
CoralCDN is as simple as making a small change to the
hostname in an object’s URL; a peer-to-peer DNS layer
transparently redirects browsers to nearby participating
cache nodes, which in turn cooperate to minimize load on
the origin web server. One of the system’s key goals is
to avoid creating hot spots that might dissuade volunteers
and hurt performance. It achieves this through Coral,
a latency-optimized hierarchical indexing infrastructure
based on a novel abstraction called a distributed sloppy
hash table, or DSHT.

1 Introduction

The availability of content on the Internet is to a large de-
gree a function of the cost shouldered by the publisher. A
well-funded web site can reach huge numbers of people
through some combination of load-balanced servers, fast
network connections, and commercial content distribu-
tion networks (CDNs). Publishers who cannot afford such
amenities are limited in the size of audience and type of
content they can serve. Moreover, their sites risk sudden
overload following publicity, a phenomenon nicknamed
the “Slashdot” effect, after a popular web site that period-
ically links to under-provisioned servers, driving unsus-
tainable levels of traffic to them. Thus, even struggling
content providers are often forced to expend significant
resources on content distribution.

Fortunately, at least with static content, there is an easy
way for popular data to reach many more people than
publishers can afford to serve themselves—volunteers can
mirror the data on their own servers and networks. In-
deed, the Internet has a long history of organizations with
good network connectivity mirroring data they consider to
be of value. More recently, peer-to-peer file sharing has
demonstrated the willingness of even individual broad-
band users to dedicate upstream bandwidth to redistribute
content the users themselves enjoy. Additionally, orga-
nizations that mirror popular content reduce their down-

stream bandwidth utilization and improve the latency for
local users accessing the mirror.

This paper describes CoralCDN, a decentralized, self-
organizing, peer-to-peer web-content distribution net-
work. CoralCDN leverages the aggregate bandwidth of
volunteers running the software to absorb and dissipate
most of the traffic for web sites using the system. In so do-
ing, CoralCDN replicates content in proportion to the con-
tent’s popularity, regardless of the publisher’s resources—
in effect democratizing content publication.

To use CoralCDN, a content publisher—or some-
one posting a link to a high-traffic portal—simply ap-
pends “.nyud.net:8090” to the hostname in a URL.
Through DNS redirection, oblivious clients with unmod-
ified web browsers are transparently redirected to nearby
Coral web caches. These caches cooperate to transfer data
from nearby peers whenever possible, minimizing both
the load on the origin web server and the end-to-end la-
tency experienced by browsers.

CoralCDN is built on top of a novel key/value indexing
infrastructure called Coral. Two properties make Coral
ideal for CDNs. First, Coral allows nodes to locate nearby
cached copies of web objects without querying more dis-
tant nodes. Second, Coral prevents hot spots in the in-
frastructure, even under degenerate loads. For instance,
if every node repeatedly stores the same key, the rate of
requests to the most heavily-loaded machine is still only
logarithmic in the total number of nodes.

Coral exploits overlay routing techniques recently pop-
ularized by a number of peer-to-peer distributed hash ta-
bles (DHTs). However, Coral differs from DHTs in sev-
eral ways. First, Coral’s locality and hot-spot prevention
properties are not possible for DHTs. Second, Coral’s
architecture is based on clusters of well-connected ma-
chines. Clusters are exposed in the interface to higher-
level software, and in fact form a crucial part of the DNS
redirection mechanism. Finally, to achieve its goals, Coral
provides weaker consistency than traditional DHTs. For
that reason, we call its indexing abstraction a distributed
sloppy hash table, or DSHT.

CoralCDN makes a number of contributions. It enables
people to publish content that they previously could not or
would not because of distribution costs. It is the first com-
pletely decentralized and self-organizing web-content dis-
tribution network. Coral, the indexing infrastructure, pro-

1

vides a new abstraction potentially of use to any applica-
tion that needs to locate nearby instances of resources on
the network. Coral also introduces an epidemic clustering
algorithm that exploits distributed network measurements.
Furthermore, Coral is the first peer-to-peer key/value in-
dex that can scale to many stores of the same key without
hot-spot congestion, thanks to a new rate-limiting tech-
nique. Finally, CoralCDN contains the first peer-to-peer
DNS redirection infrastructure, allowing the system to
inter-operate with unmodified web browsers.

Measurements of CoralCDN demonstrate that it al-
lows under-provisioned web sites to achieve dramatically
higher capacity, and its clustering provides quantitatively
better performance than locality-unaware systems.

The remainder of this paper is structured as follows.
Section 2 provides a high-level description of CoralCDN,
and Section 3 describes its DNS system and web caching
components. In Section 4, we describe the Coral index-
ing infrastructure, its underlying DSHT layers, and the
clustering algorithms. Section 5 includes an implementa-
tion overview and Section 6 presents experimental results.
Section 7 describes related work, Section 8 discusses fu-
ture work, and Section 9 concludes.

2 The Coral Content Distribution Network

The Coral Content Distribution Network (CoralCDN) is
composed of three main parts: (1) a network of coop-
erative HTTP proxies that handle users’ requests,1 (2) a
network of DNS nameservers for nyucd.net that map
clients to nearby Coral HTTP proxies, and (3) the under-
lying Coral indexing infrastructure and clustering machin-
ery on which the first two applications are built.

2.1 Usage Models

To enable immediate and incremental deployment, Coral-
CDN is transparent to clients and requires no software or
plug-in installation. CoralCDN can be used in a variety of
ways, including:

• Publishers. A web site publisher for x.com can
change selected URLs in their web pages to “Cor-
alized” URLs, such as http://www.x.com.
nyud.net:8090/y.jpg.

• Third-parties. An interested third-party—e.g., a
poster to a web portal or a Usenet group—can Coral-
ize a URL before publishing it, causing all embedded
relative links to use CoralCDN as well.

• Users. Coral-aware users can manually construct
Coralized URLs when surfing slow or overloaded

1While Coral’s HTTP proxy definitely provides proxy functionality,
it is not an HTTP proxy in the strict RFC2616 sense; it serves requests
that are syntactically formatted for an ordinary HTTP server.

.nyud.net/
www.x.com

www.x.com
.nyud.net

dns srv
http prx

Coral
dns srv
http prx

Coral
dns srv
http prx

Coral

dns srv
http prx

Coral

dns srv
http prx

Coral

Resolver Browser

dns srv

4 4
9

8, 11

5
1 6

10

72
3dns srv

http prx

Coral

http prx

Coral

Figure 1: Using CoralCDN, the steps involved in resolving a
Coralized URL and returning the corresponding file, per Sec-
tion 2.2. Rounded boxes represent CoralCDN nodes running
Coral, DNS, and HTTP servers. Solid arrows correspond to
Coral RPCs, dashed arrows to DNS traffic, dotted-dashed arrows
to network probes, and dotted arrows to HTTP traffic.

web sites. All relative links and HTTP redirects are
automatically Coralized.

2.2 System Overview

Figure 1 shows the steps that occur when a client accesses
a Coralized URL, such as http://www.x.com.
nyud.net:8090/, using a standard web browser. The
two main stages—DNS redirection and HTTP request
handling—both use the Coral indexing infrastructure.

1. A client sends a DNS request for www.x.com.
nyud.net to its local resolver.

2. The client’s resolver attempts to resolve the host-
name using some Coral DNS server(s), possibly
starting at one of the few registered under the .net
domain.

3. Upon receiving a query, a Coral DNS server probes
the client to determines its round-trip-time and last
few network hops.

4. Based on the probe results, the DNS server checks
Coral to see if there are any known nameservers
and/or HTTP proxies near the client’s resolver.

5. The DNS server replies, returning any servers found
through Coral in the previous step; if none were
found, it returns a random set of nameservers and
proxies. In either case, if the DNS server is close to
the client, it only returns nodes that are close to itself
(see Section 3.1).

6. The client’s resolver returns the address of a Coral
HTTP proxy for www.x.com.nyud.net.

2

7. The client sends the HTTP request http://www.
x.com.nyud.net:8090/ to the specified proxy.
If the proxy is caching the file locally, it returns the
file and stops. Otherwise, this process continues.

8. The proxy looks up the web object’s URL in Coral.
9. If Coral returns the address of a node caching the

object, the proxy fetches the object from this node.
Otherwise, the proxy downloads the object from the
origin server, www.x.com (not shown).

10. The proxy stores the web object and returns it to the
client browser.

11. The proxy stores a reference to itself in Coral,
recording the fact that is now caching the URL.

2.3 The Coral Indexing Abstraction

This section introduces the Coral indexing infrastructure
as used by CoralCDN. Coral provides a distributed sloppy
hash table (DSHT) abstraction. DSHTs are designed for
applications storing soft-state key/value pairs, where mul-
tiple values may be stored under the same key. Coral-
CDN uses this mechanism to map a variety of types of
key onto addresses of CoralCDN nodes. In particular, it
uses DSHTs to find Coral nameservers topologically close
clients’ networks, to find HTTP proxies caching particu-
lar web objects, and to locate nearby Coral nodes for the
purposes of minimizing internal request latency.

Instead of one global overlay as in [5, 14, 27], each
Coral node belongs to several distinct DSHTs called clus-
ters. Each cluster is characterized by a maximum desired
network round-trip-time (RTT) we call the diameter. The
system is parameterized by a fixed hierarchy of diameters
known as levels. Every node is a member of one DSHT
at each level. A group of nodes can form a level-i cluster
if a high-enough fraction their pair-wise RTTs are below
the level-i diameter threshold. Although Coral’s imple-
mentation allows for an arbitrarily-deep DSHT hierarchy,
this paper describes a three-level hierarchy with thresh-
olds of ∞, 60 msec, and 20 msec for level-0, -1, and -2
clusters respectively. Coral queries nodes in higher-level,
fast clusters before those in lower-level, slower clusters.
This both reduces the latency of lookups and increases
the chances of returning values stored by nearby nodes.

Coral provides the following interface to higher-level
applications:

• put(key , val , ttl , [levels]): Inserts a mapping from
the key to some arbitrary value, specifying the time-
to-live of the reference. The caller may optionally
specify a subset of the cluster hierarchy to restrict
the operation to certain levels.

• get(key , [levels]): Retrieves some subset of the val-
ues stored under a key. Again, one can optionally
specify a subset of the cluster hierarchy.

• nodes(level , count, [target], [services]): Returns
count neighbors belonging to the node’s cluster as
specified by level . target, if supplied, specifies the
IP address of a machine to which the returned nodes
would ideally be near. Coral can probe target and
exploit network topology hints stored in the DSHT
to satisfy the request. If services is specified, Coral
will only return nodes running the particular service,
e.g., an HTTP proxy or DNS server.

• levels(): Returns the number of levels in Coral’s hi-
erarchy and their corresponding RTT thresholds.

The next section describes the design of CoralCDN’s
DNS redirector and HTTP proxy—especially with regard
to their use of Coral’s DSHT abstraction and clustering
hierarchy—before returning to Coral in Section 4.

3 Application-Layer Components

The Coral DNS server directs browsers fetching Coralized
URLs to Coral HTTP proxies, attempting to find ones near
the requesting client. These HTTP proxies exploit each
others’ caches in such a way as to minimize both transfer
latency and the load on origin web servers.

3.1 The Coral DNS server

The Coral DNS server, dnssrv, returns IP addresses of
Coral HTTP proxies when browsers look up the host-
names in Coralized URLs. To improve locality, it at-
tempts to return proxies near requesting clients. In partic-
ular, whenever a DNS resolver (client) contacts a nearby
dnssrv instance, dnssrv both returns proxies within an ap-
propriate cluster, and ensures that future DNS requests
from that client will not need to leave the cluster. Using
the nodes function, dnssrv also exploits Coral’s on-the-
fly network measurement capabilities and stored topology
hints to increase the chances of clients discovering nearby
DNS servers.

More specifically, every instance of dnssrv is an au-
thoritative nameserver for the domain nyucd.net. As-
suming a 3-level hierarchy, as Coral is generally config-
ured, dnssrv maps any domain name ending http.L2.
L1.L0.nyucd.net to one or more Coral HTTP prox-
ies. (For an (n + 1)-level hierarchy, the domain name
is extended out to Ln in the obvious way.) Because
such names are somewhat unwieldy, we established a
DNS DNAME alias [4], nyud.net, with target http.
L2.L1.L0.nyucd.net. Any domain name ending
nyud.net is therefore equivalent to the same name with
suffix http.L2.L1.L0.nyucd.net, allowing Cor-
alized URLs to have the more concise form http://
www.x.com.nyud.net:8090/.

dnssrv assumes that web browsers are generally close
to their resolvers on the network, so that the source ad-

3

dress of a DNS query reflects the browser’s network lo-
cation. This assumption holds to varying degrees, but is
good enough that Akamai [12], Digital Island [6], and
Mirror Image [21] have all successfully deployed com-
mercial CDNs based on DNS redirection. The locality
problem therefore is reduced to returning proxies that are
near the source of a DNS request. In order to achieve lo-
cality, dnssrv measures its round-trip-time to the resolver
and categorizes it by level. For a 3-level hierarchy, the re-
solver will correspond to a level 2, level 1, or level 0 client,
depending on how its RTT compares to Coral’s cluster-
level thresholds.

When asked for the address of a hostname ending
http.L2.L1.L0.nyucd.net, dnssrv’s reply con-
tains two sections of interest: A set of addresses for the
name—answers to the query—and a set of nameservers
for that name’s domain—known as the authority section
of a DNS reply. dnssrv returns addresses of CoralProx-
ies in the cluster whose level corresponds to the client’s
level categorization. In other words, if the RTT between
the DNS client and dnssrv is below the level-i threshold
(for the best i), dnssrv will only return addresses of Coral
nodes in its level-i cluster. dnssrv obtains a list of such
nodes with the nodes function. Note that dnssrv always re-
turns CoralProxy addresses with short time-to-live fields
(30 seconds for levels 0 and 1, 60 for level 2).

To achieve better locality, dnssrv also specifies the
client’s IP address as a target argument to nodes. This
causes Coral to probe the addresses of the last five net-
work hops to the client and use the results to look for
clustering hints in the DSHTs. To avoid significantly de-
laying clients, Coral maps these network hops using a fast,
built-in traceroute-like mechanism that combines concur-
rent probes and aggressive time-outs to minimize latency.
The entire mapping process generally requires around 2
RTTs and 350 bytes of bandwidth. A Coral node caches
results to avoid repeatedly probing the same client.

The closer dnssrv is to a client, the better its selection of
CoralProxy addresses will likely be for the client. dnssrv
therefore exploits the authority section of DNS replies to
lock a DNS client into a good cluster whenever it happens
upon a nearby dnssrv. As with the answer section, dnssrv
selects the nameservers it returns from the appropriate
cluster level and uses the target argument to exploit mea-
surement and network hints. Unlike addresses in the an-
swer section, however, it gives nameservers in the author-
ity section a long TTL (one hour). A nearby dnssrv must
therefore override any inferior nameservers a DNS client
may be caching from previous queries. dnssrv does so by
manipulating the domain for which returned nameservers
are servers. To clients more distant than the level-1 timing
threshold, dnssrv claims to return nameservers for domain
L0.nyucd.net. For clients closer than that thresh-

old, it returns nameservers for L1.L0.nyucd.net. For
clients closer than the level-2 threshold, it returns name-
servers for domain L2.L1.L0.nyucd.net. Because
DNS resolvers query the servers for the most specific
known domain, this scheme allows closer dnssrv instances
to override the results of more distant ones.

Unfortunately, although resolvers can tolerate a frac-
tion of unavailable DNS servers, browsers do not han-
dle bad HTTP servers gracefully. (This is one reason for
returning CoralProxy addresses with short TTL fields.)
As an added precaution, dnssrv only returns CoralProxy
addresses which it has recently verified first-hand. This
sometimes means synchronously checking a proxy’s sta-
tus (via a UDP RPC) prior replying to a DNS query. We
note further that people who wish to contribute only up-
stream bandwidth can flag their proxy as “non-recursive,”
in which case dnssrv will only return that proxy to clients
on local networks.

3.2 The Coral HTTP proxy

The Coral HTTP proxy, CoralProxy, satisfies HTTP re-
quests for Coralized URLs. It seeks to provide reasonable
request latency and high system throughput, even while
serving data from origin servers behind comparatively
slow network links such as home broadband connections.
This design space requires particular care in minimiz-
ing load on origin servers compared to traditional CDNs,
for two reasons. First, many of Coral’s origin servers
are likely to have slower network connections than typ-
ical customers of commercial CDNs. Second, commer-
cial CDNs often collocate a number of machines at each
deployment site and then select proxies based in part on
the URL requested—effectively distributing URLs across
proxies. Coral, in contrast, selects proxies only based on
client locality. Thus, in CoralCDN, it is much easier for
every single proxy to end up fetching a particular URL.

To aggressively minimize load on origin servers, a
CoralProxy must fetch web pages from other proxies
whenever possible. Each proxy keeps a local cache from
which it can immediately fulfill requests. When a client
requests a non-resident URL, CoralProxy first attempts
to locate a cached copy of the referenced resource using
Coral (a get), with the resource indexed by a SHA-1 hash
of its URL [22]. If CoralProxy discovers that one or more
other proxies have the data, it attempts to fetch the data
from the proxy to which it first connects. If Coral provides
no referrals or if no referrals return the data, CoralProxy
must fetch the resource directly from the origin.

While CoralProxy is fetching a web object—either
from the origin or from another CoralProxy—it inserts a
reference to itself in its DSHTs with a time-to-live of 20
seconds. (It will renew this short-lived reference until it
completes the download.) Thus, if a flash crowd suddenly

4

fetches a web page, all CoralProxies, other than the first
simultaneous requests, will naturally form a kind of mul-
ticast tree for retrieving the web page. Once any Coral-
Proxy obtains the full file, it inserts a much longer-lived
reference to itself (e.g., 1 hour). Because the insertion al-
gorithm accounts for TTL, these longer-lived references
will overwrite shorter-lived ones, and they can be stored
on well-selected nodes even under high insertion load, as
later described in Section 4.2.

CoralProxies periodically renew referrals to resources
in their caches. A proxy should not evict a web object
from its cache while a reference to it may persist in the
DSHT. Ideally, proxies would adaptively set TTLs based
on cache capacity, though this is not yet implemented.

4 Coral: A Hierarchical Indexing System

This section describes the Coral indexing infrastructure,
which CoralCDN leverages to achieve scalability, self-
organization, and efficient data retrieval. We describe how
Coral implements the put and get operations that form
the basis of its distributed sloppy hash table (DSHT) ab-
straction: the underlying key-based routing layer (4.1),
the DSHT algorithms that balance load (4.2), and the
changes that enable latency and data-placement optimiza-
tions within a hierarchical set of DSHTs (4.3). Finally,
we describe the clustering mechanisms that manage this
hierarchical structure (4.4).

4.1 Coral’s Key-Based Routing Layer

Coral’s keys are opaque 160-bit ID values; nodes are as-
signed IDs in the same 160-bit identifier space. A node’s
ID is the SHA-1 hash of its IP address. Coral defines a
distance metric on IDs. Henceforth, we describe a node
as being close to a key if the distance between the key and
the node’s ID is small. A Coral put operation stores a
key/value pair at a node close to the key. A get operation
searches for stored key/value pairs at nodes successively
closer to the key. To support these operations, a node re-
quires some mechanism to discover other nodes close to
any arbitrary key.

Every DSHT contains a routing table. For any key k, a
node R’s routing table allows it to find a node closer to k,
unless R is already the closest node. These routing tables
are based on Kademlia [17], which defines the distance
between two values in the ID-space to be their bitwise
exclusive or (XOR), interpreted as an unsigned integer.
Using the XOR metric, IDs with longer matching prefixes
(of most significant bits) are numerically closer.

The size of a node’s routing table in a DSHT is logarith-
mic in the total number of nodes comprising the DSHT.
If a node R is not the closest node to some key k, then
R’s routing table almost always contains either the clos-

976

4 6 7 9 10

103 410

RPC#3 (0)

R

0 2 3 13 14

{4, 5, 7}

109764310

4 5 7

{4, 5, 7}
RPC#1 (2)

target 2

RPC#2 (1)

target 0

target 5distance (nodeids xor 4)

nodeids

Figure 2: Example of routing operations in a system contain-
ing eight nodes with IDs {4, 5, 7, 0, 2, 3, 13, 14}. In this illus-
tration, node R with id = 14 is looking up the node closest to
key k = 4, and we have sorted the nodes by their distance to
k. The top boxed row illustrates XOR distances for the nodes
{0, 2, 3, 13, 14} that are initially known by R. R first contacts a
known peer whose distance to k is closest to half of R’s distance
(10/2 = 5); in this illustration, this peer is node zero, whose
distance to k is 0 ⊕ 4=4. Data in RPC requests and responses
are shown in parentheses and braces, respectively: R asks node
zero for its peers that are half-way closer to k, i.e., those at dis-
tance 4

2
=2. R inserts these new references into its routing table

(middle row). R now repeats this process, contacting node five,
whose distance 1 is closest to 4

2
. Finally, R contacts node four,

whose distance is 0, and completes its search (bottom row).

est node to k, or some node whose distance to k is at least
one bit shorter than R’s. This permits R to visit a se-
quence of nodes with monotonically decreasing distances
[d1, d2, . . .] to k, such that the encoding of di+1 as a bi-
nary number has one fewer bit than di. As a result, the
expected number of iterations for R to discover the clos-
est node to k is logarithmic in the number of nodes.

Figure 2 illustrates the Coral routing algorithm, which
successively visits nodes whose distances to the key are
approximately halved each iteration. Traditional key-
based routing layers attempt to route directly to the node
closest to the key whenever possible [25, 26, 31, 35], re-
sorting to several intermediate hops only when faced with
incomplete routing information. By caching additional
routing state—beyond the necessary log(n) references—
these systems in practice manage to achieve routing in a
constant number of hops. We observe that frequent refer-
ences to the same key can generate high levels of traffic in
nodes close to the key. This congestion, called tree satu-
ration, was first identified in shared-memory interconnec-
tion networks [24].

5

To minimize tree saturation, each iteration of a Coral
search prefers to correct only b bits at a time.2 More
specifically, let splice(k, r, i) designate the most signifi-
cant bi bits of k followed by the least significant 160− bi
bits of r. If node R with ID r wishes to search for key
k, R first initializes a variable t ← r. At each iteration,
R updates t ← splice(k, t, i), using the smallest value
of i that yields a new value of t. The next hop in the
lookup path is the closest node to t that already exists in
R’s routing table. As described below, by limiting the use
of potentially closer known hops in this way, Coral can
avoid overloading any node, even in the presence of very
heavily accessed keys.

The potential downside of longer lookup paths is higher
lookup latency in the presence of slow or stale nodes. In
order to mitigate these effects, Coral keeps a window of
multiple outstanding RPCs during a lookup, possibly con-
tacting the closest few nodes to intermediary target t.

4.2 Sloppy Storage

Coral uses a sloppy storage technique that caches
key/value pairs at nodes whose IDs are close to the key
being referenced. These cached values reduce hot-spot
congestion and tree saturation throughout the indexing in-
frastructure: They frequently satisfy put and get requests
at nodes other than those closest to the key. This charac-
teristic differs from DHTs, whose put operations all pro-
ceed to nodes closest to the key.

The Insertion Algorithm. Coral performs a two-phase
operation to insert a key/value pair. In the first, or “for-
ward,” phase, Coral routes to nodes that are successively
closer to the key, as previously described. However, to
avoid tree saturation, an insertion operation may terminate
prior to locating the closest node to the key, in which case
the key/value pair will be stored at a more distant node.
More specifically, the forward phase terminates whenever
the storing node happens upon another node that is both
full and loaded for the key:

1. A node is full with respect to some key k when it
stores l values for k whose TTLs are all at least one-
half of the new value.

2. A node is loaded with respect to k when it has re-
ceived more than the maximum leakage rate β re-
quests for k within the past minute.

In our experiments, l =4 and β =12, meaning that un-
der high load, a node claims to be loaded for all but one
store attempt every 5 seconds. This prevents excessive
numbers of requests from hitting the key’s closest nodes,
yet still allows enough requests to propagate to keep val-
ues at these nodes fresh.

2Experiments in this paper use b = 1.

In the forward phase, Coral’s routing layer makes re-
peated RPCs to contact nodes successively closer to the
key. Each of these remote nodes returns (1) whether the
key is loaded and (2) the number of values it stores under
the key, along with the minimum expiry time of any such
values. The client node uses this information to determine
if the remote node can accept the store, potentially evict-
ing a value with a shorter TTL. This forward phase ter-
minates when the client node finds either the node closest
to the key, or a node that is full and loaded with respect
to the key. The client node places all contacted nodes that
are not both full and loaded on a stack, ordered by XOR
distance from the key.

During the reverse phase, the client node attempts to
insert the value at the remote node referenced by the
top stack element, i.e., the node closest to the key. If
this operation does not succeed—perhaps due to others’
insertions—the client node pops the stack and tries to in-
sert on the new stack top. This process is repeated until a
store succeeds or the stack is empty.

This two-phase algorithm avoids tree saturation by stor-
ing values progressively further from the key. Still, evic-
tion and the leakage rate β ensure that nodes close to
the key retain long-lived values, so that live keys remain
reachable: β nodes per minute that contact an interme-
diate node (including itself) will go on to contact nodes
closer to the key. For a perfectly-balanced tree, the key’s
closest node receives only

(

β · (2b− 1) · d log n

b
e
)

store
requests per minute, when fixing b bits per iteration.

Proof sketch. Each node in a system of n nodes can be
uniquely identified by a string S of log n bits. Consider
S to be a string of b-bit digits. A node will contact the
closest node to the key before it contacts any other node
if and only if its ID differs from the key in exactly one
digit. There are d(log n)/be digits in S. Each digit can
take on 2b−1 values that differ from the key. Every node
that differs in one digit will throttle all but β requests per
minute. Therefore, the closest node receives a maximum
rate of

(

β · (2b−1) · d log n

b
e
)

RPCs per minute.
Irregularities in the node ID distribution may increase

this rate slightly, but the overall rate of traffic is still loga-
rithmic, while in traditional DHTs it is linear. Section 6.4
provides supporting experimental evidence.

The Retrieval Algorithm. To retrieve the value associ-
ated with a key k, a node simply traverses the ID space
with RPCs. When it finds a peer storing k, the remote
peer returns k’s corresponding list of values. The node ter-
minates its search and get returns. The requesting client
application handles these redundant references in some
application-specific way, e.g., CoralProxy contacts mul-
tiple sources in parallel to download cached content.

Multiple stores of the same key will be spread over mul-
tiple nodes. The pointers retrieved by the application are

6

thus distributed among those stored, providing load bal-
ancing both within Coral and between servers using Coral.

4.3 Hierarchical Operations

For locality-optimized routing and data placement, Coral
uses several levels of DSHTs called clusters. Each level-
i cluster is named by a randomly-chosen 160-bit cluster
identifier; the level-0 cluster ID is predefined as 0160. Re-
call that a set of nodes should form a cluster if their aver-
age, pair-wise RTTs are below some threshold. As men-
tioned earlier, we describe a three-level hierarchy with
thresholds of∞, 60 msec, and 20 msec for level-0, -1, and
-2 clusters respectively. In Section 6, we present experi-
mental evidence to the client-side benefit of clustering.

Figure 3 illustrates Coral’s hierarchical routing opera-
tions. Each Coral node has the same node ID in all clus-
ters to which it belongs; we can view a node as projecting
its presence to the same location in each of its clusters.
This structure must be reflected in Coral’s basic routing
infrastructure, in particular to support switching between
a node’s distinct DSHTs midway through a lookup.3

The Hierarchical Retrieval Algorithm. A requesting
node R specifies the starting and stopping levels at which
Coral should search. By default, it initiates the get query
on its highest (level-2) cluster to try to take advantage of
network locality. If routing RPCs on this cluster hit some
node storing the key k (RPC 1 in Fig. 3), the lookup halts
and returns the corresponding stored value(s)—a hit—
without ever searching lower-level clusters.

If a key is not found, the lookup will reach k’s closest
node C2 in this cluster (RPC 2), signifying failure at this
level. So, node R continues the search in its level-1 clus-
ter. As these clusters are very often concentric, C2 likely
exists at the identical location in the identifier space in all
clusters, as shown. R begins searching onward from C2

in its level-1 cluster (RPC 3), having already traversed the
ID-space up to C2’s prefix.

Even if the search eventually switches to the global
cluster (RPC 4), the total number of RPCs required is
about the same as a single-level lookup service, as a
lookup continues from the point at which it left off in
the identifier space of the previous cluster. Thus, (1)
all lookups at the beginning are fast, (2) the system can
tightly bound RPC timeouts, and (3) all pointers in higher-
level clusters reference data within that local cluster.

The Hierarchical Insertion Algorithm. A node starts
by performing a put on its level-2 cluster as in Section 4.2,
so that other nearby nodes can take advantage of locality.

3We initially built Coral using the Chord [31] routing layer as a
block-box; difficulties in maintaining distinct clusters and the complex-
ity of the subsequent system caused us to scrap the implementation.

C 2

C 1 C 2

C 1

C 0

C 2
10

1

1

1

1

1

111

1

1

11

0

0

0

0 0

0

0 0

0

0

0

0

000 1 1

1

1

1

11

1

1

0

0

0 0

0

0

0 1

10

1

1

0

0 0

160−bit id space 11...11

level 2
k

level 0

1

3

2

4

R

R

R

level 1

1

00...00

1

0

Figure 3: Coral’s hierarchical routing structure. Nodes use the
same IDs in each of their clusters; higher-level clusters are natu-
rally sparser. Note that a node can be identified in a cluster by its
shortest unique ID prefix, e.g., “11” for R in its level-2 cluster;
nodes sharing ID prefixes are located on common subtrees and
are closer in the XOR metric. While higher-level neighbors usu-
ally share lower-level clusters as shown, this is not necessarily
so. RPCs for a retrieval on key k are sequentially numbered.

However, this placement is only “correct” within the con-
text of the local level-2 cluster. Thus, provided that the
key is not already loaded, the node continues its insertion
in the level-1 cluster from the point at which the key was
inserted in level 2, much as in the retrieval case. Again,
Coral traverses the ID-space only once. As illustrated
in Figure 3, this practice results in a loose hierarchical
cache, whereby a lower-level cluster contains nearly all
data stored in the higher-level clusters to which its mem-
bers also belong.

To enable such cluster-aware behavior, the headers of
every Coral RPC include the sender’s cluster information:
the identifier, age, and a size estimate of each of its non-
global clusters. The recipient uses this information to de-
multiplex requests properly, i.e., a recipient should only
consider a put and get for those levels on which it shares
a cluster with the sender. Additionally, this information
drives routing table management: (1) nodes are added or
removed from the local cluster-specific routing tables ac-

7

cordingly; (2) cluster information is accumulated to drive
cluster management, as described next.

4.4 Joining and Managing Clusters

As in any peer-to-peer system, a peer contacts an existing
node to join the system. Next, a new node makes sev-
eral queries to seed its routing tables. However, for non-
global clusters, Coral adds one important requirement: A
node will only join an acceptable cluster, where accept-
ability requires that the latency to 80% of the nodes be
below the cluster’s threshold. A node can easily deter-
mine whether this condition holds by recording minimum
round-trip-times (RTTs) to some subset of nodes belong-
ing to the cluster.

While nodes learn about clusters as a side effect of nor-
mal lookups, Coral also exploits its DSHTs to store hints.
When Coral starts up, it uses its built-in fast traceroute
mechanism (described in Section 3.1) to determine the ad-
dresses of routers up to five hops out. Excluding any pri-
vate (“RFC1918”) IP addresses, Coral uses these router
addresses as keys under which to index clustering hints in
its DSHTs. More specifically, a node R stores mappings
from each router address to its own IP address and UDP
port number. When a new node S, sharing a gateway with
R, joins the network, it will find one or more of R’s hints
and quickly cluster with it, assuming R is, in fact, near S.

In addition, nodes store mappings to themselves using
as keys any IP subnets they directly connect to and the
24-bit prefixes of gateway router addresses. These prefix
hints are of use to Coral’s level function, which tracer-
outes clients in the other direction; addresses on forward
and reverse traceroute paths often share 24-bit prefixes.

Nodes continuously collect clustering information from
peers: All RPCs include round-trip-times, cluster mem-
bership, and estimates of cluster size. Every five min-
utes, each node considers changing its cluster member-
ship based on this collected data. If this collected data
indicates that an alternative candidate cluster is desirable,
the node first validates the collected data by contacting
several nodes within the candidate cluster by routing to
selected keys. A node can also form a new singleton clus-
ter when 50% of its accesses to members of its present
cluster do not meet the RTT constraints.

If probes indicate that 80% of a cluster’s nodes are
within acceptable TTLs and the cluster is larger, it re-
places a node’s current cluster. If multiple clusters are
acceptable, then Coral chooses the largest cluster.

Unfortunately, Coral has only rough approximations of
cluster size, based on its routing-table size. If nearby clus-
ters A and B are of similar sizes, inaccurate estimations
could lead to oscillation as nodes flow back-and-forth (al-
though we have not observed such behavior). To perturb
an oscillating system into a stable state, Coral employs a

preference function δ that shifts every hour. A node se-
lects the larger cluster only if the following holds:

∣

∣

∣
log(sizeA)− log(sizeB)

∣

∣

∣
> δ (min(ageA, ageB))

where age is the current time minus the cluster’s creation
time. Otherwise, a node simply selects the cluster with
the lower cluster ID.

We use a square wave function for δ that takes a value
0 on an even number of hours and 2 on an odd number.
For clusters of disproportionate size, the selection func-
tion immediately favors the larger cluster. Otherwise, δ’s
transition perturbs clusters to a steady state.4

In either case, a node that switches clusters still remains
in the routing tables of nodes in its old cluster. Thus,
old neighbors will still contact it and learn of its new,
potentially-better, cluster. This produces an avalanche ef-
fect as more and more nodes switch to the larger cluster.
This merging of clusters is very beneficial. While a small
cluster diameter provides fast lookup, a large cluster ca-
pacity increases the hit rate.

5 Implementation

The Coral indexing system is composed of a client library
and stand-alone daemon. The simple client library allows
applications, such as our DNS server and HTTP proxy, to
connect to and interface with the Coral daemon. Coral is
14,000 lines of C++, the DNS server, dnssrv, is 2,000 lines
of C++, and the HTTP proxy is an additional 4,000 lines.
All three components use the asynchronous I/O library
provided by the SFS toolkit [19] and are structured by
asynchronous events and callbacks. Coral network com-
munication is via RPC over UDP. We have successfully
run Coral on Linux, OpenBSD, FreeBSD, and Mac OS X.

6 Evaluation

In this section, we provide experimental results that sup-
port our following hypotheses:

1. CoralCDN dramatically reduces load on servers,
solving the “flash crowd” problem.

2. Clustering provides performance gains for popular
data, resulting in good client performance.

3. Coral naturally forms suitable clusters.

4. Coral prevents hot spots within its indexing system.

4Should clusters of similar size continuously exchange members
when δ is zero, as soon as δ transitions, nodes will all flow to the cluster
with the lower cluster id. Should the clusters oscillate when δ = 2 (as
the estimations “hit” with one around 2

2-times larger), the nodes will all
flow to the larger one when δ returns to zero.

8

To examine all claims, we present wide-area measure-
ments of a synthetic work-load on CoralCDN nodes run-
ning on PlanetLab, an internationally-deployed test bed.
We use such an experimental setup because traditional
tests for CDNs or web servers are not interesting in evalu-
ating CoralCDN: (1) Client-side traces generally measure
the cacheability of data and client latencies. However, we
are mainly interested in how well the system handles load
spikes. (2) Benchmark tests such as SPECweb99 mea-
sure the web server’s throughput on disk-bound access
patterns, while CoralCDN is designed to reduce load on
off-the-shelf web servers that are network-bound.

The basic structure of the experiments were is follows.
First, on 166 PlanetLab machines geographically distri-
buted mainly over North America and Europe, we launch
a Coral daemon, as well as a dnssrv and CoralProxy.
For experiments referred to as multi-level, we configure a
three-level hierarchy by setting the clustering RTT thresh-
old of level 1 to 60 msec and level 2 to 20 msec. Ex-
periments referred to as single-level use only the level-0
global cluster. No objects are evicted from CoralProxy
caches during these experiments. For simplicity, all nodes
are seeded with the same well-known host. The network
is allowed to stabilize for 30 minutes.5

Second, we run an unmodified Apache web server
sitting behind a DSL line with 384 Kbit/sec upstream
bandwidth, serving 12 different 41KB files, representing
groups of three embedded images referenced by four web
pages.

Third, we launch client processes on each machine that,
after an additional random delay between 0 and 180 sec-
onds for asynchrony, begin making HTTP GET requests
to Coralized URLs. Each client generates requests for the
group of three files, corresponding to a randomly selected
web page, for a period of 30 minutes. While we recognize
that web traffic generally has a Zipf distribution, we are
attempting merely to simulate a flash crowd to a popular
web page with multiple, large, embedded images (i.e., the
Slashdot effect). With 166 clients, we are generating 99.6
requests/sec, resulting in a cumulative download rate of
approximately 32, 800 Kb/sec. This rate is almost two or-
ders of magnitude greater than the origin web server could
handle. Note that this rate was chosen synthetically and
in no way suggests a maximum system throughput.

For Experiment 4 (Section 6.4), we do not run any such
clients. Instead, Coral nodes generate requests at very
high rates, all for the same key , to examine how the DSHT
indexing infrastructure prevents nodes close to a target ID
from becoming overloaded.

5The stabilization time could be made shorter by reducing the clus-
tering period (5 minutes). Additionally, in real applications, clustering
is in fact a simpler task, as new nodes would immediately join nearby
large clusters as they join the pre-established system. In our setup, clus-
ters develop from an initial network comprised entirely of singletons.

 0

 100

 200

 300

 0 300 600 900 1200

R
eq

ue
st

s
/ M

in
ut

e

Time (sec)

level 2
level 1
level 0

origin server

Figure 4: The number of client accesses to CoralProxies and the
origin HTTP server. CoralProxy accesses are reported relative to
the cluster level from which data was fetched, and do not include
requests handled through local caches.

6.1 Server Load

Figure 4 plots the number of requests per minute that
could not be handled by a CoralProxy’s local cache. Dur-
ing the initial minute, 15 requests hit the origin web server
(for 12 unique files). The 3 redundant lookups are due to
the simultaneity at which requests are generated; subse-
quently, requests are handled either through CoralCDN’s
wide-area cooperative cache or through a proxy’s local
cache, supporting our hypothesis that CoralCDN can mi-
grate load off of a web server.

During this first minute, equal numbers of requests
were handled by the level-1 and level-2 cluster caches.
However, as the files propagated into CoralProxy caches,
requests quickly were resolved within faster level-2 clus-
ters. Within 8-10 minutes, the files became replicated at
nearly every server, so few client requests went further
than the proxies’ local caches. Repeated runs of this ex-
periment yielded some variance in the relative magnitudes
of the initial spikes in requests to different levels, although
the number of origin server hits remained consistent.

6.2 Client Latency

Figure 5 shows the end-to-end latency for a client to fetch
a file from CoralCDN, following the steps given in Sec-
tion 2.2. The top graph shows the latency across all Plan-
etLab nodes used in the experiment, the bottom graph
only includes data from the clients located on 5 nodes
in Asia (Hong Kong (2), Taiwan, Japan, and the Philip-
pines). Because most nodes are located in the U.S. or Eu-
rope, the performance benefit of clustering is much more
pronounced on the graph of Asian nodes.

Recall that this end-to-end latency includes the time for
the client to make a DNS request and to connect to the

9

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

(s
ec

)

Fraction of Requests

single-level
multi-level
multi-level, traceroute

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

(s
ec

)

Fraction of Requests

Asia, single-level
Asia, multi-level
Asia, multi-level, traceroute

Request latency (sec) All nodes Asian nodes
50% 96% 50% 96%

single-level 0.79 9.54 2.52 8.01
multi-level 0.31 4.17 0.04 4.16

multi-level, traceroute 0.19 2.50 0.03 1.75

Figure 5: End-to-End client latency for requests for Coralized
URLs, comparing the effect of single-level vs. multi-level clus-
ters and of using traceroute during DNS redirection. The top
graph includes all nodes; the bottom only nodes in Asia.

discovered CoralProxy. The proxy attempts to fulfill the
client request first through its local cache, then through
Coral, and finally through the origin web server. We note
that CoralProxy implements cut-through routing by for-
warding data to the client prior to receiving the entire file.

These figures report three results: (1) the distribution of
latency of clients using only a single level-0 cluster (the
solid line), (2) the distribution of latencies of clients using
multi-level clusters (dashed), and (3) the same hierarchi-
cal network, but using traceroute during DNS resolution
to map clients to nearby proxies (dotted).

All clients ran on the same subnet (and host, in fact) as a
CoralProxy in our experimental setup. This would not be
the case in the real deployment: We would expect a com-

 0.01

 0.1

 1

 10

 0 0.2 0.4 0.6 0.8 1

La
te

nc
y

(s
ec

)

Fraction of Requests

single-level
multi-level

Figure 6: Latencies for proxy to get keys from Coral.

bination of hosts sharing networks with CoralProxies—
within the same IP prefix as registered with Coral—and
hosts without. Although the multi-level network using
traceroute provides the lowest latency at most percentiles,
the multi-level system without traceroute also performs
better than the single-level system. Clustering has a clear
performance benefit for clients, and this benefit is partic-
ularly apparent for poorly-connected hosts.

Figure 6 shows the latency of get operations, as seen by
CoralProxies when they lookup URLs in Coral (Step 8 of
Section 2.2). We plot the get latency on the single level-0
system vs. the multi-level systems. The multi-level sys-
tem is 2-5 times faster up to the 80% percentile. After the
98% percentile, the single-level system is actually faster:
Under heavy packet loss, the multi-system requires a few
more timeouts as it traverses its hierarchy levels.

6.3 Clustering

Figure 7 illustrates a snapshot of the clusters from the pre-
vious experiments, at the time when clients began fetch-
ing URLs (30 minutes out). This map is meant to provide
a qualitative feel for the organic nature of cluster devel-
opment, as opposed to offering any quantitative measure-
ments. On both maps, each unique, non-singleton clus-
ter within the network is assigned a letter. We have plot-
ted the location of our nodes by latitude/longitude coor-
dinates. If two nodes belong to the same cluster, they are
represented by the same letter. As each PlanetLab site
usually collocates several servers, the size of the letter
expresses the number of nodes at that site that belong to
the same cluster. For example, the very large “H” (world
map) and “A” (U.S. map) correspond to nodes collocated
at U.C. Berkeley. We did not include singleton clusters on
the maps to improve readability; post-run analysis showed
that such nodes’ RTTs to others (surprisingly, sometimes
even at the same site) were above the Coral thresholds.

10

AA

B

C
C

D
E

F

GG

HH
H

H
H

HH
HH

H
H

H
H H

H
H

I

I I
II

I

III

I

I II
I

I
I

I
I I

I I
II I

I

I I IIII
I

II

I

I
I I

I
I

I
I III

I

J

J
J

J
J

JJ J
J

J J

J

K
K

AA

B

C
C

D
E

F

GG

HHHHH HH

H

H

HHH
H

HH
I

I I
II

I

III

I

I II
I

I
I

I
I I

I I
II I

I

I IIIII
I

II

I

II
I

I
I

II

I III

J

J
J

J
J

JJ J
J

J J

J

K
K

AA

B

C
C

D
E

F

GG

HHHHH HH

H

H

HHH
H

HH
I

I I
II

I

III

I

I II
I

I
I

I
I I

I I
II I

I

I IIIII
I

II

I

II
I

I
I

II

I III

J

J
J

J
J

JJ J
J

J J

J

K
K

AA

B

C
C

D
E

F

GG

HHHHH HH

H

H

HHH
H

HH
I

I I
II

I

III

I

I II
I

I
I

I
I I

I I
II I

I

I IIIII
I

II

I

II
I

I
I

II

I III

J

J
J

J
J

JJ J
J

J J

J

K
K

AA

B

C
C

D
E

F

GG

HHHHH HH

H

H

HHH
H

HH
I

I I
II

I

III

I

I II
I

I
I

I
I I

I I
II I

I

I IIIII
I

II

I

II
I

I
I

II

I III

J

J
J

J
J

JJ J
J

J J

J

K
K

AA

B

C
C

D
E

F

GG

HHHHH HH

H

H

HHH
H

HH
I

I I
II

I

III

I

I II
I

I
I

I
I I

I I
II I

I

I IIIII
I

II

I

II
I

I
I

II

I III

J

J
J

J
J

JJ J
J

J J

J

K
K

AA

B

C
C

D
E

F

GG

HHHHH HH

H

H

HHH
H

HH
I

I I
II

I

III

I

I II
I

I
I

I
I I

I I
II I

I

I IIIII
I

II

I

II
I

I
I

II

I III

J

J
J

J
J

JJ J
J

J J

J

K
K

AA

B

C
C

D
E

F

GG

HHHHH HH

H

H

HHH
H

HH
I

I I
II

I

III

I

I II
I

I
I

I
I I

I I
II I

I

I IIIII
I

II

I

II
I

I
I

II

I III

J

J
J

J
J

JJ J
J

J J

J

K
K

AA

B

C
C

D
E

F

GG

HHHHH HH

H

H

HHH
HH

I

I I
II

I

III

I

I II
I

I
I

I
I I

I I
II I

I

I IIIII
I

II

I

II
I

I
I

II

I III

J

J
J

J
J

JJ J
J

J J

J

K
K

AA

B

C
C

D
E

F

GG

HHHHH HH

H

H

H

HH
I

I
II

I

III

I

I II
I

I
I

I
I I

I
II I

IIIII
I

II

I

II
I

I
I

II

I I
I

J

J
J

J
J

JJ J
J

J

J

K
K

A

C
C

GG

HH
H

HH

H

H

H

II

I

I

I

I
I

I
I I II I

IIII
I

II
II

I
I

I

I

I

J

J

J

JJ

JK

X
X

X

3 nodes

2 nodes

1 node

A
AA

A
A

AA

A
A

B

B

B

B

C

C

DD

E

E

E

E

F

F

G

H

H

I

J

J
JJ

K

K

K

L

M

N

O
O

O

O

O

OO
O

O

O O

O
O

O

O
O

O

P

P P

P

A

A

A
A

AA

A
A

B

B

B

B

C

C

DD

E

E

E

E

F

F

G

H

H

I

J

J
JJ

K

K

K

L

M

N

O
O

O

O

O

OO
O

O

O O

O
O

O

O
O

O

P

P P

P

A

A

A
A

AA

A
A

B

B

B

B

C

C

DD

E

E

E

E

F

F

G

H

H

I

J

J
JJ

K

K

K

L

M

N

O
O

O

O

O

OO
O

O

O O

O
O

O

O
O

O

P

P P

P

A

A

A
A

AA

A
A

B

B

B

B

C

C

DD

E

E

E

E

F

F

G

H

H

I

J

J
JJ

K

K

K

L

M

N

O
O

O

O

O

OO
O

O

O O

O
O

O

O
O

O

P

P P

P

A

A

A
A

AA

A
A

B

B

B

B

C

C

DD

E

E

E

E

F

F

G

H

H

I

J

J
JJ

K

K

K

L

M

N

O
O

O

O

O

OO
O

O

O O

O
O

O

O
O

O

P

P P

P

A

A

A
A

AA

A
A

B

B

B

B

C

C

DD

E

E

E

E

F

F

G

H

H

I

J

J
JJ

K

K

K

L

M

N

O
O

O

O

O

OO
O

O

O O

O
O

O

O
O

O

P

P P

P

A

A

A
A

AA

A
A

B

B

B

B

C

C

DD

E

E

E

E

F

F

G

H

H

I

J

J
JJ

K

K

K

L

M

N

O
O

O

O

O

OO
O

O

O O

O
O

O

O
O

O

P

P P

P

A

A

A
A

AA

A
A

B

B

B

B

C

C

DD

E

E

E

E

F

F

G

H

H

I

J

JJ

K

K

K

L

M

N

O
O

O

O

O

OO
O

O

O O

O
O

O

O
O

O

P

P P

P

A

A

A
A

AA

A
A

B

B

B

B

C

C

DD

E

E

E

E

F

F

G

H

H

J

J

K

K

L

M

N

O
O

O

O

OO
O

O

O OO

O

O

O

P

P P

P

A

A

A
A

B

B

C

C

DD

E

E

E

F

F

H

H

J

J

K

K

L

O
O

O

O

O

O

OO

P

P

X
X

X

3 nodes

2 nodes

1 node

Figure 7: World view of level-1 clusters (60 msec threshold),
and United States view of level-2 clusters (20 msec threshold).
Each unique, non-singleton cluster is assigned a letter; the size
of the letter corresponds to collocated nodes in the same cluster.

The world map shows that Coral found natural divi-
sions between sets of nodes along geospatial lines at a 60
msec threshold. The map shows several distinct regions,
the most dramatic being the Eastern U.S. (70 nodes), the
Western U.S. (37 nodes), and Europe (19 nodes). The
close correlation between network and physical distance
suggests that speed-of-light delays dominate round-trip-
times. Note that, as we did not plot singleton clusters, the
map does not include three Asian nodes (in Japan, Taiwan,
and the Philippines, respectively).

The United States map shows level-2 clusters again
roughly separated by physical locality. The map shows
16 distinct clusters; obvious clusters include California
(22 nodes), the Pacific Northwest (9 nodes), the South, the
Midwest, etc. The Northeast Corridor cluster contains 29
nodes, stretching from North Carolina to Massachusetts.
One interesting aspect of this map is the three separate,
non-singleton clusters in the San Francisco Bay Area.
Close examination of individual RTTs between these sites
shows widely varying latencies; Coral clustered correctly
given the underlying network topology.

6.4 Load Balancing

Finally, Figure 8 shows the extent to which a DSHT bal-
ances requests to the same key ID. In this experiment,
we ran 3 nodes on each of the earlier hosts for a to-
tal of 494 nodes. We configured the system as a single

 0

 12

 24

 36

 48

 60

 72

 84

near far

R
eq

ue
st

s
/ M

in
ut

e

Distance to Hotspot

Figure 8: The total number of put RPCs hitting each Coral node
per minute, sorted by distance from node ID to target key.

level-0 cluster. At the same time, all PlanetLab nodes be-
gan to issue back-to-back put /get requests at their max-
imum (non-concurrent) rates. All operations referenced
the same key; the values stored during put requests were
randomized. On average, each node issued 400 put /get
operation pairs per second, for a total of approximately
12 million put /get requests per minute, although only a
fraction hit the network. Once a node is storing a key,
get requests are satisfied locally. Once it is loaded, each
node only allows the leakage rate β RPCs “through” it per
minute.

The graphs show the number of put RPCs that hit each
node in steady-state, sorted by the XOR distance of the
node’s ID to the key. During the first minute, the clos-
est node received 106 put RPCs. In the second minute,
as shown in Figure 8, the system reached steady-state
with the closest node receiving 83 put RPCs per minute.
Recall that our equation in Section 4.2 predicts that it
should receive (β · log n) = 108 RPCs per minute. The
plot strongly emphasizes the efficacy of the leakage rate
β = 12, as the number of RPCs received by the majority
of nodes is a low multiple of 12.

No nodes on the far side of the graph received any
RPCs. Coral’s routing algorithm explains this condition:
these nodes begin routing by flipping their ID’s most-
significant bit to match the key’s, and they subsequently
contact a node on the near side. We have omitted the graph
of get RPCs: During the first minute, the most-loaded
node received 27 RPCs; subsequently, the key was widely
distributed and the system quiesced.

7 Related work

CoralCDN builds on previous work in peer-to-peer sys-
tems and web-based content delivery.

11

7.1 DHTs and directory services

A distributed hash table (DHT) exposes two basic func-
tions to the application: put(key , value) stores a value
at the specified key ID; get(key) returns this stored value,
just as in a normal hash table. Most DHTs use a key-based
routing layer—such as CAN [25], Chord [31], Kadem-
lia [17], Pastry [26], or Tapestry [35]—and store keys on
the node whose ID is closest to the key. Keys must be
well distributed to balance load among nodes. DHTs often
replicate multiply-fetched key/value pairs for scalability,
e.g., by having peers replicate the pair onto the second-to-
last peer they contacted as part of a get request.

DHTs can act either as actual data stores or merely
as directory services storing pointers. CFS [5] and
PAST [27] take the former approach to build a distri-
buted file system: They require true read/write consis-
tency among operations, where writes should atomically
replace previously-stored values, not modify them.

Using the network as a directory service, Tapestry [35]
and Coral relax the consistency of operations in the net-
work. To put a key, Tapestry routes along fast hops be-
tween peers, placing at each peer a pointer back to the
sending node, until it reaches the node closest to the
key. Nearby nodes routing to the same key are likely
to follow similar paths and discover these cached point-
ers. Coral’s flexible clustering provides similar latency-
optimized lookup and data placement, and its algorithms
prevent multiple stores from forming hot spots. SkipNet
also builds a hierarchy of lookup groups, although it ex-
plicitly groups nodes by domain name to support organi-
zational disconnect [9].

7.2 Web caching and content distribution

Web caching systems fit within a large class of CDNs that
handle high demand through diverse replication.

Prior to the recent interest in peer-to-peer systems, sev-
eral projects proposed cooperative Web caching [2, 7, 8,
16]. These systems either multicast queries or require
that caches know some or all other servers, which wors-
ens their scalability, fault-tolerance, and susceptibility to
hot spots. Although the cache hit rate of cooperative web
caching increases only to a certain level, corresponding to
a moderate population size [34], highly-scalable coopera-
tive systems can still increase the total system throughput
by reducing server-side load.

Several projects have considered peer-to-peer overlays
for web caching, although all such systems only benefit
participating clients and thus require widespread adoption
to reduce server load. Stading et al. use a DHT to cache
replicas [29], and PROOFS uses a randomized overlay to
distribute popular content [30]. Both systems focus solely
on mitigating flash crowds and suffer from high request

latency. Squirrel proposes web caching on a traditional
DHT, although only for organization-wide networks [10].
Squirrel reported poor load-balancing when the system
stored pointers in the DHT. We attribute this to the DHT’s
inability to handle too many values for the same key—
Squirrel only stored 4 pointers per object—while Coral-
CDN references many more proxies by storing different
sets of pointers on different nodes. SCAN examined repli-
cation policies for data disseminated through a multicast
tree from a DHT deployed at ISPs [3].

Akamai [1] and other commercial CDNs use DNS redi-
rection to reroute client requests to local clusters of ma-
chines, having built detailed maps of the Internet through
a combination of BGP feeds and their own measurements,
such as traceroutes from numerous vantage points [28].
Then, upon reaching a cluster of collocated machines,
hashing schemes [11, 32] map requests to specific ma-
chines to increase capacity. These systems require de-
ploying large numbers of highly provisioned servers, and
typically result in very good performance (both latency
and throughput) for customers.

Such centrally-managed CDNs appear to offer two ben-
efits over CoralCDN. (1) CoralCDN’s network measure-
ments, via traceroute-like probing of DNS clients, are
somewhat constrained in comparison. CoralCDN nodes
do not have BGP feeds and are under tight latency con-
straints to avoid delaying DNS replies while probing. Ad-
ditionally, Coral’s design assumes that no single node
even knows the identity of all other nodes in the system,
let alone their precise network location. Yet, if many peo-
ple adopt the system, it will build up a rich database of
neighboring networks. (2) CoralCDN offers less aggre-
gate storage capacity, as cache management is completely
localized. But, it is designed for a much larger number
of machines and vantage points: CoralCDN may provide
better performance for small organizations hosting nodes,
as it is not economically efficient for commercial CDNs
to deploy machines behind most bottleneck links.

More recently, CoDeeN has provided users with a set
of open web proxies [23]. Users can reconfigure their
browsers to use a CoDeeN proxy and subsequently en-
joy better performance. The system has been deployed,
and anecdotal evidence suggests it is very successful at
distributing content efficiently. Earlier simulation results
show that certain policies should achieve high system
throughput and low request latency [33]. (Specific details
of the deployed system have not yet been published, in-
cluding an Akamai-like service also in development.)

Although CoDeeN gives participating users better per-
formance to most web sites, CoralCDN’s goal is to
gives most users better performance to participating web
sites—namely those whose publishers have “Coralized”
the URLs. The two design points pose somewhat dif-

12

ferent challenges. For instance, CoralCDN takes pains
to greatly minimize the load on under-provisioned origin
servers, while CoDeeN has tighter latency requirements
as it is on the critical path for all web requests. Finally,
while CoDeeN has suffered a number of administrative
headaches, many of these problems do not apply to Coral-
CDN, as, e.g., CoralCDN does not allow POST operations
or SSL tunneling, and it can be barred from accessing par-
ticular sites without affecting users’ browsing experience.

8 Future Work

Security. This paper does not address CoralCDN’s se-
curity issues. Probably the most important issue is en-
suring the integrity of cached data. Given our experience
with spam on the Internet, we should expect that adver-
saries will attempt to replace cached data with advertise-
ments for pornography or prescription drugs. A solution
is future work, but breaks down into three components.

First, honest Coral nodes should not cache invalid
data. A possible solution might include embedding self-
certifying pathnames [20] in Coralized URLs, although
this solution requires server buy-in. Second, Coral nodes
should be able to trace the path that cached data has taken
and exclude data from known bad systems. Third, we
should try to prevent clients from using malicious proxies.
This requires client buy-in, but offers additional incentives
for organizations to run Coral: Recall that a client will ac-
cess a local proxy when one is available, or administrators
can configure a local DNS resolver to always return a spe-
cific Coral instance. Alternatively, “SSL splitting” [15]
provides end-to-end security between clients and servers,
albeit at a higher overhead for the origin servers.

CoralCDN may require some additional abuse-
prevention mechanisms, such as throttling bandwidth
hogs and restricting access to address-authenticated con-
tent [23]. To leverage our redundant resources, we are
considering efficient erasure coding for large-file trans-
fers [18]. For such, we have developed on-the-fly veri-
fication mechanisms to limit malicious proxies’ abilities
to waste a node’s downstream bandwidth [13].

Leveraging the Clustering Abstraction. This paper
presents clustering mainly as a performance optimization
for lookup operations and DNS redirection. However, the
clustering algorithms we use are driven by generic poli-
cies that could allow hierarchy creation based on a variety
of criteria. For example, one could provide a clustering
policy by IP routing block or by AS name, for a simple
mechanism that reflects administrative control and per-
forms well under network partition. Or, Coral’s clusters
could be used to explicitly encode a web-of-trust security
model in the system, especially useful given its standard
open-admissions policy. Then, clusters could easily repre-
sent trust relationships, allowing lookups to resolve at the

most trustworthy hosts. Clustering may prove to be a very
useful abstraction for building interesting applications.

Multi-cast Tree Formation. CoralCDN may transmit
multiple requests to an origin HTTP server at the begin-
ning of a flash crowd. This is caused by a race condition
at the key’s closest node, which we could eliminate by
extending store transactions to provide return status in-
formation (like test-and-set in shared-memory systems).
Similar extensions to store semantics may be useful for
balancing its dynamically-formed dissemination trees.

Handling Heterogeneous Proxies. We should consider
the heterogeneity of proxies when performing DNS redi-
rection and intra-Coral HTTP fetches. We might use some
type of feedback-based allocation policy, as proxies can
return their current load and bandwidth availability, given
that they are already probed to determine liveness.

Deployment and Scalability Studies. We are planning
an initial deployment of CoralCDN as a long-lived Planet-
Lab port 53 (DNS) service. In doing so, we hope to gather
measurements from a large, active client population, to
better quantify CoralCDN’s scalability and effectiveness:
Given our client-transparency, achieving wide-spread use
is much easier than with most peer-to-peer systems.

9 Conclusions

CoralCDN is a peer-to-peer web-content distribution net-
work that harnesses people’s willingness to redistribute
data they themselves find useful. It indexes cached web
content with a new distributed storage abstraction called a
DSHT. DSHTs map a key to multiple values and can scale
to many stores of the same key without hot-spot conges-
tion. Coral successfully clusters nodes by network diam-
eter, ensuring that nearby replicas of data can be located
and retrieved without querying more distant nodes. Fi-
nally, a peer-to-peer DNS layer redirects clients to nearby
CoralProxies, allowing unmodified web browsers to ben-
efit from CoralCDN, and more importantly, to avoid over-
loading origin servers.

Measurements of CoralCDN demonstrate that it al-
lows under-provisioned web sites to achieve dramatically
higher capacity. A web server behind a DSL line expe-
riences hardly any load when hit by a flash crowd with
a sustained aggregate transfer rate that is two orders of
magnitude greater than its bandwidth. Moreover, Coral’s
clustering mechanism forms qualitatively sensible geo-
graphic clusters and provides quantitatively better perfor-
mance than locality-unaware systems.

We have made CoralCDN freely available, so that even
people with slow connections can publish web sites whose
capacity grows automatically with popularity. Please visit
http://www.scs.cs.nyu.edu/coral/.

13

Acknowledgments. We are grateful to Vijay Karam-
cheti for early conversations that helped shape this work.
We thank David Andersen, Nick Feamster, Daniel Gif-
fin, Robert Grimm, and our shepherd, Marvin Theimer,
for their helpful feedback on drafts of this paper. Petar
Maymounkov and Max Krohn provided access to Kadem-
lia data structure and HTTP parsing code, respectively.
We thank the PlanetLab support team for allowing us
the use of UDP port 53 (DNS), despite the additional
hassle this caused them. Coral is part of project IRIS
(http://project-iris.net/), supported by the
NSF under Cooperative Agreement No. ANI-0225660.
David Mazières is supported by an Alfred P. Sloan Re-
search Fellowship. Michael Freedman is supported by an
NDSEG Fellowship.

References
[1] Akamai Technologies, Inc. http://www.akamai.com/, 2004.

[2] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and
K. Worrell. A hierarchical internet object cache. In USENIX, Jan
1996.

[3] Y. Chen, R. Katz, and J. Kubiatowicz. SCAN: A dynamic, scal-
able, and efficient content distribution network. In Proceedings
of the International Conference on Pervasive Computing, Zurich,
Switzerland, Aug 2002.

[4] M. Crawford. RFC 2672: Non-terminal DNS name redirection,
Aug 1999.

[5] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and Ion Stoica.
Wide-area cooperative storage with CFS. In SOSP, Banff, Canada,
Oct 2001.

[6] Digital Island, Inc. http://www.digitalisland.com/, 2004.

[7] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a
scalable wide-area web-cache sharing protocol. Technical Report
1361, CS Dept, U. Wisconson, Madison, Feb 1998.

[8] S. Gadde, J. Chase, and M. Rabinovich. A taste of crispy squid. In
Workshop on Internet Server Perf., Madison, WI, Jun 1998.

[9] N. Harvey, M. Jones, S. Saroiu, M. Theimer, and A. Wolman.
Skipnet: A scalable overlay network with practical locality prop-
erties. In USITS, Seattle, WA, Mar 2003.

[10] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentralized,
peer-to-peer web cache. In PODC, Monterey, CA, Jul 2002.

[11] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and
R. Panigrahy. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the World Wide Web.
In STOC, May 1997.

[12] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina,
K. Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi. Web caching
with consistent hashing. WWW8 / Computer Networks, 31(11–
16):1203–1213, 1999.

[13] M. Krohn, M. J. Freedman, and D. Mazières. On-the-fly verifica-
tion of rateless erasure codes for efficient content distribution. In
IEEE Symp. on Security and Privacy, Oakland, CA, May 2004.

[14] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An architecture for global-
scale persistent storage. In ASPLOS, Cambridge, MA, Nov 2000.

[15] C. Lesniewski-Laas and M. F. Kaashoek. SSL splitting: Securely
serving data from untrusted caches. In USENIX Security, Wash-
ington, D.C., Aug 2003.

[16] R. Malpani, J. Lorch, and D. Berger. Making world wide web
caching servers cooperate. In WWW, Apr 1995.

[17] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer in-
formation system based on the xor metric. In IPTPS, Cambridge,
MA, Mar 2002.

[18] P. Maymounkov and D. Mazières. Rateless codes and big down-
loads. In IPTPS, Berkeley, CA, Feb 2003.

[19] D. Mazières. A toolkit for user-level file systems. In USENIX,
Boston, MA, Jun 2001.

[20] D. Mazières and M. F. Kaashoek. Escaping the evils of centralized
control with self-certifying pathnames. In ACM SIGOPS European
Workshop, Sep 1998.

[21] Mirror Image Internet. http://www.mirror-image.com/, 2004.

[22] FIPS Publication 180-1: Secure Hash Standard. National Institute
of Standards and Technology (NIST), Apr 1995.

[23] V. Pai, L. Wang, K. Park, R. Pang, and L. Peterson. The dark side
of the web: An open proxy’s view. In HotNets, Cambridge, MA,
Nov 2003.

[24] G. Pfister and V. A. Norton. “hot spot” contention and combining
in multistage interconnection networks. IEEE Trans. on Comput-
ers, 34(10), Oct 1985.

[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network. In ACM SIGCOMM, San
Diego, CA, Aug 2001.

[26] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Proc.
IFIP/ACM Middleware, Nov 2001.

[27] A. Rowstron and P. Druschel. Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility. In
SOSP, Banff, Canada, Oct 2001.

[28] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topolo-
gies with Rocketfuel. In SIGCOMM, Pittsburgh, PA, Aug 2002.

[29] T. Stading, P. Maniatis, and M. Baker. Peer-to-peer caching
schemes to address flash crowds. In IPTPS, Cambridge, MA, Mar
2002.

[30] A. Stavrou, D. Rubenstein, and S. Sahu. A lightweight, robust p2p
system to handle flash crowds. In IEEE ICNP, Paris, France, Nov
2002.

[31] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup protocol for internet applications. In IEEE/ACM Trans. on
Networking, 2002.

[32] D. Thaler and C. Ravishankar. Using name-based mappings to
increase hit rates. IEEE/ACM Trans. on Networking, 6(1):1–14,
1998.

[33] L. Wang, V. Pai, and L. Peterson. The effectiveness of request
redirection on cdn robustness. In OSDI, Boston, MA, Dec 2002.

[34] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and
H. Levy. On the scale and performance of cooperative web proxy
caching. In SOSP, Kiawah Island, SC, Dec 1999.

[35] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Ku-
biatowicz. Tapestry: A resilient global-scale overlay for service
deployment. IEEE J. Selected Areas in Communications, 2003.

14

OASIS: Anycast for Any Service

Michael J. Freedman∗‡, Karthik Lakshminarayanan†, David Mazières‡
∗New York University,†U.C. Berkeley,‡Stanford University

http://www.coralcdn.org/oasis/

Abstract

Global anycast, an important building block for many dis-
tributed services, faces several challenging requirements.
First, anycast response must be fast and accurate. Sec-
ond, the anycast system must minimize probing to re-
duce the risk of abuse complaints. Third, the system must
scale to many services and provide high availability. Fi-
nally, and most importantly, such a system must integrate
seamlessly with unmodified client applications. In short,
when a new client makes an anycast query for a service,
the anycast system must ideally return an accurate reply
without performing any probing at all.

This paper presents OASIS, a distributed anycast sys-
tem that addresses these challenges. Since OASIS is
shared across many application services, it amortizes de-
ployment and network measurement costs; yet to facil-
itate sharing, OASIS has to maintain network locality
information in an application-independent way. OASIS
achieves these goals by mapping different portions of the
Internet in advance (based on IP prefixes) to the geo-
graphic coordinates of the nearest known landmark. Mea-
surements from a preliminary deployment show that OA-
SIS, surprisingly, provides a significant improvement in
the performance that clients experience over state-of-the-
art on-demand probing and coordinate systems, while in-
curring much less network overhead.

1 Introduction

Many Internet services are distributed across a collec-
tion of servers that handle client requests. For example,
high-volume web sites are typically replicated at mul-
tiple locations for performance and availability. Con-
tent distribution networks amplify a website’s capacity by
serving clients through a large network of web proxies.
File-sharing and VoIP systems use rendezvous servers to
bridge hosts behind NATs.

The performance and cost of such systems depend
highly on the servers that clients select. For example,
file download times can vary greatly based on the local-
ity and load of the chosen replica. Furthermore, a service
provider’s costs may depend on the load spikes that the

server-selection mechanism produces, as many data cen-
ters charge customers based on the 95th-percentile usage
over all five-minute periods in a month.

Unfortunately, common techniques for replica selec-
tion produce sub-optimal results. Asking human users to
select the best replica is both inconvenient and inaccurate.
Round-robin and other primitive DNS techniques spread
load, but do little for network locality.

More recently, sophisticated techniques for server-
selection have been developed. When a legacy client ini-
tiates an anycast request, these techniques typically probe
the client from a number of vantage points, and then use
this information to find the closest server. While efforts,
such as virtual coordinate systems [6, 28] and on-demand
probing overlays [40, 46], seek to reduce the probing
overhead, the savings in overhead comes at the cost of
accuracy of the system.

Nevertheless, significant on-demand probing is still
necessary for all these techniques, and this overhead is
reincurred by every new deployed service. While on-
demand probing potentially offers greater accuracy, it has
several drawbacks that we have experienced first-hand in
a previously deployed system [10]. First, probing adds
latency, which can be significant for small web requests.
Second, performing several probes to a client often trig-
gers intrusion-detection alerts, resulting in abuse com-
plaints. This mundane problem can pose real operational
challenges for a deployed system.

This paper presents OASIS (Overlay-basedAnycast
ServiceInfraStructure), a shared locality-aware server se-
lection infrastructure. OASIS is organized as an infras-
tructure overlay, providing high availability and scalabil-
ity. OASIS allows a service to register a list of servers,
then answers the query, “Which server should the client
contact?” Selection is primarily optimized for network
locality, but also incorporates liveness and load. OA-
SIS can, for instance, be used by CGI scripts to redi-
rect clients to an appropriate web mirror. It can locate
servers for IP anycast proxies [2], or it can select dis-
tributed SMTP servers in large email services [26].

To eliminate on-demand probing when clients make
anycast requests, OASIS probes clients in the back-
ground. One of OASIS’s main contributions is a set of

Keyword Threads Msgs Keyword Threads Msgs

abuse 198 888 ICMP 64 308
attack 98 462 IDS 60 222
blacklist 32 158 intrusion 14 104
block 168 898 scan 118 474
complaint 216 984 trojan 10 56
flood 4 30 virus 24 82

Figure 1: Frequency count of keywords in PlanetLab support-

community archives from 14-Dec-04 through 30-Sep-05, com-

prising 4682 messages and 1820 threads. Values report num-

ber of messages and unique threads containing keyword.

techniques that makes it practical to measure the entire
Internet in advance. By leveraging the locality of the IP
prefixes [12], OASIS probes only each prefix, not each
client; in practice, IP prefixes from BGP dumps are used
as a starting point. OASIS delegates measurements to the
service replicas themselves, thus amortizing costs (ap-
proximately 2–10 GB/week) across multiple services, re-
sulting in an acceptable per-node cost.

To share OASIS across services and to make back-
ground probing feasible, OASIS requiresstable network
coordinatesfor maintaining locality information. Unfor-
tunately, virtual coordinates tend to drift over time. Thus,
since OASIS seeks to probe an IP prefix as infrequently as
once a week, virtual coordinates would not provide suf-
ficient accuracy. Instead, OASIS stores the geographic
coordinates of the replica closest to each prefix it maps.

OASIS is publicly deployed on PlanetLab [34] and
has already been adopted by a number of services, in-
cluding ChunkCast [5], CoralCDN [10], Na Kika [14],
OCALA [19], and OpenDHT [37]. Currently, we have
implemented a DNS redirector that performs server se-
lection upon hostname lookups, thus supporting a wide
range of unmodified client applications. We also provide
an HTTP and RPC interface to expose its anycast and
locality-estimation functions to OASIS-aware hosts.

Experiments from our deployment have shown rather
surprisingly that the accuracy of OASIS is competitive
with Meridian [46], currently the best on-demand probing
system. In fact, OASIS performs better than all replica-
selection schemes we evaluated across a variety of met-
rics, including resolution and end-to-end download times
for simulated web sessions, while incurring much less
network overhead.

2 Design

An anycast infrastructure like OASIS faces three main
challenges. First, network peculiarities are fundamen-
tal to Internet-scale distributed systems. Large latency
fluctuations, non-transitive routing [11], and middleboxes
such as transparent web proxies, NATs, and firewalls can

produce wildly inaccurate network measurements and
hence suboptimal anycast results.

Second, the system must balance the goals of accu-
racy, response time, scalability, and availability. In gen-
eral, using more measurements from a wider range of
vantage points should result in greater accuracy. How-
ever, probing clients on-demand increases latency and
may overemphasize transient network conditions. A bet-
ter approach is to probe networks in advance. However,
services do not know which clients to probe apriori, so
this approach effectively requires measuring the whole
Internet, a seemingly daunting task.

A shared infrastructure, however, can spread measure-
ment costs over many hosts and gain more network van-
tage points. Of course, these hosts may not be reliable.
While structured peer-to-peer systems [39, 42] can, the-
oretically, deal well with unreliable hosts, such protocols
add significant complexity and latency to a system and
break compatibility with existing clients. For example,
DNS resolvers and web browsers deal poorly with un-
available hosts since hosts cache stale addresses longer
than appropriate.

Third, even with a large pool of hosts over which to
amortize measurement costs, it is important to minimize
the rate at which any network is probed. Past experi-
ence [10] has shown us that repeatedly sending unusual
packets to a given destination often triggers intrusion de-
tection systems and results in abuse complaints. For ex-
ample, PlanetLab’ssupport-communitymailing list re-
ceives thousands of complaints yearly due to systems that
perform active probing; Figure1 lists the number and
types of complaints received over one ten-month period.
They range from benign inquiries to blustery threats to
drastic measures such as blacklisting IP addresses and en-
tire netblocks. Such measures are not just an annoyance;
they impair the system’s ability to function.

This section describes how OASIS’s design tackles the
above challenges. A two-tier architecture (§2.1) com-
bines a reliable core of hosts that implement anycast with
a larger number of replicas belonging to different services
that also assist in network measurement. OASIS mini-
mizes probing and reduces susceptibility to network pe-
culiarities by exploitinggeographic coordinatesas a ba-
sis for locality (§2.2.2). Every replica knows its latitude
and longitude, which already provides some information
about locality before any network measurement. Then,
in the background, OASIS estimates the geographic co-
ordinates of every netblock on the Internet. Because the
physical location of IP prefixes rarely changes [36], an
accurately pinpointed network can be safely re-probed
very infrequently (say, once a week). Such infrequent,
background probing both reduces the risk of abuse com-
plaints and allows fast replies to anycast requests with no
need for on-demand probing.

Service 2Service 1

 OASIS

Clients

Figure 2: OASIS system overview

2.1 System overview

Figure2 shows OASIS’s high-level architecture. The sys-
tem consists of a network ofcorenodes that helpclients
select appropriatereplicasof various services. All ser-
vices employ the same core nodes; we intend this set of
infrastructure nodes to be small enough and sufficiently
reliable so that every core node can know most of the oth-
ers. Replicas also run OASIS-specific code, both to report
their own load and liveness information to the core, and
to assist the core with network measurements. Clients
need not run any special code to use OASIS, because the
core nodes provide DNS- and HTTP-based redirection
services. An RPC interface is also available to OASIS-
aware clients.

Though the three roles of core node, client, and replica
are distinct, the same physical host often plays multiple
roles. In particular, core nodes are all replicas of the OA-
SIS RPC service, and often of the DNS and HTTP redi-
rection services as well. Thus, replicas and clients typi-
cally use OASIS itself to find a nearby core node.

Figure 3 shows various ways in which clients and
services can use OASIS. The top diagram shows an
OASIS-aware client, which uses DNS-redirection to se-
lect a nearby replica of the OASIS RPC service (i.e., a
core node), then queries that node to determine the best
replica of Service 1.

The middle diagram shows how to make legacy clients
select replicas using DNS redirection. The service
provider advertises a domain name served by OASIS.
When a client looks up that domain name, OASIS first
redirects the client’s resolver to a nearby replica of the
DNS service (which the resolver will cache for future ac-
cesses). The nearby DNS server then returns the address
of a Service 2 replica suitable for the client. This result
can be accurate if clients are near their resolvers, which
is often the case [24].

The bottom diagram shows a third technique, based on
service-level (e.g., HTTP) redirection. Here the replicas
of Service 3 are also clients of the OASIS RPC service.
Each replica connects to a nearby OASIS core node se-
lected by DNS redirection. When a client connects to a
replica, that replica queries OASIS to find a better replica,

Client

Service 1

Resolv

OASIS
OASIS
core OASIS

core

Replica
Srv

Replica
Srv

1: DNS

2: RPC
3: APP J I

Client

Service 2

Resolv

OASIS
OASIS
core OASIS

core

Replica
Srv

Replica
Srv

1: DNS

2: DNS
3: APP J I

Client

Service 3

OASIS
OASIS
core OASIS

core

Replica
Srv

Replica
Srv

2: RPC

3: APP J1: APP I

0: DNS
K

Figure 3: Various methods of using OASIS via its DNS or RPC

interfaces, and the steps involved in each anycast request.

then redirects the client. Such an approach does not re-
quire that clients be located near their resolvers in order
to achieve high accuracy.

This paper largely focuses on DNS redirection, since it
is the easiest to integrate with existing applications.

2.2 Design decisions

Given a client IP address and service name, the primary
function of the OASIS core is to return a suitable service
replica. For example, an OASIS nameserver calls its core
node with the client resolver’s IP address and a service
name extracted from the requested domain name (e.g.,
coralcdn.nyuld.netindicates servicecoralcdn).

Figure 4 shows how OASIS resolves an anycast re-
quest. First, a core node maps the client IP address to
anetwork bucket, which aggregates adjacent IP addresses
into netblocks of co-located hosts. It then attempts to map
the bucket to alocation (i.e., coordinates). If successful,
OASIS returns the closest service replica to that location
(unless load-balancing requires otherwise, as described
in §3.4). Otherwise, if it cannot determine the client’s
location, it returns a random replica.

The anycast process relies on four databases main-
tained in a distributed manner by the core: (1) aservice
table lists all services using OASIS (and records policy
information for each service), (2) abucketing tablemaps
IP addresses to buckets, (3) aproximity tablemaps buck-
ets to locations, and (4) oneliveness table per servicein-

response

anycast request

bucketing service

IP prefix

IP addr name

proximity liveness coords

policy

Figure 4: Logical steps to answer an anycast request

cludes all live replicas belonging to the service and their
corresponding information (e.g., coordinates, load, and
capacity).

2.2.1 Buckets: The granularity of mapping hosts

OASIS must balance the precision of identifying a
client’s network location with its state requirements. One
strawman solution is simply to probe every IP address
ever seen and cache results for future requests. Many
services have too large a client population for such an
approach to be attractive. For DNS redirection, probing
each DNS resolver would be practical if the total num-
ber of resolvers were small and constant. Unfortunately,
measurements at DNS root servers [23] have shown many
resolvers use dynamically-assigned addresses, thus pre-
cluding a small working set.

Fortunately, our previous research has shown that IP
aggregation by prefix often preserves locality [12]. For
example, more than 99% of/24 IP prefixes announced
by stub autonomous systems (and 97% of/24 prefixes
announced by all autonomous systems) are at the same lo-
cation. Thus, we aggregate IP addresses using IP prefixes
as advertised by BGP, using BGP dumps from Route-
Views [38] as a starting point.1

However, some IP prefixes (especially larger prefixes)
do not preserve locality [12]. OASIS discovers and
adapts to these cases by splitting prefixes that exhibit
poor locality precision,2 an idea originally proposed by
IP2Geo [30]. Using IP prefixes as network buckets not
only improves scalability by reducing probing and state
requirements, but also provides a concrete set of targets
to precompute, and hence avoid on-demand probing.

2.2.2 Geographic coordinates for location

OASIS takes a two-pronged approach to locate IP pre-
fixes: We first use a direct probing mechanism [46] to

1For completeness, we also note that OASIS currently supports ag-
gregating by the less-locality-preserving autonomous system number,
although we do not present the corresponding results in this paper.

2We deem that a prefix exhibits poor locality if probing different IP
addresses within the prefix yields coordinates with high variance.

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120 140 160 180

R
ou

nd
-tr

ip
-ti

m
e

(m
s)

Geographic coodinate distance (degrees)

Figure 5: Correlation between round-trip-times and geo-

graphic distance across all PlanetLab hosts [43].

find the replica closest to the prefix, regardless of ser-
vice. Then, we represent the prefix by the geographic co-
ordinates of this closest replica and its measured round-
trip-time to the prefix. We assume that all replicas know
their latitude and longitude, which can easily be obtained
from a variety of online services [13]. Note that OASIS’s
shared infrastructure design helps increase the number of
vantage points and thus improves its likelihood of having
a replica near the prefix.

While geographic coordinates are certainly not optimal
predictors of round-trip-times, they work well in practice:
The heavy band in Figure5 shows a strong linear cor-
relation between geographic distance and RTT. In fact,
anycast only has the weaker requirement of predicting a
relative ordering of nodes for a prefix, not an accurate
RTT estimation. For comparison, we also implemented
Vivaldi [6] and GNP [28] coordinates within OASIS; §5
includes some comparison results.

Time- and service-invariant coordinates. Since geo-
graphic coordinates are stable over time, they allow OA-
SIS to probe each prefix infrequently. Since geographic
coordinates are independent of the services, they can be
shared across services—an important requirement since
OASIS is designed as a shared infrastructure. Geographic
coordinates remain valid even if the closest replica fails.
In contrast, virtual coordinate systems [6, 28] fall short of
providing either accuracy or stability [40, 46]. Similarly,
simply recording a prefix’s nearest replica—without its
corresponding geographic coordinates—is useless if that
nearest replica fails. Such an approach also requires a
separate mapping per service.

Absolute error predictor. Another advantage of our
two-pronged approach is that the RTT between a prefix
and its closest replica is anabsolutebound on the accu-
racy of the prefix’s estimated location. This bound sug-
gests a useful heuristic for deciding when to re-probe a
prefix to find a better replica. If the RTT is small (a
few milliseconds), reprobing is likely to have little ef-
fect. Conversely, reprobing prefixes having high RTTs
to their closest replica can help improve accuracy when

previous attempts missed the best replica or newly-joined
replicas are closer to the prefix. Furthermore, a prefix’s
geographic coordinates will not change unless it is probed
by a closer replica. Of course, IP prefixes can physically
move, but this happens rarely enough [36] that OASIS
only expires coordinates after one week. Moving a net-
work can therefore result in sub-optimal predictions for
at most one week.

Sanity checking. A number of network peculiarities
can cause incorrect network measurements. For exam-
ple, a replica behind a transparent web proxy may erro-
neously measure a short RTT to some IP prefix, when in
fact it has only connected to the proxy. Replicas behind
firewalls may believe they are pinging a remote network’s
firewall, when really they are probing their own. OASIS
employs a number of tests to detect such situations (see
§6). As a final safeguard, however, the core only accepts
a prefix-to-coordinate mapping after seeing two consis-
tent measurements from replicas on different networks.

In hindsight, another benefit of geographic coordinates
is the ability to couple them with real-time visualization
of the network [29], which has helped us identify, debug,
and subsequently handle various network peculiarities.

2.2.3 System management and data replication

To achieve scalability and robustness, the location infor-
mation of prefixes must be made available to all core
nodes. We now describe OASIS’s main system manage-
ment and data organization techniques.

Global membership view. Every OASIS core node
maintains a weakly-consistent view of all other nodes in
the core, where each node is identified by its IP address, a
globally-unique node identifier, and an incarnation num-
ber. To avoidO(n2) probing (wheren is the network
size), core nodes detect and share failure information co-
operatively: every core node probes a random neighbor
each time period (3 seconds) and, if it fails to receive a
response, gossips its suspicion of failure.

Two techniques suggested by SWIM [7] reduce false
failure announcements. First, several intermediates are
chosen to probe this target before the initiator announces
its suspicion of failure. Intermediaries alleviate the prob-
lems caused by non-transitive Internet routing [11]. Sec-
ond, incarnation numbers help disambiguate failure mes-
sages:alive messages for incarnationi override anything
for j < i; suspectfor i overrides anything forj ≤ i. If a
node learns that it is suspected of failure, it increments its
incarnation number and gossips its new number as alive.
A node will only conclude that another node with incar-
nationi is dead if it has not received a corresponding alive
message forj > i after some time (3 minutes). This ap-

Replica
App server

DB

OASIS
core
node

DNS

RPC

Replica

OASIS server

HTTPD

Figure 6: OASIS system components

proach provides live nodes with sufficient time to respond
to and correct false suspicions of failure.

Implicit in this design is the assumption that nodes
are relatively stable; otherwise, the system would incur
a high bandwidth cost for failure announcements. Given
that OASIS is designed as aninfrastructure service—to
be deployed either by one service provider or a small
number of cooperating providers—we believe that this
assumption is reasonable.

Consistent hashing. OASIS tasks must be assigned to
nodes in some globally-known yet fully-decentralized
manner. For example, to decide the responsibility of
mapping specific IP prefixes, we partition the set of pre-
fixes over all nodes. Similarly, we assign specific nodes
to play the role of aservice rendezvousto aggregate in-
formation about a particular service (described in §3.3).

OASIS provides this assignment through consistent
hashing [20]. Each node has a random identifier; several
nodes with identifiers closest to a key—e.g., the SHA-1
hash of the IP prefix or service name—in the identifier
space are assigned the corresponding task. Finding these
nodes is easy since all nodes have a global view. While
nodes’ views of the set of closest nodes are not guaran-
teed to be consistent, views can be easily reconciled using
nodes’ incarnation numbers.

Gossiping. OASIS uses gossiping to efficiently dissem-
inate messages—about node failures, service policies,
prefix coordinates—throughout the network [7]. Each
node maintains a buffer of messages to be piggybacked
on other system messages torandomnodes. Each node
gossips each messageO(logn) times for n-node net-
works; such an epidemic algorithm propagates a message
to all nodes in logarithmic time with high probability.3

Soft-state replica registration. OASIS must know all
replicas belonging to a service in order to answer corre-
sponding anycast requests. To tolerate replica failures ro-
bustly, replica information is maintained using soft-state:

3While structured gossiping based on consistent hashing could re-
duce the bandwidth overhead needed to disseminate a message [3], we
use a randomized epidemic scheme for simplicity.

replicas periodically send registration messages to core
nodes (currently, every 60 seconds).

Hosts running services that use OASIS for anycast—
such as the web server shown in Figure6—run a sepa-
rate replica process that connects to their local application
(i.e., the web server) every keepalive period (currently set
to 15 seconds). The application responds with its current
load and capacity. While the local application remains
alive, the replica continues to refresh its locality, load,
and capacity with its OASIS core node.

Closest-node discovery. OASIS offloads all measure-
ment costs to service replicas. All replicas, belonging
to different services, form a lightweight overlay, in or-
der to answer closest-replica queries from core nodes.
Each replica organizes its neighbors into concentric rings
of exponentially-increasing radii, as proposed by Merid-
ian [46]: A replica accepts a neighbor for ringi only if
its RTT is between 2i and 2i+1 milliseconds. To find the
closest replica to a destinationd, a query operates in suc-
cessive steps that “zero in” on the closest node in an ex-
pectedO(logn) steps. At each step, a replica with RTT
r from d chooses neighbors to probed, restricting its se-
lection to those with RTTs (to itself) between1

2r and 3
2r.

The replica continues the search on its neighbor returning
the minimum RTT tod. The search stops when the latest
replica knows of no other potentially-closer nodes.

Our implementation differs from [46] in that we per-
form closest routing iteratively, as opposed to recursively:
The first replica in a query initiates each progressive
search step. This design trades overlay routing speed for
greater robustness to packet loss.

3 Architecture

In this section, we describe the distributed architecture of
OASIS in more detail: its distributed management and
collection of data, locality and load optimizations, scala-
bility, and security properties.

3.1 Managing information

We now describe how OASIS manages the four tables
described in §2.2. OASIS optimizes response time by
heavily replicating most information. Service, bucketing,
and proximity information need only be weakly consis-
tent; stale information only affects system performance,
not its correctness. On the other hand, replica liveness
information must be more fresh.

Service table. When a service initially registers with
OASIS, it includes a service policy that specifies its
service name and any domain name aliases, its desired
server-selection algorithm, a public signature key, the

maximum and minimum number of addresses to be in-
cluded in responses, and the TTLs of these responses.
Each core node maintains a local copy of the service table
to be able to efficiently handle requests. When a new ser-
vice joins OASIS or updates its existing policy, its policy
is disseminated throughout the system by gossiping.

The server-selection algorithm specifies how to order
replicas as a function of their distance, load, and total
capacity when answering anycast requests. By default,
OASIS ranks nodes by their coordinate distance to the
target, favoring nodes with excess capacity to break ties.
The optional signature key is used to authorize replicas
registering with an OASIS core node as belonging to the
service (see §3.5).

Bucketing table. An OASIS core node uses its buck-
eting table to map IP addresses to IP prefixes. We boot-
strap the table using BGP feeds from RouteViews [38],
which has approximately 200,000 prefixes. A PATRICIA
trie [27] efficiently maps IP addresses to prefixes using
longest-prefix matching.

When core nodes modify their bucketing table by split-
ting or merging prefixes [30], these changes are gossiped
in order to keep nodes’ tables weakly consistent. Again,
stale information does not affect system correctness: pre-
fix withdrawals are only used to reduce system state,
while announcements are used only to identify more pre-
cise coordinates for a prefix.

Proximity table. When populating the proximity table,
OASIS seeks to find accurate coordinates for every IP
prefix, while preventing unnecessary reprobing.

OASIS maps an IP prefix to the coordinates of its clos-
est replica. To discover the closest replica, an core node
first selects an IP address from within the prefix and is-
sues a probing request to a known replica (or first queries
a neighbor to discover one). The selected replica tracer-
outes the requested IP to find the last routable IP address,
performs closest-node discovery using the replica overlay
(see §2.2.3), and, finally, returns the coordinates of the
nearest replica and its RTT distance from the target IP.
If the prefix’s previously recorded coordinate has either
expired or has a larger RTT from the prefix, the OASIS
core node reassigns the prefix to these new coordinates
and starts gossiping this information.

To prevent many nodes from probing the same IP pre-
fix, the system assigns prefixes to nodes using consistent
hashing. That is, several nodes closest tohash(prefix)are
responsible for probing the prefix (three by default). All
nodes go through their subset of assigned prefixes in ran-
dom order, probing the prefix if its coordinates have not
been updated within the lastTp seconds.Tp is a function
of the coordinate’s error, such that highly-accurate coor-
dinates are probed at a slower rate (see §2.2.2).

Resolv
1

3

OASIS
rendezv

coralcdn

dns

24

OASIS
Consistent

Hashing
J

I

SJ

SI
OASIS

rendezv

OASIS
core

OASIS
core

Figure 7: Steps involved in a DNS anycast request to OASIS

using rendezvous nodes.

Liveness table. For each registered service, OASIS
maintains a liveness table of known replicas. Gossip-
ing is not appropriate to maintain these liveness tables
at each node: stale information could cause nodes to re-
turn addresses of failed replicas, while high replica churn
would require excessive gossiping and hence bandwidth
consumption.

Instead, OASIS aggregates liveness information about
a particular service at a fewservice rendezvousnodes,
which are selected by consistent hashing. When a replica
joins or leaves the system, or undergoes a significant load
change, the OASIS core node with which it has regis-
tered sends an update to one of thek nodes closest to
hash(service). For scalability, these rendezvous nodes
only receive occasional state updates, not each soft-state
refresh continually sent by replicas to their core nodes.
Rendezvous nodes can dynamically adapt the parameter
k based on load, which is then gossiped as part of the ser-
vice’s policy. By default,k=4, which is also fixed as a
lower bound.

Rendezvous nodes regularly exchange liveness infor-
mation with one another, to ensure that their liveness ta-
bles remain weakly consistent. If a rendezvous node de-
tects that an core node fails (via OASIS’s failure detec-
tion mechanism), it invalidates all replicas registered by
that node. These replicas will subsequently re-register
with a different core node and their information will be
re-populated at the rendezvous nodes.

Compared to logically-decentralized systems such as
DHTs [39, 42], this aggregation at rendezvous nodes al-
lows OASIS to provide faster response (similar to one-
hop lookups) and to support complex anycast queries
(e.g., as a function of both locality and load).

3.2 Putting it together: Resolving anycast

Given the architecture that we have presented, we now
describe the steps involved when resolving an anycast re-
quest (see Figure7). For simplicity, we limit our discus-
sion to DNS redirection. When a client queries OASIS
for the hostnamecoralcdn.nyuld.netfor the first time:

1. The client queries the DNS root servers, finding an
OASIS nameserverI for nyuld.netto which it sends
the request.

2. Core lookup: OASIS core nodeI finds other core
nodes near the client that support the DNS interface
by executing the following steps:

(a) I locally maps the client’s IP address to IP pre-
fix, and then prefix to location coordinates.

(b) I queries one of thek rendezvous nodes for ser-
vice dns, call this nodeSI , sending the client’s
coordinates.

(c) SI responds with the best-suited OASIS name-
servers for the specified coordinates.

(d) I returns this set of DNS replicas to the client.
Let this set include nodeJ.

3. The client resends the anycast request toJ.

4. Replica lookup: Core nodeJ finds replicas near the
client using the following steps:

(a) J extracts the request’s service name and maps
the client’s IP address to coordinates.

(b) J queries one of thek rendezvous nodes for
servicecoralcdn, call thisSJ.

(c) SJ responds with the bestcoralcdn replicas,
whichJ returns to the client.

Although DNS is a stateless protocol, we can force
legacy clients to perform such two-stage lookups, as well
as signal to their nameservers which stage they are cur-
rently executing. §4 gives implementation details.

3.3 Improving scalability and latency

While OASIS can support a large number of replicas
by simply adding more nodes, the anycast protocol de-
scribed in §3.2 has a bottleneck in scaling to large num-
bers of clients for a particular service: one of thek ren-
dezvous nodes is involved in each request. We now de-
scribe how OASIS reduces these remote queries to im-
prove both scalability and client latency.

Improving core lookups. OASIS first reduces load
on rendezvous nodes by lowering the frequency of
core lookups. For DNS-based requests, OASIS uses
relatively-long TTLs for OASIS nameservers (currently
15 minutes) compared to those for third-party replicas
(configurable per service, 60 seconds by default). These
longer TTLs seem acceptable given that OASIS is an in-
frastructure service, and that resolvers can failover be-
tween nameservers since OASIS returns multiple, geo-
diverse nameservers.

Second, we observe that core lookups are rarely issued
to randomnodes: Core lookups in DNS will initially go

to one of the twelve primary nameservers registered for
.nyuld.netin the main DNS hierarchy. So, we can arrange
the OASIS core so that these 12 primary nameservers
play the role of rendezvous nodes fordns, by simply hav-
ing them choosek= 12 consecutive node identifiers for
consistent hashing (in addition to their normal random
identifiers). This configuration reduces latency by avoid-
ing remote lookups.

Improving replica lookups. OASIS further reduces
load by leveraging request locality. Since both clients
and replicas are redirected to their nearest OASIS core
nodes—when performing anycast requests and initiating
registration, respectively—hosts redirected to the same
core node are likely to be close to one another. Hence,
on receiving a replica lookup, an core node first checks
its local liveness table for any replica that satisfies the
service request.

To improve the effectiveness of using local informa-
tion, OASIS also useslocal flooding: Each core node
receiving registrations sends these local replica registra-
tions to some of its closest neighbors. (“Closeness” is
again calculated using coordinate distance, to mirror the
same selection criterion used for anycast.) Intuitively,
this approach helps prevent situations in which replicas
and clients select different co-located nodes and there-
fore lose the benefit of local information. We analyze the
performance benefit of local flooding in §5.1.

OASIS implements other obvious strategies to reduce
load, including having core nodes cache replica informa-
tion returned by rendezvous nodes and batch replica up-
dates to rendezvous nodes. We do not discuss these fur-
ther due to space limitations.

3.4 Selecting replicas based on load

While our discussion has mostly focused on locality-
based replica selection, OASIS supports multiple selec-
tion algorithms incorporating factors such as load and ca-
pacity. However, in most practical cases, load-balancing
need not be perfect; a reasonably good node is often ac-
ceptable. For example, to reduce costs associated with
“95th-percentile billing,” only the elimination of traffic
spikes is critical. To eliminate such spikes, a service’s
replicas can track their 95% bandwidth usage over five-
minute windows, then report their load to OASIS as the
logarithm of this bandwidth usage. By specifying load-
based selection in its policy, a service can ensure that its
95% bandwidth usage at its most-loaded replica is within
a factor of two of its least-loaded replica; we have evalu-
ated this policy in §5.2.

However, purely load-based metrics cannot be used in
conjunction with many of the optimizations that reduce
replica lookups to rendezvous nodes (§3.3), as locality
does not play a role in such replica selection. On the

other hand, the computation performed by rendezvous
nodes when responding to such replica lookups is much
lower: while answering locality-based lookups requires
the rendezvous node to compute the closest replica(s)
with respect to the client’s location, answering load-based
lookups requires the node simply to return the first ele-
ment(s) of a single list of service replicas, sorted by in-
creasing load. The ordering of this list needs to be recom-
puted only when replicas’ loads change.

3.5 Security properties

OASIS has the following security requirements. First, it
should prohibit unauthorized replicas from joining a reg-
istered service. Second, it should limit the extent to which
a particular service’s replicas can inject bad coordinates.
Finally, it should prevent adversaries from using the in-
frastructure as a platform for DDoS attacks.

We assume that all OASIS core nodes are trusted; they
do not gossip false bucketing, coordinates, or liveness in-
formation. We also assume that core nodes have loosely
synchronized clocks to verify expiry times for replicas’
authorization certificates. (Loosely-synchronized clocks
are also required to compare registration expiry times in
liveness tables, as well as measurement times when de-
termining whether to reprobe prefixes.) Additionally, we
assume that services joining OASIS have some secure
method to initially register a public key. An infrastruc-
ture deployment of OASIS may have a single or small
number of entities performing such admission control;
the service provider(s) deploying OASIS’s primary DNS
nameservers are an obvious choice. Less secure schemes
such as using DNS TXT records may also be appropriate
in certain contexts.

To prevent unauthorized replicas from joining a ser-
vice, a replica must present a valid, fresh certificate
signed by the service’s public key when initially register-
ing with the system. This certificate includes the replica’s
IP address and its coordinates. By providing such admis-
sion control, OASIS only returns IP addresses that are
authorized as valid replicas for a particular service.

OASIS limits the extent to which replicas can inject
bad coordinates by evicting faulty replicas or their cor-
responding services. We believe that sanity-checking
coordinates returned by the replicas—coupled with the
penalty of eviction—is sufficient to deter services from
assigning inaccurate coordinates for their replicas and
replicas from responding falsely to closest-replica queries
from OASIS.

Finally, OASIS prevents adversaries from using it as
a platform for distributed denial-of-service attacks by re-
quiring that replicas accept closest-replica requests only
from core nodes. It also requires that a replica’s over-
lay neighbors are authorized by OASIS (hence, replicas

;; ANSWER SECTION:
example.net.nyud.net 600 IN CNAME

coralcdn.ab4040d9a9e53205.oasis.nyuld.net.

coralcdn.ab4040d9a9e53205.oasis.nyuld.net. 60 IN A
171.64.64.217

;; AUTHORITY SECTION:
ab4040d9a9e53205.oasis.nyuld.net. 600 IN NS

171.64.64.217.ip4.oasis.nyuld.net.
ab4040d9a9e53205.oasis.nyuld.net. 600 IN NS

169.229.50.5.ip4.oasis.nyuld.net.

Figure 8: Output of dig for a hostname using OASIS.

only accept probing requests from other approved repli-
cas). OASIS itself has good resistance to DoS attacks,
as most client requests can be resolved using information
stored locally,i.e., not requiring wide-area lookups be-
tween core nodes.

4 Implementation

OASIS’s implementation consists of three main compo-
nents: the OASIS core node, the service replica, and
stand-alone interfaces (including DNS, HTTP, and RPC).
All components are implemented in C++ and use the
asynchronous I/O library from the SFS toolkit [25], struc-
tured using asynchronous events and callbacks. The core
node comprises about 12,000 lines of code, the replica
about 4,000 lines, and the various interfaces about 5,000
lines. The bucketing table is maintained using an in-
memory PATRICIA trie [27], while the proximity table
uses BerkeleyDB [41] for persistent storage.

OASIS’s design uses static latitude/longitude coordi-
nates with Meridian overlay probing [46]. For compari-
son purposes, OASIS also can be configured to use syn-
thetic coordinates using Vivaldi [6] or GNP [28].

RPC and HTTP interfaces. These interfaces take an
optional target IP address as input, as opposed to sim-
ply using the client’s address, in order to support inte-
gration of third-party services such as HTTP redirectors
(Figure3). Beyond satisfying normal anycast requests,
these interfaces also enable a localization service by sim-
ply exposing OASIS’s proximity table, so that any client
can ask “What are the coordinates of IPx?”4 In addition
to HTML, the HTTP interface supports XML-formatted
output for easy visualization using online mapping ser-
vices [13].

DNS interface. OASIS takes advantage of low-level
DNS details to implement anycast. First, a nameserver
must differentiate between core and replica lookups.
Core lookups only returnnameserver(NS) records for

4We plan to support such functionality with DNS TXT records as
well, although this has not been implemented yet.

nearby OASIS nameservers. Replica lookups, on the
other hand, returnaddress(A) records for nearby repli-
cas. Since DNS is a stateless protocol, we signal the type
of a client’s request in its DNS query: replica lookups
all have oasis prepended tonyuld.net. We force such
signalling by returning CNAME records during core
lookups, which map aliases to theircanonical names.

This technique alone is insufficient to force many
client resolvers, including BIND, to immediately issue
replica lookups to these nearby nameservers. We illus-
trate this with an example query for CoralCDN [10],
which uses the service alias∗.nyud.net. A resolverR
discovers nameserversu,v for nyud.net by querying the
root servers forexample.net.nyud.net.5 Next, R queries
u for this hostname, and is returned a CNAME for
example.net.nyud.net → coralcdn.oasis.nyuld.net and
NS x,y for coralcdn.oasis.nyuld.net. In practice, R
will reissue a new query forcoralcdn.oasis.nyuld.net to
nameserverv, which is not guaranteed to be close toR
(andv’s local cache may include replicas far fromR).

We again use the DNS query string to signal whether
a client is contacting the correct nameservers. When
responding to core lookups, we encode the set of NS
records in hex format (ab4040d9a9e53205) in the re-
turned CNAME record (Figure8). Thus, whenv receives
a replica lookup, it checks whether the query encodes its
own IP address, and if it does not, immediately re-returns
NS records forx,y. Now, having received NS records
authoritative for the name queried, a resolver contacts the
desired nameserversx or y, which returns an appropriate
replica forcoralcdn.

5 Evaluation

We evaluate OASIS’s performance benefits for DNS-
based anycast, as well as its scalability and bandwidth
trade-offs.

5.1 Wide-area evaluation of OASIS

Experimental setup. We present wide-area measure-
ments on PlanetLab [34] that evaluate the accuracy of
replica selection based on round-trip-time and through-
put, DNS response time, and the end-to-end time for a
simulated web session. In all experiments, we ran repli-
cas for one service on approximately 250 PlanetLab hosts
spread around the world (including 22 in Asia), and we
ran core nodes and DNS servers on 37 hosts.6

5To adopt OASIS yet preserve its own top-level domain name,
CoralCDN points the NS records fornyud.net to OASIS’s nameservers;
nyud.net is registered as an alias forcoralcdnin its service policy.

6This number was due to the unavailability of UDP port 53 on most
PlanetLab hosts, especially given CoralCDN’s current use of same.

 0

 20

 40

 60

 80

 100

 0.1 1 10 100 1000

P
er

ce
nt

 o
f p

in
gs

 h
av

in
g

R
TT

OASIS (LF)
OASIS

Meridian
Vivaldi

Vivaldi (cached)
RRobin

Figure 9: Round trip times (ms)

We compare the performance of replica selection us-
ing six different anycast strategies: (1)OASIS (LF)refers
to the OASIS system, using both local caching and local
flooding (to the nearest three neighbors; see §3.3). (2)
OASISuses only local caching for replicas. (3)Merid-
ian (our implementation of [46]) performs on-demand
probing by executing closest-replica discovery whenever
it receives a request. (4)Vivaldi uses 2-dimensional dy-
namic virtual coordinates [6], instead of static geographic
coordinates, by probing the client from 8-12 replicas
on-demand. The core node subsequently computes the
client’s virtual coordinates and selects its closest replica
based on virtual coordinate distance. (5)Vivaldi (cached)
probes IP prefixes in the background, instead of on-
demand. Thus, it is similar to OASIS with local caching,
except for using virtual coordinates to populate OASIS’s
proximity table. (6) Finally,RRobinperforms round-
robin DNS redirection amongst all replicas in the system,
using a single DNS server located at Stanford University.

We performed client measurements on the same hosts
running replicas. However, we configured OASIS so that
when a replica registers with an OASIS core node, the
node doesnot directly save a mapping from the replica’s
prefix to its coordinates, as OASIS would do normally.
Instead, we rely purely on OASIS’s background probing
to assign coordinates to the replica’s prefix.

Three consecutive experiments were run at each site
when evaluating ping, DNS, and end-to-end latencies.
Short DNS TTLs were chosen to ensure that clients con-
tacted OASIS for each request. Data from all three exper-
iments are included in the following cumulative distribu-
tion function (CDF) graphs.

Minimizing RTTs. Figures 9 shows the CDFs of
round-trip-times in log-scale between clients and their re-
turned replicas. We measured RTTs via ICMP echo mes-
sages, using the ICMP response’s kernel timestamp when
calculating RTTs. RTTs as reported are the minimum of
ten consecutive probes. We see that OASIS and Meridian
significantly outperform anycast using Vivaldi and round
robin by one to two orders of magnitude.

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000

P
er

ce
nt

 o
f r

eq
ue

st
s

w
ith

 th
ro

ug
hp

ut

OASIS (LF)
OASIS

Meridian
Vivaldi

Vivaldi (cached)
RRobin

Figure 10: Client-server TCP throughput (KB/s)

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000

P
er

ce
nt

 o
f l

oo
ku

ps
 h

av
in

g
la

te
nc

y

OASIS (LF)
OASIS

Meridian
Vivaldi

Vivaldi (cached)

Figure 11: DNS resolution time (ms) for new clients

Two other interesting results merit mention. First,
Vivaldi (cached)performs significantly worse than on-
demandVivaldi and even often worse thanRRobin.
This arises from the fact thatVivaldi is not stable over
time with respect to coordinate translation and rotation.
Hence, cached results quickly become inaccurate, al-
though recent work has sought to minimize this instabil-
ity [8, 33]. Second, OASIS outperformsMeridian for
60% of measurements, a rather surprising result given
that OASIS usesMeridian as its background probing
mechanism. It is here where we see OASIS’s benefit
from using RTT as an absolute error predictor for coordi-
nates (§2.2.2): reprobing by OASIS yields strictly better
results, while the accuracy of Meridian queries can vary.

Maximizing throughput. Figure 10 shows the CDFs
of the steady-state throughput from replicas to their
clients, to examine the benefit of using nearby servers to
improve data-transfer rates. TCP throughput is measured
usingiperf-1.7.0 [18] in its default configuration (a
TCP window size of 32 KB). The graph shows TCP per-
formance in steady-state. OASIS is competitive with or
superior to all other tested systems, demonstrating its per-
formance for large data transfers.

DNS resolution time. Figures11 and12 evaluate the
DNS performance for new clients and for clients al-
ready caching their nearby OASIS nameservers, respec-
tively. A request by a new client includes the time to

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000

P
er

ce
nt

 o
f l

oo
ku

ps
 h

av
in

g
la

te
nc

y

OASIS (LF)
OASIS

Meridian
Vivaldi

Vivaldi (cached)
RRobin

Figure 12: DNS resolution time (ms) for replica lookups

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000

P
er

ce
nt

 o
f l

oo
ku

ps
 h

av
in

g
la

te
nc

y

OASIS (LF)
OASIS

Meridian
Vivaldi

Vivaldi (cached)
RRobin

Figure 13: End-to-end download performance (ms)

perform three steps: (1) contact an initial OASIS core
node to learn a nearby nameserver, (2) re-contact a dis-
tant node and again receive NS records for the same
nearby nameservers (see §4), and (3) contact a nearby
core node as part of a replica lookup. Note that we did not
specially configure the 12 primary nameservers as ren-
dezvous nodes fordns (see §3.3), and thus use a wide-
area lookup during Step 1. This two-step approach is
taken by all systems:Meridian andVivaldi both perform
on-demand probing twice. We omitRRobinfrom this
experiment, however, as it always uses a single name-
server. Clients already caching nameserver information
need only perform Step 3, as given in Figure12.

OASIS’s strategy of first finding nearby nameservers
and then using locally-cached information can achieve
significantly faster DNS response times compared to on-
demand probing systems. The median DNS resolution
time for OASIS replica lookups is almost 30x faster than
that for Meridian.7 We also see that local flooding can
improve median performance by 40% by reducing the
number of wide-area requests to rendezvous nodes.

End-to-end latency. Figure 13 shows the end-to-end
time for a client to perform a synthetic web session,
which includes first issuing a replica lookup via DNS
and then downloading eight 10KB files sequentially. This

7A recursive Meridian implementation [46] may be faster than our
iterative implementation: our design emphasizes greater robustness to
packet loss, given our preference for minimizing probing.

metric california texas new york germany
latency 23.3 0.0 0.0 0.0

load 9.0 11.3 9.6 9.2

Table 1: 95th-percentile bandwidth usage (MB)

file size is chosen to mimic that of common image files,
which are often embedded multiple times on a given web
page. We do not simulate persistent connections for our
transfers, so each request establishes a new TCP con-
nection before downloading the file. Also, our faux-
webserver never touches the disk, so does not take (Plan-
etLab’s high) disk-scheduling latency into account.

End-to-end measurements underscore OASIS’s true
performance benefit, coupling very fast DNS response
time with very accurate server selection. Median
response-time for OASIS is 290% faster thanMeridian
and 500% faster than simple round-robin systems.

5.2 Load-based replica selection

This section considers replica selection based on load.
We do not seek to quantify an optimal load- and latency-
aware selection metric; rather, we verify OASIS’s ability
to perform load-aware anycast. Specifically, we evaluate
a load-balancing strategy meant to reduce costs associ-
ated with 95th-percentile billing (§3.4).

In this experiment, we use four distributed servers that
run our faux-webserver. Each webserver tracks its band-
width usage per minute, and registers its load with its lo-
cal replica as the logarithm of its 95th-percentile usage.
Eight clients, all located in California, each make 50 any-
cast requests for a 1MB file, with a 20-second delay be-
tween requests. (DNS records have a TTL of 15 seconds.)

Table1 shows that the webserver with highest band-
width costs is easily within a factor of two of the least-
loaded server. On the other hand, locality-based replica
selection creates a traffic spike at a single webserver.

5.3 Scalability

Since OASIS is designed as an infrastructure system, we
now verify that a reasonable-sized OASIS core can han-
dle Internet-scale usage.

Measurements at DNS root servers have shown steady
traffic rates of around 6.5M A queries per 10 minute in-
terval across all{e, i,k,m}.root-servers.net [23]. With
a deployment of 1000 OASIS DNS servers—and, for
simplicity, assuming an even distribution of requests to
nodes—even if OASIS received requests at an equivalent
rate, each node would see only 10 requests per second.

On the other hand, OASIS often uses shorter TTLs to
handle replica failover and load balancing. The same
datasets showed approximately 100K unique resolvers

 1000

 10000

 100000

 0 1000 2000 3000 4000 5000

P
ro

bi
ng

 b
an

dw
id

th
 u

se
d

(M
B

 p
er

 w
ee

k)

DNS requests (thousands per day)

1 probe / prefix

2 probes / prefix

5 probes / prefix

1 probe / IP

2 probes / IP

5 probes / IP

on-demand probing

Figure 14: Bandwidth trade-off between on-demand probing,

caching IP prefixes (OASIS), and caching IP addresses

per 10 minute interval. Using the default TTL of 60 sec-
onds, even if every client re-issued a request every 60
seconds for alls services using OASIS, each core node
would receive at most 1.6·s requests per second.

To consider one real-world service, as opposed to some
upper bound for all Internet traffic, CoralCDN [10] han-
dles about 20 million HTTP requests from more than one
million unique client IPs per day (as of December 2005).
To serve this web population, CoralCDN answers slightly
fewer than 5 million DNS queries (for all query types)
per day, using TTLs of 30-60 seconds. This translates to
a systemtotal of 57 DNS queries per second.

5.4 Bandwidth trade-offs

This section examines the bandwidth trade-off between
precomputing prefix locality and performing on-demand
probing. If a system receives only a few hundred requests
per week, OASIS’s approach of probing every IP prefix is
not worthwhile. Figure14plots the amount of bandwidth
used in caching and on-demand anycast systems for a sys-
tem with 2000 replicas. Following the results of [46],
we estimate each closest-replica query to generate about
10.4 KB of network traffic (load grows sub-linearly with
the number of replicas).

Figure 14 simulates the amount of bandwidth used
per week for up to 5 million DNS requests per day (the
request rate from CoralCDN), where each results in a
new closest-replica query. OASIS’s probing of 200K
prefixes—even when each prefix may be probed multiple
times—generates orders of magnitude less network traf-
fic. We also plot an upper-bound on the amount of traffic
generated if the system were to cache IP addresses, as
opposed to IP prefixes.

While one might expect the number of DNS resolvers
to be constant and relatively small, many resolvers
use dynamically-assigned addresses and thus preclude a
small working set: the root-servers saw more than 4 mil-

Project Service Description
ChunkCast [5] chunkcast Anycast gateways
CoralCDN [10] coralcdn Web proxies
Na Kika [14] nakika Web proxies

OASIS dns DNS interface
http HTTP interface
rpc RPC interface

OCALA [19] ocala Client IP gateways
ocalarsp Server IP gateways

OpenDHT [37] opendht Client DHT gateways

Figure 15: Services using OASIS as of March 2006. Services

can be accessed using 〈service〉.nyuld.net.

lion unique clients in a week, with the number of clients
increasing linearly after the first day’s window [23]. Fig-
ure14uses this upper-bound to plot the amount of traffic
needed when caching IP addresses. Of course, new IP
addresses always need to be probed on-demand, with the
corresponding performance hit (per Figure12).

6 Deployment lessons

OASIS has been deployed on about 250 PlanetLab hosts
since November 2005. Figure15 lists the systems cur-
rently using OASIS and a brief description of their ser-
vice replicas. We present some lessons that we learned in
the process.

Make it easy to integrate. Though each application
server requires a local replica, for a shared testbed such as
PlanetLab, a single replica process on a host can serve on
behalf of multiple local processes running different appli-
cations. To facilitate this, we now run OASIS replicas as
a public service on PlanetLab; to adopt OASIS, Planet-
Lab applications need only listen on a registered port and
respond to keepalive messages.

Applications can integrate OASIS even without any
source-code changes or recompilation. Operators can run
or modify simple stand-alone scripts we provide that an-
swer replica keepalive requests after simple liveness and
load checks (viaps and the/proc filesystem).

Check for proximity discrepancies. Firewalls and
middleboxes can lead one to draw false conclusions from
measurement results. Consider the following two prob-
lems we encountered, mentioned earlier in §2.2.2.

To determine a routable IP address in a prefix, a replica
performs a traceroute and uses the last reachable node
that responded to the traceroute. However, since fire-
walls can perform egress filtering on ICMP packets, an
unsuspecting node would then ask others to probe its
own egress point, which may be far away from the de-
sired prefix. Hence, replicas initially find their immedi-

ate upstream routers—i.e., the set common to multiple
traceroutes—which they subsequently ignored.

When replicas probe destinations on TCP port 80
for closest-replica discovery, any local transparent web
proxy will perform full TCP termination, leading an un-
suspecting node to conclude that it is very close to the
destination. Hence, a replica first checks for a transpar-
ent proxy, then tries alternative probing techniques.

Both problems would lead replicas to report them-
selves as incorrectly close to some IP prefix. So, by em-
ploying measurement redundancy, OASIS can compare
answers for precision and sanity.

Be careful what you probe. No single probing tech-
nique is both sufficiently powerful and innocuous (from
the point-of-view of intrusion-detection systems). As
such, OASIS has adapted its probing strategies based on
ISP feedback. ICMP probes and TCP probes to random
high ports were often dropped by egress firewalls and,
for the latter, flagged as unwanted port scans. Probing
to TCP port 80 faced the problem of transparent web
proxies, and probes to TCP port 22 were often flagged
as SSH login attacks. Unfortunately, as OASIS performs
probing from multiple networks, automated abuse com-
plaints from IDSs are sent to many separate network op-
erators. Currently, OASIS uses a mix of TCP port 80
probes, ICMP probes, and reverse DNS name queries.

Be careful whom you probe. IDSs deployed on some
networks are incompatible with active probing, irrespec-
tive of the frequency of probes. Thus, OASIS maintains
and checks a blacklist whenever a target IP prefix or ad-
dress is selected for probing. We apply this blacklist at all
stages of probing: Initially, only the OASIS core checked
target IP prefixes. However, this strategy led to abuse
complaints from ASes that provide transit for the target,
yet filter ICMPs; in such cases, replicas tracerouting the
prefix would end up probing the upstream AS.

7 Related work

We classify related work into two areas most relevant to
OASIS: network distance estimation and server selection.
Network distance estimation techniques are used to iden-
tify the location and/or distance between hosts in the net-
work. The server-selection literature deals with finding
an appropriately-located server (possibly using network
distance estimation) for a client request.

Network distance estimation. Several techniques have
been proposed to reduce the amount of probing per re-
quest. Some initial proposals (such as [16]) are based
on the triangle-inequality assumption. IDMaps [9] pro-
posed deployingtracers that all probe one another; the
distance between two hosts is calculated as the sum of

the distances between the hosts and their selected trac-
ers, and between the two selected tracers. Theilmann and
Rothermel described a hierarchical tree-like system [44],
and Iso-bar proposed a two-tier system using landmark-
based clustering algorithms [4]. King [15] used recursive
queries to remote DNS nameservers to measure the RTT
distance between any twonon-participatinghosts.

Recently, virtual coordinate systems (such as GNP [28]
and Vivaldi [6]) offer new methods for latency estimation.
Here, nodes generate synthetic coordinates after probing
one another. The distance between peers in the coordinate
space is used to predict their RTT, the accuracy of which
depends on how effectively the Internet can be embedded
into ad-dimensional (usually Euclidean) space.

Another direction for network estimation has been the
use of geographic mapping techniques; the main idea is
that if geographic distance is a good indicator of net-
work distance, then estimating geographic location accu-
rately would obtain a first approximation for the network
distance between hosts. Most approaches in geographic
mapping are heuristic. The most common approaches
include performing queries against awhois database
to extract city information [17, 32], or tracerouting the
address space and then mapping router names to loca-
tions based on ISP-specific naming conventions [12, 30].
Commercial entities have sought to create exhaustive IP-
range mappings [1, 35].

Server selection. IP anycast was proposed as a
network-level solution to server selection [22, 31]. How-
ever, with various deployment and scalability problems,
IP anycast is not widely used or available. Recently, PIAS
has argued for supporting IP anycast as a proxy-based ser-
vice to overcome deployment challenges [2]; OASIS can
serve as a powerful and flexible server-selection backend
for such a system.

One of the largest deployed content distribution net-
works, Akamai [1] reportedly traceroutes the IP address
space from multiple vantage points to detect route con-
vergence, then pings the common router from every data
center hosting an Akamai cluster [4]. OASIS’s task is
more difficult than that of commercial CDNs, given its
goal of providing anycast for multiple services.

Recent literature has proposed techniques to minimize
such exhaustive probing. Meridian [46] (used for DNS
redirection by [45]) creates an overlay network with
neighbors chosen from a particular distribution; routing
to closer nodes is guaranteed to find a minimum given a
growth-restricted metric space [21]. In contrast, OASIS
completely eliminates on-demand probing.

OASIS allows more flexible server selection than pure
locality-based solutions, as it stores load and capacity es-
timates from replicas in addition to locality information.

8 Conclusion

OASIS is a global distributed anycast system that allows
legacy clients to find nearby or unloaded replicas for dis-
tributed services. Two main features distinguish OASIS
from prior systems. First, OASIS allows multiple ap-
plication services to share the anycast service. Second,
OASIS avoids on-demand probing when clients initiate
requests. Measurements from a preliminary deployment
show that OASIS, provides a significant improvement in
the performance that clients experience over state-of-the-
art on-demand probing and coordinate systems, while in-
curring much less network overhead.

OASIS’s contributions are not merely its individual
components, but also the deployed system that is im-
mediately usable by both legacy clients and new ser-
vices. Publicly deployed on PlanetLab, OASIS has
already been adopted by a number of distributed ser-
vices [5, 10, 14, 19, 37].

Acknowledgments. We thank A. Nicolosi for the key-
word analysis of Figure1. M. Huang, R. Huebsch, and L.
Peterson have aided our efforts to run PlanetLab services.
We also thank D. Andersen, S. Annapureddy, N. Feam-
ster, J. Li, S. Rhea, I. Stoica, our anonymous reviewers,
and our shepherd, S. Gribble, for comments on drafts of
this paper. This work was conducted as part of Project
IRIS under NSF grant ANI-0225660.

References
[1] Akamai Technologies. http://www.akamai.com/, 2006.
[2] H. Ballani and P. Francis. Towards a global IP anycast service. In

SIGCOMM, 2005.
[3] M. Castro, M. Costa, and A. Rowstron. Debunking some myths

about structured and unstructured overlays. InNSDI, May 2005.
[4] Y. Chen, K. H. Lim, R. H. Katz, and C. Overton. On the stabil-

ity of network distance estimation.SIGMETRICS Perform. Eval.
Rev., 30(2):21–30, 2002.

[5] B.-G. Chun, P. Wu, H. Weatherspoon, and J. Kubiatowicz.
ChunkCast: An anycast service for large content distribution. In
IPTPS, Feb. 2006.

[6] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decen-
tralized network coordinate system. InSIGCOMM, Aug. 2004.

[7] A. Das, I. Gupta, and A. Motivala. SWIM: Scalable weakly-
consistent infection-style process group membership protocol. In
Dependable Systems and Networks, June 2002.

[8] C. de Launois, S. Uhlig, and O. Bonaventure. A stable and dis-
tributed network coordinate system. Technical report, Universite
Catholique de Louvain, Dec. 2004.

[9] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang. IDMaps: A global Internet host distance estimation
service.IEEE/ACM Trans. on Networking, Oct. 2001.

[10] M. J. Freedman, E. Freudenthal, and D. Mazières. Democratizing
content publication with Coral. InNSDI, Mar. 2004.

[11] M. J. Freedman, K. Lakshminarayanan, S. Rhea, and I. Stoica.
Non-transitive connectivity and DHTs. InWORLDS, Dec. 2005.

[12] M. J. Freedman, M. Vutukuru, N. Feamster, and H. Balakrishnan.
Geographic locality of IP prefixes. InIMC, Oct. 2005.

[13] Google Maps. http://maps.google.com/, 2006.
[14] R. Grimm, G. Lichtman, N. Michalakis, A. Elliston, A.Kravetz,

J. Miller, and S. Raza. Na Kika: Secure service execution and
composition in an open edge-side computing network. InNSDI,
May 2006.

[15] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating
latency between arbitrary Internet end hosts. InIMW, 2001.

[16] J. Guyton and M. Schwartz. Locating nearby copies of replicated
Internet servers. InSIGCOMM, Aug. 1995.

[17] IP to Lat/Long server, 2005. http://cello.cs.uiuc.edu/cgi-
bin/slamm/ip2ll/.

[18] Iperf. Version 1.7.0 – the TCP/UDP bandwidth measurement tool.
http://dast.nlanr.net/Projects/Iperf/, 2005.

[19] D. Joseph, J. Kannan, A. Kubota, K. Lakshminarayanan, I. Stoica,
and K. Wehrle. OCALA: An architecture for supporting legacy
applications over overlays. InNSDI, May 2006.

[20] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and
R. Panigrahy. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the World Wide Web.
In STOC, May 1997.

[21] D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-
restricted metrics. InSTOC, 2002.

[22] D. Katabi and J. Wroclawski. A framework for scalable global
IP-anycast (GIA). InSIGCOMM, Aug. 2000.

[23] K. Keys. Clients of DNS root servers, 2002-08-14.
http://www.caida.org/projects/dns-analysis/, 2002.

[24] Z. M. Mao, C. Cranor, F. Douglis, M. Rabinovich, O. Spatscheck,
and J. Wang. A precise and efficient evaluation of the proximity
between web clients and their local DNS servers. InUSENIX
Conference, June 2002.

[25] D. Mazières. A toolkit for user-level file systems. InUSENIX
Conference, June 2001.

[26] A. Mislove, A. Post, A. Haeberlen, and P. Druschel. Experiences
in building and operating a reliable peer-to-peer application. In
EuroSys, Apr. 2006.

[27] D. Morrison. Practical algorithm to retrieve information coded in
alphanumeric.J. ACM, 15(4), Oct. 1968.

[28] E. Ng and H. Zhang. Predicting Internet network distance with
coordinates-based approaches. InINFOCOM, June 2002.

[29] OASIS. http://www.coralcdn.org/oasis/, 2006.
[30] V. N. Padmanabhan and L. Subramanian. An investigation of ge-

ographic mapping techniques for Internet hosts. InSIGCOMM,
Aug. 2001.

[31] C. Patridge, T. Mendez, and W. Milliken. Host anycasting service.
RFC 1546, Network Working Group, Nov. 1993.

[32] D. M. R. Periakaruppan and J. Donohoe. Where in the world is
netgeo.caida.org? InINET, June 2000.

[33] P. Pietzuch, J. Ledlie, and M. Seltzer. Supporting network coordi-
nates on planetlab. InWORLDS, Dec. 2005.

[34] PlanetLab. http://www.planet-lab.org/, 2005.
[35] Quova. http://www.quova.com/, 2006.
[36] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang. BGP routing stability

of popular destinations. InIMW, Nov. 2002.
[37] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,

S. Shenker, I. Stoica, and H. Yu. OpenDHT: A public DHT ser-
vice and its uses. InSIGCOMM, Aug. 2005.

[38] RouteViews. http://www.routeviews.org/, 2006.
[39] A. Rowstron and P. Druschel. Pastry: Scalable, distributed ob-

ject location and routing for large-scale peer-to-peer systems. In
IFIP/ACM Middleware, Nov 2001.

[40] K. Shanahan and M. J. Freedman. Locality prediction for oblivi-
ous clients. InIPTPS, Feb. 2005.

[41] Sleepycat. BerkeleyDB v4.2, 2005.
[42] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek,

F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup protocol for Internet applications. InIEEE/ACM Trans.
on Networking, 2002.

[43] J. Stribling. PlanetLab AllPairsPing data, 08-03-2005:11:14:19.
http://www.pdos.lcs.mit.edu/ strib/pl_app/, 2005.

[44] W. Theilmann and K. Rothermel. Dynamic distance maps of the
Internet. InIEEE INFOCOM, Mar 2001.

[45] B. Wong and E. G. Sirer. ClosestNode.com: an open access,
scalable, shared geocast service for distributed systems.SIGOPS
OSR, 40(1), 2006.

[46] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A lightweight
network location service without virtual coordinates. InSIG-
COMM, Aug. 2005.

Efficient Private Matching and Set Intersection

Michael J. Freedman1?, Kobbi Nissim2??, and Benny Pinkas3

1 New York University (mfreed@cs.nyu.edu)
2 Microsoft Research SVC (kobbi@microsoft.com)

3 HP Labs (benny.pinkas@hp.com)

Abstract. We consider the problem of computing the intersection of
private datasets of two parties, where the datasets contain lists of ele-
ments taken from a large domain. This problem has many applications
for online collaboration. We present protocols, based on the use of ho-
momorphic encryption and balanced hashing, for both semi-honest and
malicious environments. For lists of length k, we obtain O(k) communi-
cation overhead and O(k ln ln k) computation. The protocol for the semi-
honest environment is secure in the standard model, while the protocol
for the malicious environment is secure in the random oracle model. We
also consider the problem of approximating the size of the intersection,
show a linear lower-bound for the communication overhead of solving
this problem, and provide a suitable secure protocol. Lastly, we inves-
tigate other variants of the matching problem, including extending the
protocol to the multi-party setting as well as considering the problem of
approximate matching.

1 Introduction

This work considers several two-party set-intersection problems and presents
corresponding secure protocols. Our protocols enable two parties that each hold
a set of inputs – drawn from a large domain – to jointly calculate the intersection
of their inputs, without leaking any additional information. The set-intersection
primitive is quite useful as it is extensively used in computations over databases,
e.g., for data mining where the data is vertically partitioned between parties
(namely, each party has different attributes referring to the same subjects).

One could envision the usage of efficient set-intersection protocols for online
recommendation services, online dating services, medical databases, and many
other applications. We are already beginning to see the deployment of such
applications using either trusted third parties or plain insecure communication.

Contributions. We study private two-party computation of set intersection,
which we also denote as private matching (PM):

– Protocols for computing private matching, based on homomorphic encryp-
tion and balanced allocations: (i) a protocol secure against semi-honest ad-
versaries; and (ii) a protocol, in the random oracle model, secure against

? Research partially done while the author was visiting HP Labs.
?? Research done while the author was at NEC Labs.

malicious adversaries.4 Their overhead for input lists of length k is O(k)
communication and O(k ln ln k) computation, with small constant factors.
These protocols are more efficient than previous solutions to this problem.

– Variants of the private matching protocol that (i) compute the intersection
size, (ii) decide whether the intersection size is greater than a threshold, or
(iii) compute some other function of the intersection set.

– We consider private approximation protocols for the intersection size (similar
to the private approximation of the Hamming distance by [10]). A simple
reduction from the communication lower-bound on disjointness shows that
this problem cannot have a sublinear worst-case communication overhead.
We show a sampling-based private approximation protocol that achieves
instance-optimal communication.

– We extend the protocol for set intersection to a multi-party setting.
– We introduce the problem of secure approximate (or “fuzzy”) matching and

search, and we present protocols for several simple instances.

2 Background and Related Work

Private equality tests (PET). A simpler form of private matching is where
each of the two datasets has a single element from a domain of size N . A cir-
cuit computing this function has O(log N) gates, and therefore can be securely
evaluated with this overhead. Specialized protocols for this function were also
suggested in [9, 18, 17], and they essentially have the same overhead. A solution
in [3] provides fairness in addition to security.

A circuit-based solution for computing PM of datasets of length k requires
O(k2 log N) communication and O(k log N) oblivious transfers. Another trivial
construction compares all combinations of items from the two datasets using k2

instantiations of a PET protocol (which itself has O(log N) overhead). The com-
putation of this comparison can be reduced to O(k log N), while retaining the
O(k2 log N) communication overhead [18]. There are additional constructions
that solve the private matching problem at the cost of only O(k) exponenti-
ations [12, 8]. However, these constructions were only analyzed in the random
oracle model, against semi-honest parties.

Disjointness and set intersection. Protocols for computing (or deciding)
the intersection of two sets have been researched both in the general context
of communication complexity and in the context of secure protocols. Much at-
tention has been given to evaluating the communication complexity of the dis-
jointness problem, where the two parties in the protocol hold subsets a and b of
{1, . . . , N}. The disjointness function Disj(a, b) is defined to be 1 if the sets a, b
have an empty intersection. It is well known that Rε(Disj) = Θ(N) [14, 22]. An
immediate implication is that computing |a ∩ b| requires Θ(N) communication.
Therefore, even without taking privacy into consideration, the communication
complexity of private matching is at least proportional to the input size.

4 For malicious clients, we present a protocol that is secure in the standard model.

One may try and get around the high communication complexity of comput-
ing the intersection size by approximating it. In the context of secure protocols,
this may lead to a sublinear private approximation protocol for intersection size.5

If one settles for an approximation up to additive error εN (for constant ε), it is
easy to see that very efficient protocols exist, namely O(log N) bits in the private
randomness model [16, Example 5.5]. However, if we require multiplicative er-
ror (e.g., an (ε, δ)-approximation), we show a simple reduction from disjointness
that proves that a lower-bound of Ω(N) communication bits is necessary for any
such approximation protocol. See Section 6 for details.

3 Preliminaries

3.1 Private matching (PM)

A private matching (PM) scheme is a two-party protocol between a client
(chooser) C and a server (sender) S. C’s input is a set of inputs of size kC , drawn
from some domain of size N ; S’s input is a set of size kS drawn from the same
domain. At the conclusion of the protocol, C learns which specific inputs are
shared by both C and S. That is, if C inputs X = {x1, . . . , xkC

} and S inputs
Y = {y1, . . . , ykS

}, C learns X ∩ Y : {xu|∃v, xu = yv} ← PM(X, Y).

PM Variants. Some variants of the private matching protocol include the fol-
lowing. (i) Private cardinality matching (PMC) allows C to learn how many

inputs it shares with S. That is, C learns |X ∩ Y |: |PM| ← PMC(X, Y). (ii)
Private threshold matching (PMt) provides C with the answer to the decisional

problem whether |X ∩ Y | is greater than some pre-specified threshold t. That is,
1 ← PMt(X, Y) if PMC > t and 0 otherwise. (iii) Generalizing PMC and PMt,
one could define arbitrary private-matching protocols that are simple functions
of the intersection set, i.e., based on the output of PM or PMC .

Private Matching and Oblivious Transfer. We show a simple reduction
from oblivious transfer (OT) to private matching. The OT protocol we design
is a 1-out-of-2 bit-transfer protocol in the semi-honest case. The sender’s input
contains two bits b0, b1. The chooser’s input is a bit σ. At the end of the protocol
the chooser learns bσ and nothing else, while the sender learns nothing.

First, the parties generate their respective PM inputs: The sender generates
a list of two strings, {0|b0, 1|b1}, and the chooser generates the list {σ|0, σ|1}.
Then, they run the PM protocol, at the end of which the chooser learns σ|bσ. It
follows by the results of Impagliazzo and Rudich [13] that there is no black-box
reduction of private matching from one-way functions.

Since the reduction is used to show an impossibility result, it is sufficient to
show it for the simplest form of OT, as we did above. We note that if one actually
wants to build an OT protocol from a PM primitive, it is possible to directly
construct a 1-out-of-N bit transfer protocol. In addition, the PM-Semi-Honest

protocol we describe supports OT of strings.

5 Informally, a private approximation is an approximation that does not leak informa-
tion that is not computable given the exact value. See the definition in [10].

3.2 Adversary models

This paper considers both semi-honest and malicious adversaries. Due to space
constraints, we only provide the intuition and informal definitions of these mod-
els. The reader is referred to [11] for the full definitions.

Semi-honest adversaries. In this model, both parties are assumed to act
according to their prescribed actions in the protocol. The security definition is
straightforward, particularly as in our case where only one party (C) learns an
output. We follow [18] and divide the requirements into (i) protecting the client
and (ii) protecting the sender.

The client’s security – indistinguishability: Given that the server S gets
no output from the protocol, the definition of C’s privacy requires simply that the
server cannot distinguish between cases in which the client has different inputs.

The server’s security – comparison to the ideal model: The definition
ensures that the client does not get more or different information than the output
of the function. This is formalized by considering an ideal implementation where
a trusted third party (TTP) gets the inputs of the two parties and outputs the
defined function. We require that in the real implementation of the protocol—
that is, one without a TTP—the client C does not learn different information
than in the ideal implementation.

Malicious adversaries. In this model, an adversary may behave arbitrarily.
In particular, we cannot hope to avoid parties (i) refusing to participate in the
protocol, (ii) substituting an input with an arbitrary value, and (iii) prematurely
aborting the protocol. The standard security definition (see, e.g., [11]) captures
both the correctness and privacy issues of the protocol and is limited to the case
in which only one party obtains an output. Informally, the definition is based
on a comparison to the ideal model with a TTP, where a corrupt party may give
arbitrary input to the TTP. The definition also is limited to the case where at
least one of the parties is honest: if C (resp. S) is honest, then for any strategy
that S (resp. C) can play in the real execution, there is a strategy that it could
play in the ideal model, such that the real execution is computationally indis-
tinguishable from execution in the ideal model. We note that main challenge in
ensuring security is enforcing the protocol’s correctness, rather than its privacy.

3.3 Cryptographic primitives – Homomorphic encryption schemes

Our constructions use a semantically-secure public-key encryption scheme that
preserves the group homomorphism of addition and allows multiplication by a
constant. This property is obtained by Paillier’s cryptosystem [20] and subse-
quent constructions [21, 7]. That is, it supports the following operations that can
be performed without knowledge of the private key: (i) Given two encryptions
Enc(m1) and Enc(m2), we can efficiently compute Enc(m1+m2). (ii) Given some
constant c belonging to the same group, we can compute Enc(cm). We will use
the following corollary of these two properties: Given encryptions of the coef-

ficients a0, . . . , ak of a polynomial P of degree k, and knowledge of a plaintext
value y, it is possible to compute an encryption of P (y).6

4 The Semi-Honest Case

4.1 Private Matching for set intersection (PM)

The protocol follows the following basic structure. C defines a polynomial P
whose roots are her inputs:

P (y) = (x1 − y)(x2 − y) . . . (xkC
− y) =

kC
∑

u=0

αuyu

She sends to S homomorphic encryptions of the coefficients of this polynomial.
S uses the homomorphic properties of the encryption system to evaluate the
polynomial at each of his inputs. He then multiplies each result by a fresh random
number r to get an intermediate result, and he adds to it an encryption of the
value of his input, i.e., S computes Enc(r · P (y) + y). Therefore, for each of
the elements in the intersection of the two parties’ inputs, the result of this
computation is the value of the corresponding element, whereas for all other
values the result is random.7 See Protocol PM-Semi-Honest.8

4.2 Efficiently evaluating the polynomial

As the computational overhead of exponentiations dominates that of other op-
erations, we evaluate the computational overhead of the protocol by counting
exponentiations. Equivalently, we count the number of multiplications of the
homomorphically-encrypted values by constants (in Step 2(a)), as these multi-
plications are actually implemented as exponentiations.

Given the encrypted coefficients Enc(αu) of a polynomial P , a naive compu-

tation of Enc(P (y)) as Enc(
∑kC

u=0 yuαu) results in an overhead of O(kC) exponen-
tiations, and hence in a total of O(kCkS) exponentiations for PM-Semi-Honest.

The computational overhead can be reduced by noting that the input domain
is typically much smaller than the modulus used by the encryption scheme.

6 We neglect technicalities that are needed to make sure the resulting ciphertext hides
the sequence of homomorphic operations that led to it. This may be achieved, e.g.,
by multiplying the result by a random encryption of 1.

7 This construction can be considered a generalization of the oblivious transfer proto-
cols of [19, 1, 17]. In those, a client retrieving item i sends to the server a predicate
which is 0 if and only if i = j where j ∈ [N].

8 It is sufficient for Step 3 of the protocol that C is able to decide whether some
ciphertext corresponds to x ∈ X (i.e., decryption is not necessary). This weaker
property is of use if, for example, one uses the El Gamal encryption scheme and
encodes an element x by gx (to allow the homomorphic properties under addition).
This may prevent rP (y) + y from being recovered in the decryption process, yet
it is easy for C to decide whether rP (y) + y = x. The Paillier [20] homomorphic
encryption scheme recovers rP (y) + y.

Protocol PM-Semi-Honest

Input: C’s input is a set X = {x1, . . . , xkC
}, S’s input is a set Y = {y1, . . . , ykS

}.
The elements in the input sets are taken from a domain of size N .

1. C performs the following:
(a) She chooses the secret-key parameters for a semantically-secure homomor-

phic encryption scheme, and publishes its public keys and parameters. The
plaintexts are in a field that contains representations of the N elements
of the input domain, but is exponentially larger.

(b) She uses interpolation to compute the coefficients of the polynomial
P (y) = ΣkC

u=0
αuyu of degree kC with roots {x1, . . . , xkC

}.
(c) She encrypts each of the (kC + 1) coefficients by the semantically-secure

homomorphic encryption scheme and sends to S the resulting set of ci-
phertexts, {Enc(α0), . . . , Enc(αkC

)}.
2. S performs the following for every y ∈ Y ,

(a) He uses the homomorphic properties to evaluate the encrypted polynomial
at y. That is, he computes Enc(P (y)) = Enc(ΣkC

u=0
αuyu). See Section 4.2.

(b) He chooses a random value r and computes Enc(rP (y) + y). (One can
also encrypt some additional payload data py by computing Enc(rP (y) +
(y|py)). C obtains py iff y is in the intersection.)

He randomly permutes this set of kS ciphertexts and sends the result back to
the client C.

3. C decrypts all kS ciphertexts received. She locally outputs all values x ∈ X for
which there is a corresponding decrypted value .

Hence one may encode the values x, y as numbers in the smaller domain. In
addition, Horner’s rule can be used to evaluate the polynomial more efficiently
by eliminating large exponents. This yields a significant (large constant factor)
reduction in the overhead.

We achieve a more significant reduction of the overhead by allowing the
client to use multiple low-degree polynomials and then allocating input values
to polynomials by hashing. This results in reducing the computational overhead
to O(kC + kS ln ln kC) exponentiations. Details follow.

Exponents from a small domain. Let λ be the security parameter of the
encryption scheme (e.g., λ is the modulus size). A typical choice is λ = 1024
or larger. Yet, the input sets are usually of size � 2λ and may be mapped
into a small domain—of length n ≈ 2 log(max(kc, ks)) bits—using pairwise-
independent hashing, which induces only a small collision probability. The server
should compute Enc(P (y)), where y is n bits long.

Using Horner’s rule. We get our first overhead reduction by applying Horner’s
rule: P (y) = α0 + α1y + α2y

2 + · · ·+ αkC
ykC is evaluated “from the inside out”

as α0 + y(α1 + y(α2 + y(α3 + · · · y(αkC−1 + yαkC
) · · ·))). One multiplies each

intermediate result by a short y, compared with yi in the naive evaluation,
which results in kC short exponentiations.

When using the “text book” algorithm for computing exponentiations, the
computational overhead is linear in the length of the exponent. Therefore, Horner’s
rule improves this overhead by a factor of λ/n (which is about 50 for kC , kS ≈

1000). The gain is substantial even when fine-tunes exponentiation algorithms—
such as Montgomery’s method or Karatsuba’s technique—are used.

Using hashing for bucket allocation. The protocol’s main computational
overhead results from the server computing polynomials of degree kC . We now
reduce the degree of these polynomials. For that, we define a process that throws
the client’s elements into B bins, such that each bin contains at most M elements.

The client now defines a polynomial of degree M for each bin: All items
mapped to the bin by some function h are defined to be roots of the polynomial.
In addition, the client adds the root x = 0 to the polynomial, with multiplicity
which sets the total degree of the polynomial to M . That is, if h maps ` items
to the bin, the client first defines a polynomial whose roots are these ` items,
and then multiplies it by xM−`. (We assume that 0 is not a valid input.) The
process results in B polynomials, all of them of degree M , that have a total of
kC non-zero roots.
C sends to S the encrypted coefficients of the polynomials, and the mapping

from elements to bins.9 For every y ∈ Y , S finds the bins into which y could be
mapped and evaluates the polynomial of those bins. He proceeds as before and
responds to C with the encryptions rP (y) + y for every possible bin allocation
for all y.

Throwing elements into bins – balanced allocations. We take the map-
ping from elements to bins to be a random hash function h with a range of size
B, chosen by the client. Our goal is to reduce M , the upper bound on the number
of items in a bin. It is well known that if the hash function h maps each item
to a random bin, then with high probability (over the selection of h), each bin
contains at most kC/B+O(

√

(kC/B) log B+logB) elements. A better allocation
is obtained using the balanced allocation hashing by Azar et al. [2]. The function
h now chooses two distinct bins for each item, and the item is mapped into the
bin which is less occupied at the time of placement. In the resulting protocol,
the server uses h to locate the two bins into which y might have been mapped,
evaluates both polynomials, and returns the two answers to C.

Theorem 1.1 of [2] shows that the maximum load of a bin is now exponentially
smaller: with 1− o(1) probability, the maximum number of items mapped to a
bin is M = (1 + o(1)) ln ln B/ ln 2 + Θ(kC/B). Setting B = kC/ ln ln kC , we get
M = O(ln ln kC).

A note on correctness and on constants. One may worry about the case
that C is unlucky in her choice of h such that more than M items are mapped to
some bin. The bound of [2] only guarantees that this happens with probability
o(1). However, Broder and Mitzenmacher [4] have shown that asymptotically,
when we map n items into n bins, the number of bins with i or more items
falls approximately like 2−2.6i

. This means that a bound of M = 5 suffices with
probability 10−58. Furthermore, if the hashing searches for the emptiest in three
bins, then M = 3 suffices with probability of about 10−33. The authors also

9 For our purposes, it is sufficient that the mapping is selected pseudo-randomly, either
jointly or by either party.

provide experimental results that confirm the asymptotic bound for the case of
n = 32, 000. We conclude that we can bound ln ln kC by a small constant in our
estimates of the overhead. Simple experimentation can provide finer bounds.

Efficiency. The communication overhead, and the computation overhead of
the client, are equal to the total number of coefficients of the polynomials. This
number, given by B ·M , is O(kC) if B = kC/ ln ln kC . If k ≤ 224, then using
B = kC bins implies that the communication overhead is at most 4 times that
of the protocol that does not use hashing.

The server computes, for each item in his input, M exponentiations with a
small exponent, and one exponentiation with a full-length exponent (for com-
puting r ·P (y)). Expressing this overhead in terms of full-length exponentiations
yields an overhead of O(kS + kS

ln ln kC ·n
λ

) for B = kC/ ln ln kC . In practice, the
overhead of the exponentiations with a small exponent has little effect on the
total overhead, which is dominated by kS full-length exponentiations.

4.3 Security of PM-Semi-Honest

We state the claims of security for PM in the semi-honest model.

Lemma 1 (Correctness). Protocol PM-Semi-Honest evaluates the PM func-

tion with high probability.

(The proof is based on the fact that the client receives an encryption of y for
y ∈ X ∩ Y , and an encryption of a random value otherwise.)

Lemma 2 (C’s privacy is preserved). If the encryption scheme is semanti-

cally secure, then the views of S for any two inputs of C are indistinguishable.

(The proof uses the fact that the only information that S receives consists of
semantically-secure encryptions.)

Lemma 3 (S’s privacy is preserved). For every client C∗ that operates in

the real model, there is a client C operating in the ideal model, such that for every

input Y of S, the views of the parties C,S in the ideal model is indistinguishable

from the views of C∗,S in the real model.

(The proof defines a polynomial whose coefficients are the plaintexts of the
encryptions sent by C∗ to S. The kC roots of this polynomial are the inputs that
C sends to the trusted third party in the ideal implementation.)

Security of the hashing-based protocol. Informally, the hashing-based pro-
tocol preserves C’s privacy since (i) S still receives semantically-secure encryp-
tions, and (ii) the key is chosen independently of C’s input. Thus, neither the key
nor h reveal any information about X to S. The protocol preserves S’s privacy
since the total number of non-zero roots of the polynomials is kC .

4.4 Variant: Private Matching for set cardinality (PMC)

In a protocol for private cardinality matching, C should learn the cardinality of
X ∩ Y , but not the actual elements of this set. S needs only slightly change
his behavior from that in Protocol PM-Semi-Honest to enable this functionality.
Instead of encoding y in Step 2(b), S now only encodes some “special” string,
such as a string of 0’s, i.e., S computes Enc(rP (y) + 0+). In Step 3 of the
protocol, C counts the number of ciphertexts received from S that decrypt to
the string 0+ and locally outputs this number c. The proof of security for this
protocol trivially follows from that of PM-Semi-Honest.

4.5 Variants: Private Matching for cardinality threshold (PMt) and
other functions

In a protocol for private threshold matching, C should only learn whether c =
|X∩Y | > t. To enable this functionality, we change PM-Semi-Honest as follows.
(i) In Step 2(b), S encodes random numbers instead of y in PM (or 0+ in PMC).
That is, he computes Enc(rP (y)+ry), for random ry . (ii) Following the basic PM

protocol, C and S engage in a secure circuit evaluation protocol. The circuit takes
as input kS values from each party: C’s input is the ordered set of plaintexts she
recovers in Step 3 of the PM protocol. S’s input is the list of random payloads he
chooses in Step 2(b), in the same order he sends them. The circuit first computes
the equality of these inputs bit-by-bit, which requires kSλ′ gates, where λ′ is a
statistical security parameter. Then, the circuit computes a threshold function
on the results of the kS comparisons.

Hence, the threshold protocol has the initial overhead of a PM protocol plus
the overhead of a secure circuit evaluation protocol. Note, however, that the
overhead of circuit evaluation is not based on the input domain of size N . Rather,
it first needs to compute equality on the input set of size kS , then compute some
simple function of the size of the intersection set. In fact, this protocol can be
used to compute any function of the intersection set, e.g., check if c within some
range, not merely the threshold problem.

5 Security against Malicious Parties

We describe modifications to our PM protocol in order to provide security in the
malicious adversary model. Our protocols are based on protocol PM-Semi-Honest,
optimized with the balanced allocation hashing.

We first deal with malicious clients and then with malicious servers. Finally,
we combine these two protocols to achieve a protocol in which either party may
behave adversarially. We take this non-standard approach as: (i) It provides
conceptual clarity as to the security concerns for each party; (ii) These protocols
may prove useful in varying trust situations, e.g., one might trust a server but
not the myriad clients; and (iii) The client protocol is secure in the standard
model, while the server protocol is analyzed in the random oracle model.

Protocol PM-Malicious-Client

Input: C has input X of size kC, and S has input Y of size kS , as before.

1. C performs the following:
(a) She chooses a key for a pseudo-random function that realizes the balanced

allocation hash function h, and she sends it to S.
(b) She chooses a key s for a pseudo-random function F and gives each item

x in her input X a new pseudo-identity, Fs(G(x)), where G is a collision-
resistant hash function.

(c) For each of her polynomials, C first sets roots to the pseudo-identities of
such inputs that were mapped to the corresponding bin. Then, she adds
a sufficient number of 0 roots to set the polynomial’s degree to M .

(d) She repeats Steps (b),(c) for L times to generate L copies, using a different
key s for F in each iteration.

2. S asks C to open L/2 of the copies.
3. C opens the encryptions of the coefficients of the polynomials for these L/2

copies to S, but does not reveal the associated keys s. Additionally, C sends
the keys s used in the unopened L/2 copies.

4. S verifies that the each opened copy contains kC roots. If this verification fails,
S halts. Otherwise, S uses the additional L/2 keys he receives, along with
the hash function G, to generate the pseudo-identities of his inputs. He runs
the protocol for each of the polynomials. However, for an input y, rather than
encoding y as the payload for each polynomial, he encodes L/2 random values
whose exclusive-or is y.

5. C receives the results, organized as a list of kS sets of size L/2. She decrypts
them, computes the exclusive-or of each set, and compares it to her input.

5.1 Malicious clients

To ensure security against a malicious client C, it must be shown that for any
possible client behavior in the real model, there is an input of size kC that the
client provides to the TTP in the ideal model, such that his view in the real
protocol is efficiently simulatable from his view in the ideal model.

We first describe a simple solution for the implementation that does not use
hashing. We showed in Lemma 3 that if a value y is not a root of the polynomial
sent by the client, the client cannot distinguish whether this item is in the
server’s input. Thus, we have to take care of the possibility that C sends the
encryption of a polynomial with more than kC roots. This can only happen if all
the encrypted coefficients are zero (P ’s degree is indeterminate). We therefore
modify the protocol to require that at least one coefficient is non-zero – in Step
1(b) of Protocol PM-Semi-Honest, C generates the coefficients of P with α0 set
to 1, then sends encryptions of the other coefficients to S.

In the protocol that uses hashing, C sends encryptions of the coefficients of
B polynomials (one per bin), each of degree M . The server must ensure that
the total number of roots (different than 0) of these polynomials is kC . For that
we use a cut-and-choose method, as shown in Protocol PM-Malicious-Client.
With overhead L times that of the original protocol, we get error probability
that is exponentially small in L.

Proof. (sketch) In our given cut-and-choose protocol, note that C learns about
an item iff it is a root of all the L/2 copies evaluated by S. Therefore, to learn
about more than kC items, she must have L/2 copies such that each has more
than kC roots. The probability that all such polynomials are not checked by S
is exponentially small in L. This argument can be used to show that, for every
adversarial C∗ whose success probability is not exponentially small, there is a
corresponding C in the ideal model whose input contains at most kC items.10

5.2 Malicious servers

Protocol PM-Semi-Honest of Section 4 enables a malicious server to attack the
protocol correctness.11 He can play tricks like encrypting the value r · (P (y) +
P (y′)) + y′′ in Step 2(b), so that C concludes that y′′ is in the intersection set iff
both y and y′ are X . This behavior does not correspond to the definition of PM

in the ideal model. Intuitively, this problem arises from S using two “inputs” in
the protocol execution for input y—a value for the polynomial evaluation, and
a value used as a payload—whereas S has a single input in the ideal model.12

We show how to modify Protocol PM-Semi-Honest to gain security against
malicious servers. The protocol based on balanced allocations may be modified
similarly. Intuitively, we force the server to run according to its prescribed proce-
dure. Our construction, PM-Malicious-Server, is in the random oracle model.

The server’s privacy is preserved as in PM-Semi-Honest: The pair (e, h) is
indistinguishable from random whenever P (y) 6= 0. The following lemma shows
that the client security is preserved under malicious server behavior.

Lemma 4 (Security for the client). For every server S∗ that operates in the

real model, there is a server S operating in the ideal model, such that the views

of the parties C,S in the ideal model is computationally indistinguishable from

the views of C,S∗ in the real model.

Proof. (sketch) We describe how S works.

1. S generates a secret-key/public-key pair for the homomorphic encryption
scheme, chooses a random polynomial P (y) of degree kC and gives S∗ his
encrypted coefficients. Note that S∗ does not distinguish the encryption of
P (y) from the encryption of any other degree kC polynomial.

2. S records all the calls S∗ makes to the random oracles H1, H2. Let Ŝ be the
set of input values to H1 and Ŷ be the set of y input values to H2.

10 In the proof, the pseudo-random function F hides from S the identities of the values
corresponding to the roots of the opened polynomials. The collision-resistant hash
function G prevents C from setting a root to which S maps two probable inputs.

11 He cannot affect C’s privacy as all the information C sends is encrypted via a
semantically-secure encryption scheme.

12 Actually, the number of “inputs” is much higher, as S needs to be consistent in using
the same y for all the steps of the polynomial-evaluation procedure.

Protocol PM-Malicious-Server

Input: C has input X of size kC, and S has input Y of size kS , as before.
Random Oracles: H1, H2.

1. C performs the following:
(a) She chooses a secret-key/public-key pair for the homomorphic encryption

scheme, and sends the public-key to S.
(b) She generates the coefficients of a degree kC polynomial P whose roots are

the values in X. She sends to S the encrypted coefficients of P .
2. S performs the following for every y ∈ Y ,

(a) He chooses a random s and computes r = H1(s). We use r to “deran-
domize” the rest of S’s computation for y, and we assume that it is of
sufficient length.

(b) He uses the homomorphic properties of the encryption scheme to compute
(e, h)← (Enc(r′ ·P (y)+ s),H2(r

′′, y)). In this computation, r is parsed to
supply r′, r′′ and all the randomness needed in the computation.

S randomly permutes this set of kS pairs and sends it to C.
3. C decrypts all the kS pairs she received. She performs the following operations

for every pair (e, h),
(a) She decrypts e to get ŝ and computes r̂ = H1(ŝ).
(b) She checks whether, for some x ∈ X, the pair (e, h) is consistent with x and

ŝ. That is, whether the server yields (e, h) using her encrypted coefficients
on y ← x and randomness r̂. If so, she puts x in the intersection set.

3. For every output pair (e, h) of S∗, S checks whether it agrees with some ŝ ∈ Ŝ
and ŷ ∈ Ŷ . We call such a pair a consistent pair. That is, S checks that (i) e
is a ciphertext resulting from applying the server’s prescribed computation
using the encrypted coefficients, the value ŷ, and randomness r′; and (ii)
h = H2(r

′′, ŷ), where r′, r′′ and the randomness in the computation are
determined by H1(ŝ). If such consistency does occur, S sets y = ŷ, otherwise
it sets y =⊥.

4. S sends the values y it computed to the TTP, and S outputs the same output
as S∗ in the real model.

It is easy, given the view of S∗, to decide whether a pair is consistent. As S∗

cannot distinguish the input fed to it by S from the input it receives from C in
the real execution, we get that S∗’s distributions on consistent and inconsistent
pairs, when run by the simulator and in the real execution, are indistinguishable.

Whenever (e, h) forms an inconsistent pair, giving an invalid symbol ⊥ as
input to the TTP does not affect its outcome. Let (e, h) be a consistent pair,
and let y be the value that is used in its construction. In the real execution,
y ∈ X would result in adding y to the intersection set, and this similarly would
happen in the simulation. The event that, in the real execution, an element x 6= y
would be added to the intersection set occurs with negligible probability.

We get that the views of the parties C,S in the ideal model is computationally
indistinguishable from the views of C,S∗ in the real model, as required.

5.3 Handling both malicious clients and servers

We briefly describe how to combine these two schemes yield a PM protocol
fully secure in the malicious model. We leave the detailed description to the full
version of this paper.
C generates B bins as before; for each bin Bi, she generates a polynomial of

degree M with P (z) = 0, where z ∈ Bi if it is (1) mapped to Bi by our hashing
scheme (for z = Fs(G(x)) for x ∈ X) or (2) added as needed to yield M items.
The latter should be set outside the range of Fs. For each polynomial, C prepares
L copies and sends their commitments to S.

Next, S opens the encryptions of L/2 copies and verifies them. If verification
succeeds, S opens the Fs used in the other L/2 copies. He chooses a random s,
splits it into L/2 shares, and then acts as in PM-Malicious-Server, albeit using
the random shares as payload, H1(s) as randomness, and appending H2(r

′′, y).
Finally, C receives a list of the unopened L/2 copies. For each, she computes

candidates for s’s shares and recovers s from them. She uses a procedure similar
to PM-Malicious-Server to check the consistency of the these L/2 shares.

6 Approximating Intersection

In this section, we focus on a problem related to private matching: set intersection
and its approximation. Assume C and S hold strings X and Y respectively,
where |X | = |Y | = N . Define Intersect(X, Y) = |{i : Xi = Yi}|. Equivalently,
Intersect(X, Y) is the scalar product of X, Y . Let 0 < ε, δ be constants. An
(ε, δ)-approximation protocol for intersection yields, on inputs X, Y , a value α̂
such that Pr[(1−ε)α < α̂ < (1+ε)α] ≥ 1−δ where α = |X∩Y |. The probability
is taken over the randomness used in the protocol.

A lower bound. Let 0 < η ≤ N . It is easy to see that an (ε, δ)-approximation
may be used for distinguishing the cases |X ∩ Y | ≤ η and |X ∩ Y | ≥ η(1 + ε)2,
as (with probability 1− δ) its output is less than η(1+ ε) in the former case and
greater than η(1 + ε) in the latter.

A protocol that distinguishes |X∩Y | ≤ η and |X∩Y | ≥ η(1+ε) may be used
for deciding disjointness, as defined in Section 2. Given inputs a, b of length m for
Disj, C sets her input to be X = 1η|a(2ε+ε2)η (i.e., η ones followed by (2ε + ε2)η

copies of a). Similarly, S sets Y = 1η|b(2ε+ε2)η . The length of these new inputs
is N = |X | = |Y | = η + (2ε + ε2)ηm bits. Note that if a, b are disjoint, then
|X ∩Y | = η; otherwise, |X ∩Y | ≥ η(1+ε)2. Hence, for constant ε, it follows that
the randomized communication complexity of distinguishing the two cases is at
least Ω(m) = Ω(N/η). By setting η to a constant, we get that the randomized
communication complexity of an (ε, δ) approximation for Intersect is Θ(N).

A private approximation protocol for intersection. We describe a proto-
col for the semi-honest case. Informally, a protocol realizes a private approxima-
tion to a function f(X, Y) if it computes an approximation to f(X, Y) and does
not leak any information that is not efficiently computable from f(X, Y). This

Protocol Private-Sample-B

Input: C and S hold N -bit strings X, Y , respectively.

1. C picks a random mask mC ∈R {0, 1} and shift amount rC ∈R [N]. She com-
putes the N -bit string X ′ = (X � rC) ⊕ mC (i.e., she shifts X cyclicly rC
positions and XORs every location in the resulting string with mC). Similarly,
S picks mS , rS and computes Y ′ = (Y << rS)⊕mS .

2. C and S invoke two
`

N

1

´

-OT protocols where C retrieves sC = Y ′
rC

and S
retrieves sS = X ′

rS
.

3. C computes T00 = B(mC, sS), T01 = B(mC, sS⊕1), T10 = B(mC⊕1, sS), T11 =
B(mC ⊕ 1, sS ⊕ 1).

4. C and S invoke a
`

4

1

´

-OT protocol where S retrieves TmS ,sS . S sends TmS ,sS

back to C.

is formulated by the requirement that each party should be able to simulate her
view given her input and f(X, Y). We refer the reader to [10] for the formal
definition.

Our building block – protocol Private-Sample-B – is a simple generalization
of the private sampler of [10]. Private-Sample-B samples a random location `
and checks if a predicate B holds on (X`, Y`). The location ` is shared by C and S
as ` = rC +rS (mod N), with each party holding one of the random shares rC , rS
at the end of Step 1. Step 2 results in C and S holding random shares of X` =
mC⊕sS and Y` = mS⊕sC . Finally, both parties learn B(mC ⊕ sC , mS ⊕ sS) =
B(X`, Y`).

It is easy to see that the views of C and S in Protocol Private-Sample-B
are simulatable given v = |{i : B(Xi, Yy)}|. It follows that any approximation
based on the outcome of the protocol is a private approximation for v.

The communication costs of Private-Sample-B are dominated by the cost of
the

(

N
1

)

-OT protocol in use. Naor and Pinkas [19] showed how to combine a
(

N
1

)

-
OT protocol with any computational PIR scheme, under the DDH assumption.
Combining this result with PIR scheme of Cachin et al. [5] (or of Kiayias and
Yung [15]) results in λ polylog(N) communication, for security parameter λ.

Our protocol Intersect-Approx repeatedly invokes Private-Sample-B with
B(α, β) = α∧β, for a maximum of M invocations. We call an invocation positive

if it concludes with B evaluated as 1. If T invocations occur in t < M rounds, the
protocol outputs T/t and halts. Otherwise (after M invocations) the protocol
outputs 0 and halts.

The random variable t is the sum of T independent geometric random vari-
ables. Hence, E[t] = T/p and Var[t] = T (1− p)/p2, where p = v/N . Using the

Chebyshev Inequality, we get that Pr
[

|t−T/p| ≥ βT/p
]

≤
(

T 1−p
p2

)/(

(β T
p
)2

)

≤
1

β2T
. Let β = ε

1+ε
, taking T = 2

β2δ
ensures that, if T positive invocations occur,

then the protocol’s output is within (1− ε) v
N

and (1+ ε) v
N

, except for δ/2 prob-
ability. To complete the protocol, we set M = N(ln δ + 1) so that if v 6= 0, the
probability of not having T positive invocations is at most δ/2.

Note that the number of rounds in protocol Intersect-Approx is not fixed,
and depends on the exact intersection size v. The protocol is optimal in the sense
that it matches the lower-bound for distinguishing inputs with intersection size
k from inputs with intersection size k(1 + ε) in an expected O(N/k) invocations
of Private-Sample-B.

Caveat. As the number of rounds in our protocol is a function of its outcome,
an observer that only counts the number of rounds in the protocol, or the time
it takes to run it, may estimate its outcome. The problem is inherent in our
security definitions—both for semi-honest and malicious parties—as they only
take into account the parties that “formally” participate in the protocol (unlike,
e.g., in universal composability [6]). In particular, these definitions allow for any
information that is learned by all the participating parties to be sent in the
clear. While it may be that creating secure channels for the protocol (e.g., using
encryption) prevents this leakage in many cases, this is not a sufficient measure
in general nor specifically for our protocol (as one must hide the communication
length of Intersect-Approx).

7 The Multi-Party Case

We briefly discuss computing the intersection in a multi-party environment. As-
sume that there are n parties, P1, . . . , Pn, with corresponding lists of inputs
X1, . . . , Xn; w.l.o.g., we assume each list contains k inputs. The parties compute
the intersection of all n lists. We only sketch a protocol for semi-honest par-
ties, starting with a basic protocol that is secure with respect to client parties
P1, . . . , Pn−1 and then modifying it get security with respect to all parties.

A strawman protocol. Let client parties P1, . . . , Pn−1 each generate a poly-
nomial encoding their input, as for Protocol PM-Semi-Honest in the two-party
case. Each client uses her own public key and sends the encrypted polynomials
to Pn, which we refer to as the leader. This naming of parties as clients and the
leader is done for conceptual clarity.

For each item y in his list, leader Pn prepares (n−1) random shares that
XOR to y. He then evaluates the (n−1) polynomials he received, encoding the
lth share of y as the payload of the evaluation of the lth polynomial. Finally,
he publishes a shuffled list of (n−1)-tuples. Each tuple contains the encryptions
that the leader obtained while evaluating the polynomials on input y, for every
y in his input set. Note that every tuple contains exactly one entry encrypted
with the key of client Pl, for 1 ≤ l ≤ n−1.

To obtain the outcome, each client Pl decrypts the entries that are encrypted
with her public key and publishes them. If XOR-ing the decrypted values results
in y, then y is in the intersection.

Achieving security with respect to semi-honest parties. This strawman
approach is flawed. The leader Pn generates the shares that the clients decrypt.
Hence, he may recognize, for values y in his set but not in the intersection, which
clients also hold y: these clients, and only these clients, would publish the right

shares. We can fix this problem by letting each client generate k sets of random
shares that XOR to zero (one set for each of the leader’s inputs). Then, each
client encrypts one share from each set to every other client. Finally, the clients
publish the XOR of the original share from the leader with the new shares from
other clients. If y is in the intersection set, then the XOR of all published values
for each of the leader’s k inputs is still y, otherwise it looks random to any
coalition. More concretely, the protocol for semi-honest parties is as follows.

1. A client party Pi, for 1 ≤ i ≤ n−1, operates as in the two-party case. She
generates a polynomial Qi of degree k encoding her inputs, and generates ho-
momorphic encryptions of the coefficients (with her own public key). Pi also
chooses k sets of n− 1 random numbers, call these {si

j,1, . . . , s
i
j,n−1}

k
j=1. We

can view this as a matrix with k rows and (n−1) columns: Each column cor-
responds to the values given to party Pl; each row corresponds to the random
numbers generated for one of the leader’s inputs. This matrix is chosen such
that the XOR of each row sums to zero, i.e., for j =1 . . . k,

⊕n−1
l=1 si

j,l = 0.
For each column l, she encrypts the corresponding shares using the public
key of client Pl. She sends all her encrypted data to a public bulletin board
(or just to the leader who acts in such a capacity).

2. For each item y in his list Xn (the rows), leader Pn prepares (n−1) random

shares σy,l (one for each column), where
⊕n−1

l=1 σy,l = y. Then, for each of
the k elements of the matrix column representing client Pl, he computes the
encryption of (ry,l · Ql(y) + σy,l) using Pl’s public key and a fresh random
number ry,l. In total, the leader generates k tuples of (n−1) items each. He
randomly permutes the order of the tuples and publishes the resulting data.

3. Each client Pl decrypts the n entries that are encrypted with her public
key: namely, the lth column generated by Pn (of k elements) and the (n−1)
lth columns generated by clients (each also of k elements). Pl computes the

XOR of each row in the resulting matrix: (
⊕n−1

i=1 si
j,l) ⊕ σj,l. She publishes

these k results.
4. Each Pi checks if the XOR of the (n−1) published results for each row is equal

to a value y in her input: If this is the case,
⊕n−1

l=1

(

(
⊕n−1

i=1 si
j,l) ⊕ σj,l

)

= y,

and she concludes that y is in the intersection.

Intuitively, the values output by each client (Step 3) appear random to the
leader, so he cannot differentiate between the output from clients with y in their
input and those without, as he could in the strawman proposal.

Note that the communication involves two rounds in which P1, . . . Pn−1 sub-
mit data, and a round where Pn submits data. This is preferable to protocols
consisting of many rounds with n2 communication. The computation overhead
of Pn can be improved by using the hashing-to-bins method of Section 4.2.

8 Fuzzy Matching and Fuzzy Search

In many applications, database entries are not always accurate or full (e.g., due
to errors, omissions, or inconsistent spellings of names). In these cases, it would

be useful to have a private matching algorithm that reports a match even if two
entries are only similar.

We let each database entry be a list of T attributes, and consider X =
(x1, . . . , xT) and Y = (y1, . . . , yT) similar if they agree on (at least) t < T at-
tributes. One variant is fuzzy search, where the client specifies a list of attributes
and asks for all the database entries that agree with at least t of the attributes.
This may be achieved by a simple modification of our basic PM-Semi-Honest

protocol, by letting the server reply with the encryptions of ri ·Pi(yi)+si, where
t shares of s1, . . . , sT are necessary and sufficient for recovering Y . This fuzzy
search scheme may be used to compare two “databases” each containing just
one element comprised of many attributes.

The protocol may be modified to privately compute fuzzy matching in larger
databases, e.g., when a match is announced if entries agree on t out of T at-
tributes. In this section, we present a scheme, in the semi-honest model, that
considers a simple form of this fuzzy private matching problem.

A 2-out-of-3 fuzzy matching protocol A client C has kC 3-tuples X1, . . . , XkC
.

Let P1, P2, P3 be polynomials, such that Pj is used to encode the jth element of

the three tuple, Xj
i , for 1 ≤ i ≤ kC . For all i, let C choose a new random value Ri

and set Ri = P1(X
1
i) = P2(X

2
i) = P2(X

3
i). In general, the degree of each such

polynomial is kC , and therefore, two non-equal polynomials can match in at most
kC positions. C sends (P1, P2, P3) to S as encrypted coefficients, as earlier. The
server S, for every three-tuple Yi in his database of size kS , responds to C in a
manner similar to Protocol PM-Semi-Honest: He computes the encrypted values
r(P1(Y

1
i)−P2(Y

2
i))+Yi, r′(P1(Y

2
i)−P3(Y

3
i))+Yi, and r′′(P1(Y

1
i)−P3(Y

3
i))+Yi.

If two elements in Yi are the same as those in Xi, the client receives Yi in one
of the entries.

We leave as open problems the design of more efficient fuzzy matching pro-
tocols (without incurring a

(

T
t

)

factor in the communication complexity) and of
protocols secure in the malicious model.

References

1. Bill Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to
sell digital goods. In Advances in Cryptology—EUROCRYPT 2001, Innsbruck,
Austria, May 2001.

2. Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations.
SIAM Journal on Computing, 29(1):180–200, 1999.

3. Fabrice Boudot, Berry Schoenmakers, and Jacques Traore. A fair and efficient so-
lution to the socialist millionaires’ problem. Discrete Applied Mathematics, 111(1-
2):23–036, 2001.

4. Andrei Z. Broder and Michael Mitzenmacher. Using multiple hash functions to
improve ip lookups. In IEEE INFOCOM’01, pages 1454–1463, Anchorage, Alaska,
April 2001.

5. Christian Cachin, Silvio Micali, and Markus Stadler. Computationally pri-
vate information retrieval with polylogarithmic communication. In Advances in
Cryptology—EUROCRYPT ’99, pages 402–414, Prague, Czech Republic, May
1999.

6. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science, pages
136–145, Las Vegas, Nevada, October 2001.

7. Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some appli-
cations of Paillier’s probabilistic public-key system. In 4th International Workshop
on Practice and Theory in Public Key Cryptosystems (PKC 2001), pages 13–15,
Cheju Island, Korea, February 2001.

8. Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting
privacy breaches in privacy preserving data mining. In Proc. 22nd ACM Symposium
on Principles of Database Systems (PODS 2003), pages 211–222, San Diego, CA,
June 2003.

9. Ronald Fagin, Moni Naor, and Peter Winkler. Comparing information without
leaking it. Communications of the ACM, 39(5):77–85, 1996.

10. Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin Strauss, and Re-
becca N. Wright. Secure multiparty computation of approximations. In Automata
Languages and Programming: 27th International Colloquim (ICALP 2001), pages
927–938, Crete, Greece, July 2001.

11. Oded Goldreich. Secure multi-party computation. In Available at Theory of Cryp-
tography Library, http://philby.ucsb.edu/cryptolib/BOOKS, 1999.

12. Bernardo A. Huberman, Matt Franklin, and Tad Hogg. Enhancing privacy and
trust in electronic communities. In Proc. ACM Conference on Electronic Com-
merce, pages 78–86, Denver, Colorado, November 1999.

13. Russell Impagliazzo and Steven Rudich. Limits on the provable consequences
of one-way permutations. In Proc. 21st Annual ACM Symposium on Theory of
Computing, pages 44–61, Seattle, Washington, May 1989.

14. Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication
complexity of set intersection. SIAM J. Discrete Mathematics, 5(4):545–557, 1992.

15. Aggelos Kiayias and Moti Yung. Secure games with polynomial expressions. In Au-
tomata Languages and Programming: 27th International Colloquim (ICALP 2001),
pages 939–950, Crete, Greece, July 2001.

16. Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge Uni-
versity Press, Cambridge, 1997.

17. Helger Lipmaa. Verifiable homomorphic oblivious transfer and private equality
test. In Advances in Cryptology—ASIACRYPT 2003, pages 416–433, Taipei, Tai-
wan, November 2003.

18. Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In
Proc. 31st Annual ACM Symposium on Theory of Computing, pages 245–254, At-
lanta, Georgia, May 1999.

19. Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In SIAM
Symposium on Discrete Algorithms (SODA), pages 448–457, Washington, D.C.,
January 2001.

20. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Advances in Cryptology—EUROCRYPT ’99, pages 223–238, Prague,
Czech Republic, May 1999.

21. Pascal Paillier. Trapdooring discrete logarithms on elliptic curves over rings. In
Advances in Cryptology—ASIACRYPT 2000, pages 573–584, Kyoto, Japan, 2000.

22. Alexander A. Razborov. Application of matrix methods to the theory of lower
bounds in computational complexity. Combinatorica, 10(1):81–93, 1990.

On-the-Fly Verification of Rateless Erasure Codes
for Efficient Content Distribution

Maxwell N. Krohn
MIT

krohn@mit.edu

Michael J. Freedman
NYU

mfreed@cs.nyu.edu

David Mazières
NYU

dm@cs.nyu.edu

Abstract— The quality of peer-to-peer content distribution
can suffer when malicious participants intentionally corrupt
content. Some systems using simple block-by-block downloading
can verify blocks with traditional cryptographic signatures and
hashes, but these techniques do not apply well to more elegant
systems that use rateless erasure codes for efficient multicast
transfers. This paper presents a practical scheme, based on
homomorphic hashing, that enables a downloader to perform
on-the-fly verification of erasure-encoded blocks.

I. INTRODUCTION

Peer-to-peer content distribution networks (P2P-CDNs) are
trafficking larger and larger files, but end-users have not
witnessed meaningful increases in their available bandwidth,
nor have individual nodes become more reliable. As a result,
the transfer times of files in these networks often exceed
the average uptime of source nodes, and receivers frequently
experience download truncations.

Exclusively unicast P2P-CDNs are furthermore extremely
wasteful of bandwidth: a small number of files account for a
sizable percentage of total transfers. Recent studies indicate
that from a university network, KaZaa’s 300 top bandwidth-
consuming objects can account for 42% of all outbound traf-
fic [1]. Multicast transmission of popular files might drastically
reduce the total bandwidth consumed; however, traditional
multicast systems would fare poorly in such unstable networks.

Developments in practical erasure codes [2] and rateless
erasure codes [3], [4], [5] point to elegant solutions for both
problems. Erasure codes of rate r (where 0 < r < 1) map
a file of n message blocks onto a larger set of n/r check
blocks. Using such a scheme, a sender simply transmits a
random sequence of these check blocks. A receiver can decode
the original file with high probability once he has amassed a
random collection of slightly more than n unique check blocks.
At larger values of r, senders and receivers must carefully
coordinate to avoid block duplication. In rateless codes, block
duplication is much less of a problem: encoders need not pre-
specify a value for r and can instead map a file’s blocks to a
set of check blocks whose size is exponential in n.

When using low-rate or rateless erasure codes, senders and
receivers forgo the costly and complicated feedback protocols
often needed to reconcile truncated downloads or to maintain
a reliable multicast tree. Receivers can furthermore collect
blocks from multiple senders simultaneously. One can envision
an ideal situation, in which many senders transmit the same
file to many recipients in a “forest of multicast trees.” No

retransmissions are needed when receivers and senders leave
and reenter the network, as they frequently do.

A growing body of literature considers erasure codes in the
context of modern distributed systems. Earlier work applied
fixed-rate codes to centralized multicast CDNs [6], [7]. More
current work considers rateless erasure codes in unicast, multi-
source P2P-CDNs [8], [9]. Most recently, SplitStream [10] has
explored applying rateless erasure codes to overlapping P2P
multicast networks, and Bullet [11] calls on these codes when
implementing “overlay meshes.”

There is a significant downside to this popular approach.
When transferring erasure-encoded files, receivers can only
“preview” their file at the very end of the transfer. A receiver
may discover that, after dedicating hours or days of bandwidth
to a certain file transfer, he was receiving incorrect or useless
blocks all along. Most prior work in this area assumes honest
senders, but architects of robust, real-world P2P-CDNs cannot
make this assumption.

This paper describes a novel construction that lets recipi-
ents verify the integrity of check blocks immediately, before
consuming large amounts of bandwidth or polluting their
download caches. In our scheme, a file F is compressed down
to a smaller hash value, H(F), with which the receiver can
verify the integrity of any possible check block. Receivers
then need only obtain a file’s hash value to avoid being duped
during a transfer. Our function H is based on a discrete-log-
based, collision-resistant, homomorphic hash function, which
allows receivers to compose hash values in much the same
way that encoders compose message blocks. Unlike more
obvious constructions, ours is independent of encoding rate
and is therefore compatible with rateless erasure codes. It is
fast to compute, efficiently verified using probabilistic batch
verification, and has provable security under the discrete-log
assumption. Furthermore, our implementation results suggest
this scheme is practical for real-world use.

In the remainder of this paper, we will discuss our setting in
more detail (Sections II and III), describe our hashing scheme
(Section IV), analyze its important properties (Sections V
and VI), discuss related works (Section VII), and conclude
(Section VIII).

II. BRIEF REVIEW OF ERASURE CODES

In this paper, we consider the non-streaming transfer of very
large files over erasure channels such as the Internet. Typically,
a file F is divided into n uniformly sized blocks, known

Fig. 1. Example Online encoding of a five-block file. bi are message blocks,
a1 is an auxiliary block, and ci are check blocks. Edges represent addition
(via XOR). For example, c4 = b2+b3+b5, a1 = b3+b4, and c7 = a1+b5.

as message blocks (or alternatively, input symbols). Erasure
encoding schemes add redundancy to the original n message
blocks, so that receivers can recover from packet drops without
explicit packet retransmissions.

Though traditional forward error correction codes such as
Reed-Solomon are applicable to erasure channels [12], decod-
ing times quadratic in n make them prohibitively expensive
for large files. To this effect, researchers have proposed a
class of erasure codes with sub-quadratic decoding times.
Examples include Tornado Codes [7], LT Codes [3], Raptor
Codes [5] and Online Codes [4]. All four of these schemes
output check blocks (or alternatively, output symbols) that are
simple summations of message blocks. That is, if the file F is
composed of message blocks b1 through bn, the check block
c1 might be computed as b1 + b2. The specifics of these linear
relationships vary with the scheme.

Tornado Codes, unlike the other three, are fixed-rate. A
sender first chooses a rate r and then can generate no more
than n/r check blocks. Furthermore, the encoding process
grows more expensive as r approaches zero. For multicast and
other applications that benefit from lower encoding rates, LT,
Raptor and Online codes are preferable [9]. Unlike Tornado
codes, they feature rateless encoders that can generate an
enormous sequence of check blocks with state constant in n.
LT codes are decodable in time O(n ln(n)), while Tornado,
Raptor and Online Codes have linear-time decoders.

This paper uses Online Codes when considering the
specifics of the encoding and decoding processes; however, all
three rateless techniques are closely related, and the techniques
described are equally applicable to LT and Raptor Codes.

Online Codes. Online Codes consist of three logical com-
ponents: a precoder, an encoder and a decoder. A sender
initializes the encoding scheme via the precoder, which takes
as input a file F with n message blocks and outputs nδk
auxiliary blocks. k is small constant such as 3, and δ, a
parameter discussed later, has a value such as .005. The
precoder works by adding each message block to k distinct
randomly-chosen auxiliary blocks. An auxiliary block is thus
the sum of 1/δ message blocks on average. This process
need not be random in practice; the connections between the
message and auxiliary blocks can be a deterministic function

of the input size n, and the parameters k and δ. Finally, the n
message blocks and the nδk auxiliary blocks are considered
together as a composite file F ′ of size n′ = n(1 + δk), which
is suitable for encoding.

To construct the ith check block, the encoder randomly
samples a pre-specified probability distribution for a value di,
known as the check block’s degree. The encoder then selects di

blocks from F ′ at random, and computes their sum, ci. The
outputted check block is a pair 〈xi, ci〉, where xi describes
which blocks were randomly chosen from F ′. In practice, an
encoder can compute the degree di and the meta-data xi as
the output of a pseudo-random function on input (i, n). It
thus suffices to send 〈i, ci〉 to the receiving client, who can
compute xi with knowledge of n, the encoding parameters,
and access to the same pseudo-random function. See Figure 1
for a schematic example of precoding and encoding.

To recover the file, a recipient collects check blocks of
the form 〈xi, ci〉. Assume a received block has degree one;
that is, it has meta-data xi of the form {j}. Then, ci is
simply the jth block of the file F ′, and it can be marked
recovered. Once a block is recovered, the decoder subtracts
it from the appropriate unrecovered check blocks. That is, if
the kth check block is such that j ∈ xk, then bj is subtracted
from ck, and j is subtracted from xk . Note that during this
subtraction process, other blocks might be recovered. If so,
then the decoding algorithm continues iteratively. When the
decoder receives blocks whose degree is greater than one, the
same type of process applies; that is, all recovered blocks are
subtracted from it, which might in turn recover it.

In the encoding process, auxiliary blocks behave like mes-
sage blocks; in the decoding process, they behave like check
blocks. When the decoder recovers an auxiliary block, it then
adds it to the pool of unrecovered check blocks. When the
decoder recovers a message block, it simply writes the block
out to a file in the appropriate location. Decoding terminates
once all n message blocks are recovered.

In the absence of the precoding step, the codes are expected
to recover (1−δ)n message blocks from (1+ε)n check blocks,
as n becomes large. The auxiliary blocks introduced in the
precoding stage help the decoder to recover the final δn blocks.
A sender specifies δ and ε prior to encoding; they in turn
determine the encoder’s degree distribution and consequently
the number of block operations required to decode.

Online Codes, like the other three schemes, use bitwise
exclusive OR for both addition and subtraction. We note that
although XOR is fast, simple, and compact (i.e., XORing two
blocks does not produce carry bits), it is not essential. Any
efficiently invertible operation suffices.

III. THREAT MODEL

Deployed P2P-CDNs like KaZaa consist of nodes who func-
tion simultaneously as publishers, mirrors, and downloaders
of content. Nodes transfer content by sending contiguous file
chunks over point-to-point links, with few security guarantees.
We imagine a similar but more powerful network model:

When a node wishes to publish F , he uses a collision-
resistant hash function such as SHA1 [13] to derive a succinct
cryptographic file handle, H(F). He then pushes F into the
network and also publicizes the mapping of the file’s name
N(F) to its key, H(F). Mirrors maintain local copies of the
file F and transfer erasure encodings of it to multiple clients
simultaneously. As downloaders receive check blocks, they
can forward them to other downloaders, harmlessly “down-
sampling” if constrained by downstream bandwidth. Once a
downloader fully recovers F , he generates his own encoding
of F , sending “fresh” check blocks to downstream recipients.
Meanwhile, erasure codes enable downloaders to collect check
blocks concurrently from multiple sources.

This setting differs notably from traditional multicast set-
tings. Here, internal nodes are not mere packet-forwarders but
instead are active nodes that produce unique erasure encodings
of the files they redistribute.

Unfortunately, in a P2P-CDN, one must assume that adver-
sarial parties control arbitrarily many nodes on the network.
Hence, mirrors may be frequently malicious.1 Under these
assumptions, the P2P-CDN model is vulnerable to a host of
different attacks:

Content Mislabeling. A downloader’s original lookup
mapped N(F) → H(F̃). The downloader will then request
and receive the file F̃ from the network, even though he
expected F .

Bogus-Encoding Attacks. Mirrors send blocks that are not
check blocks of the expected file, with the intent of thwarting
the downloader’s decoding. This has also been termed a
pollution attack [14].

Distribution Attacks. A malicious mirror sends valid check
blocks from the encoding of F , but not according to the
correct distribution. As a result, the receiver might experience
degenerate behavior when trying to decode.

Deployed peer-to-peer networks already suffer from ma-
licious content-mislabeling. A popular file may resolve to
dozens of names, only a fraction of which are appropriately
named. A number of solutions exist, ranging from simply
downloading the most widely replicated name (on the as-
sumption that people will keep the file if it is valid), to more
complex reputation-based schemes. In more interesting P2P-
CDNs, trusted publishers might sign file hashes. Consider the
case of a Linux vendor using a P2P-CDN to distribute large
binary upgrades. If the vendor distributes its public key in CD-
based distributions, clients can verify the vendor’s signature
of any subsequent upgrade. The general mechanics of reliable
filename resolution are beyond the scope this paper; for the
most part, we assume that a downloader can retrieve H(F)
given N(F) via some out-of-band and trusted lookup.

This work focuses on the bogus-encoding attack. When
transferring large files, receivers will talk to many different

1We do not explicitly model adversaries controlling the underlying physical
routers or network trunks, although our techniques are also robust against these
adversaries, with the obvious limitations (e.g., the adversary can prevent a
transfer if he blocks the downloader’s network access).

mirrors, in series and in parallel. At the very least, the receiver
should be able to distinguish valid from bogus check blocks
at decoding time. One bad block should not ruin hundreds
of thousands of valid ones. Moreover, receivers have limited
bandwidth and cannot afford to communicate with all possible
mirrors on the network simultaneously. They would clearly
benefit from a mechanism to detect cheating as it happens, so
they can terminate connections to bad servers and seek out
honest senders elsewhere on the network.

To protect clients against encoding attacks, P2P-CDNs
require some form of source verification. That is, downloaders
need a way to verify individual check blocks, given a reliable
and compact hash of the desired file. Furthermore, this verifi-
cation must not be interactive; it should work whether or not
the original publisher is online. The question becomes, should
the original publisher authenticate file blocks before or after
they are encoded? We consider both cases.

A. Hashing All Input Symbols

A publisher wishes to distribute an n-block file F . Assum-
ing Online Codes, he first runs F through a precoder, yielding
an n′-block file F ′. He then computes a Merkle hash tree of
F ′ [15]. The file’s full hash is the entirety of the hash tree, but
the publisher uses the hash tree’s root for the file’s succinct
cryptographic handle. To publish, he pushes the file and the
file’s hash tree into the network, all keyed by the root of the
hash tree. Note that although the hash tree is smaller than the
original file, its size is still linear in n.

To download F , a client maps N(F) to H(F) as usual,
but now H(F) is the root of the file’s hash tree. Next, the
client retrieves the rest of the hash tree from the network,
and is able to verify its consistency with respect to its
root. Given this information, he can verify check blocks as
the decoding progresses, through use of a “smart decoder.”
As check blocks of degree one arrive, he can immediately
verify them against their corresponding leaf in the hash tree.
Similarly, whenever the decoder recovers an input symbol bj

from a check block 〈xi, ci〉 of higher degree, the receiver
verifies the recovered block bj against its hash. If the recovered
block verifies properly, then the receiver concludes that 〈xi, ci〉
was generated honestly and hence is valid. If not, then the
receiver concludes that it is bogus.

In this process, the decoder only XORs check blocks
with validated degree-one blocks. Consequently, valid blocks
cannot be corrupted during the decoding process. On the other
hand, invalid check blocks which are reduced to degree-one
blocks are easily identified and discarded. Using this “smart
decoder,” a receiver can trivially distinguish bogus from valid
check blocks and need not worry about the download cache
pollution described in [14]. The problem, however, is that a
vast majority of these block operations happen at the very
end of the decoding process—when almost n check blocks
are available to the decoder. Figure 2 exhibits the average
results for decoding a file of n = 10, 000 blocks, taken over
50 random Online encodings. According to these experiments,
when a receiver has amassed .9n check blocks, he can recover

0.00

0.07

0.20

0.30

0.40

0.60

0.80

1.00

 0.5 0.6 0.7 0.8 0.9 1 1.1

F
ra

ct
io

n
of

 M
es

sa
ge

 B
lo

ck
s

R
ec

ov
er

ed

(Number of Check Blocks Received) / (File Size in Blocks)

Fig. 2. Number of blocks recoverable as function of number of blocks
received. Data collected over 50 random encodings of a 10,000 block file.

only .068n message blocks; when he has amassed n check
blocks, he can recover only .303n message blocks. In practice,
a downloader could dedicate days of bandwidth to receiving
gigabytes of check blocks, only to find that most are bogus.

B. Hashing Check Blocks

Instead of hashing the input to the erasure encoder, publish-
ers might hash its output. If so, the P2P-CDN is immediately
limited to fixed-rate codes. Recall that the publisher is not
directly involved in the file’s ultimate distribution to clients
and therefore cannot be expected to hash and sign check blocks
on-the-fly. Thus, the publisher must pre-specify a tractable
rate r and “pre-authorize” n/r check blocks. In practice,
the publisher might do this by generating n/r check blocks,
computing their hash tree, and keying the file by its root. When
mirrors distribute the file, they distribute only those check
blocks that the publisher has preauthorized. With the benefit of
the hash tree taken over all possible check blocks, the receiver
can trivially verify check blocks as they arrive. Section V-D
explores this proposal in more detail. We simply observe here
that it becomes prohibitively expensive for encoding at low
rates, in terms of the publisher’s computational resources and
the bandwidth required to distribute hashes.

IV. HOMOMORPHIC HASHING

Our solution combines the advantages of the previous
section’s two approaches. As in the first scheme, our hashes
are reasonably-sized and independent of the encoding rate r.
As in the second, they enable receivers to authenticate check
blocks on the fly.

We propose two possible authentication protocols based on a
homomorphic collision-resistant hash function (CRHF). In the
global hashing model, there is a single way to map F to H(F)
by using global parameters. As such, one-time hash generation
is slow but well-defined. In the per-publisher hashing model,
each publisher chooses his own hash parameters, and different
publishers will generate different hashes for the same file.

We will later show that the per-publishing model enables
publishers to generate hashes more efficiently, although the
downloader’s verification overhead is the same.

In today’s file-sharing systems, there may be multiple
publishers for the same content—e.g., different individuals
may rip the same CD—thus these publishers may use global
hashing so that all copies look identical to the system. In other
environments, content has a single, well-known publisher, and
the per-publisher scheme is more appropriate. While the latter
might be ill-suited for copyright circumvention, it otherwise is
more useful, allowing publishers to sign file hashes and clients
to authenticate file name to file hash mappings. Many Internet
users could benefit from cheap, trusted, and efficient distribu-
tion of bulk data: anything from Linux binary distributions to
large academic data sets could travel through such a network.

A. Notation and Preliminaries

In the following discussion, we will be using scalars, vectors
and matrices defined over modular subgroups of

�
. We write

scalars in lowercase (e.g., x), vectors in lowercase boldface
(e.g., x) and matrices in uppercase (e.g., X). Furthermore,
for the matrix X , the jth column is a vector written as xj ,
and the ijth cell is a scalar written as xij . Vectors might
be row vectors or column vectors, and we explicitly specify
them as such. All additions are assumed to be taken over

�
q, and multiplications and exponentiations are assumed to

be taken over
�

p, with q and p selected as described in the
next subsection. Finally, we invent one notational convenience
concerning vector exponentiation. That is, we define gr = g

component-wise: if the row vector r = (r1 r2 · · · rm), then
the row vector gr = (gr1 gr2 · · · grm).

B. Global Homomorphic Hashing

In global homomorphic hashing, all nodes on the network
must agree on hash parameters so that any two nodes inde-
pendently hashing the same file F should arrive at exactly
the same hash. To achieve this goal, all nodes must agree on
security parameters λp and λq . Then, a trusted party globally
generates a set of hash parameters G = (p, q,g), where p and
q are two large random primes such that |p| = λp, |q| = λq ,
and q|(p − 1). The hash parameter g is a 1×m row-vector,
composed of random elements of

�
p, all order q. These and

other parameters are summarized in Table I.
In decentralized P2P-CDNs, such a trusted party might

not exist. Rather, users joining the system should demand
“proof” that the group parameters G were generated honestly.
In particular, no node should know i, j, xi, xj such that gxi

i =
g

xj

j , as one that had this knowledge could easily compute
hash collisions. The generators might therefore be generated
according to the algorithm PickGroup given in Figure 3. The
input (λp, λq , m, s) to the PickGroup algorithm serves as
a heuristic proof of authenticity for the output parameters,
G = (p, q,g). That is, unless an adversary exploits specific
properties of SHA1, he would have difficulty computing a seed
s that yields generators with a known logarithmic relation. In
practice, the seed s might be chosen globally, or even chosen

TABLE I

SYSTEM PARAMETERS AND PROPERTIES

Name Description e.g.

λp discrete log security parameter 1024
λq discrete log security parameter 257
p random prime, |p| = λp

q random prime, q|(p − 1), |q| = λq

β block size in bits 16 KB
m = dβ/(λq − 1)e 512

(number of “sub-blocks” per block)
g 1 × m row vector of order q elts in � p

G hash parameters, given by (p, q,g)
n original file size 1 GB

k precoding parameter 3
δ fraction of unrecoverable message blocks .005

(without the benefit of precoding)
n′ precoded file size, n′ = (1 + δk)n 1.015 GB
ε asymptotic encoding overhead .01
d average degree of check blocks ∼ 8.17

per file F such that s = SHA1(N(F)). Either way, the same
parameters G will always be used when hashing file F .

File Representation. As per Table I, let β be the block size,
and let m = dβ/(λq − 1)e. Consider a file F as an m × n
matrix, whose cells are all elements of

�
q. Our selection of

m guarantees that each element is less than 2λq−1, and is
therefore less than the prime q. Now, the jth column of F
simply corresponds to the jth message block of the file F ,
which we write bj = (b1,j , . . . , bm,j). Thus:

F = (b1 b2 · · · bn) =







b1,1 · · · b1,n

...
. . .

...
bm,1 · · · bm,n







We add two blocks by adding their corresponding column-
vectors. That is, to combine the ith and jth blocks of the file,
we simply compute:

bi + bj = (b1,i + b1,j , . . . , bm,i + bm,j) mod q

Precoding. Recall that the precoding stage in Online Codes
produces auxiliary blocks that are summations of message
blocks, and that the resulting composite file has the original
n message blocks, and the additional nδk auxiliary blocks.
The precoder now proceeds as usual, but uses addition over

�
q instead of the XOR operator.
We can represent this process succinctly with matrix nota-

tion. That is, the precoding stage is given by a binary n× n′

matrix, Y = (I |P). The matrix Y is the concatenation of
the n × n identity matrix I , and the n × nδk matrix P that
represents the composition of auxiliary blocks. All rows of
P sum to k, and its columns sum to 1/δ on average. The
precoded file can be computed as F ′ = FY . The first n
columns of F ′ are the message blocks. The remaining nδk
columns are the auxiliary blocks. For convenience, we refer
to auxiliary blocks as bi, where n < i ≤ n′.

Encoding. Like precoding, encoding is unchanged save for
the addition operation. For each check block, the encoder picks
an n′-dimensional bit vector x and computes c = F ′x. The
output 〈x, c〉 fully describes the check block.

Algorithm PickGroup(λp, λq , m, s)
Seed PRNG G with s.
do

q ← qGen(λq)
p← pGen(q, λp)

while p = 0 done
for i = 1 to m do

do
x← G(p− 1) + 1

gi ← x(p−1)/q (mod p)
while gi = 1 done

done
return (p, q, g)

Algorithm qGen(λq)
do

q ← G(2λq)
while q is not prime done
return q

Algorithm pGen(q, λp)
for i = 1 to 4λp do

X ← G(2λp)
c← X (mod 2q)
p← X − c + 1 // Note p ≡ 1 (mod 2q)
if p is prime then return p

done
return 0

Fig. 3. The seed s can serve as an heuristic “proof” that the hash parameters
were chosen honestly. This algorithm is based on that given in the NIST
Standard [16]. The notation G(x) should be taken to mean that the pseudo-
random number generator G outputs the next number in its pseudo-random
sequence, scaled to the range {0, . . . , x−1}.

Hash Generation. To hash a file, a publisher uses a CRHF,
secure under the discrete-log assumption. This hash function is
a generalized form of the Pederson commitment scheme [17]
(and from Chaum et al. [18]), and it is similar to that used in
various incremental hashing schemes (see Section VII). Recall
that a CRHF is informally defined as a function for which
finding any two inputs that yield the same output is difficult.

For an arbitrary message block bj , define its hash with
respect to G:

hG(bj) =

m
∏

i=1

g
bi,j

i mod p (1)

Define the hash of file F as a 1×n row-vector whose elements
are the hashes of its constituent blocks:

HG(F) = (hG(b1) hG(b2) · · · hG(bn)) (2)

To convey the complete hash, publishers should transmit both
the group parameters and the hash itself: (G, HG(F)). From
this construction, it can be seen that each block of the file
is β bits, and the hash of each block is λp bits. Hence, the
hash function HG reduces the file by a factor of β/λp, and
therefore |HG(F)| = |F |λp/β.

Hash Verification. If a downloader knows (G, HG(F)), he
can first compute the hash values for the nδk auxiliary blocks.
Recall that the precoding matrix Y is a deterministic function

of the file size n and the preestablished encoding parameters
δ and k. Thus, the receiver computes Y and obtains the hash
over the composite file as HG(F ′) = HG(F) ·Y . The hash of
the auxiliary blocks are the last nδk cells in this row vector.

To verify whether a given check block 〈x, c〉 satisfies c =
F ′x, a receiver verifies that:

hG(c) =

n′

∏

i=1

hG(bi)
xi (3)

hG functions here as a homomorphic hash function. For any
two blocks bi and bj , hG(bi + bj) = hG(bi)hG(bj).

Downloaders should monitor the aggregate behavior of
mirrors during a transfer. If a downloader detects a number
of unverifiable check blocks above a predetermined threshold,
he should consider the sender malicious and should terminate
the transfer.

Decoding. Decoding proceeds as described in Section II.
Of course, XOR is conveniently its own inverse, so imple-
mentations of standard Online Codes need not distinguish
between addition and subtraction. In our case, we simply use
subtraction over

�
q to reduce check blocks as necessary.

Despite our emphasis on Online Codes in particular, we
note that these techniques apply to LT and Raptor codes. LT
Codes do not involve preprocessing, so the above scheme can
be simplified. Raptor Codes involve a two-stage precoding
process, and probably are not compatible with the implicit
calculation of auxiliary block hashes described above. In this
case, we compute file hashes over the output of the precoder,
therefore obtaining slightly larger file hashes.

C. Per-Publisher Homomorphic Hashing

The per-publisher hashing scheme is an optimization of the
global hashing scheme just described. In the per-publisher
hashing scheme, a given publisher picks group parameters
G so that a logarithmic relation among the generators g is
known. The publisher picks q and p as above, but generates g

by picking a random g ∈
�

p of order q, generating a random
vector r whose elements are in

�
q and then computing g = gr.

Given the parameters g and r, the publisher can compute
file hashes with many fewer modular exponentiations:

HG(F) = grF (4)

The publisher computes the product rF first, and then per-
forms only one modular exponentiation per file block to obtain
the full file hash. See Section V-B for a more complete
running-time analysis. The hasher must be careful to never
reveal g and r; doing so allows an adversary to compute
arbitrary collisions for HG.

Aside from hash parameter generation and hash generation,
all aspects of the protocol described above hold for both
the per-publisher and the global scheme. A verifier does not
distinguish between the two types of hashes, beyond ensuring
that the party who generated the parameters is trusted.

D. Computational Efficiency Improvements

We have presented a bare-bones protocol that achieves our
security goals but is expensive in terms of bandwidth and
computation. The hash function HG is orders of magnitude
slower than a more conventional hash function such as SHA1.
Our goal here is to improve verification performance, so that
a downloader can, at the very least, verify hashes as quickly
as he can receive them from the network. The bare-bones
primitives above imply that a client must essentially recompute
the hash of the file HG(F), but without knowing r.

We use a technique suggested by Bellare, Garay, and
Rabin [19] to improve verification performance. Instead of
verifying each check block ci exactly, we verify them proba-
bilistically and in batches. Each downloader picks a batch size
t such as 256 blocks, and a security parameter l such as 32.

The downloader runs a probabilistic batch verifier given
by V . The algorithm takes as input the parameter array
(HG(F ′), G, X, C). As usual, HG(F ′) is the hash of the
precoded file F ′ and G denotes the hash parameters. The
m × t matrix C represents the batch of t check blocks that
the downloader received; for convenience, we will write the
decomposition C = (c1 · · · ct), where a column ci of the
matrix represents the ith check block of the batch. The m× t
matrix X is a sparse binary matrix. The cell xij should be set
to 1 if the jth check block contains the message block bi and
should be 0 otherwise. In other words, the jth column of the
matrix X is exactly xj .

Algorithm V(HG(F ′), G, X, C)

1) Let si ∈ {0, 1}l be chosen randomly for
0 < i ≤ t, and let the column vector s =
(s1, . . . , st).

2) Compute column vector z = Cs

3) Compute γj =
∏n′

i=0 hG(bi)
xij for all j ∈

{1, .., t}. Note that if the sender is honest, then
γj = hG(cj).

4) Compute y′ =
∏m

i=1 gzi

i , and y =
∏t

j=1 γ
sj

j

5) Verify that y′ ≡ y mod p

This algorithm is designed to circumvent the expensive
computations of hG(ci) for check blocks in the batch. V
performs an alternative and roughly equivalent computation
with the product y in Step 4. The key optimization here is
that the exponents sj are small (l bits) compared to the much
larger λq-bit exponents used in Equation 1.

Batching does open the receiver to small-scale attacks: a
receiver accepts a batch worth of check blocks before closing
a connection with a malicious sender. With our example
parameters, each batch is 4 MB. However, a downloader
can batch over multiple sources. Only once a batch fails to
verify might the downloader attempt per-source batching to
determine which source is sending corrupted check blocks.
Finally, downloaders might tune the batching parameter t
based upon their available bandwidth or gradually increase
t for each source, so as to bound its overall fraction of bad
blocks.

E. Homomorphic Hash Trees

As previously noted, hashes HG(F) are proportional in size
to the file F and hence can grow quite large. With our sample
hash parameters, an 8 GB file will have a 64 MB hash—
a sizable file in and of itself. If a downloader were to use
traditional techniques to download such a hash, he would be
susceptible to the very same attacks we have set out to thwart,
albeit on a smaller scale.

To solve this problem, we construct homomorphic hash
trees—treating large hashes themselves as files, and repeatedly
hashing until an acceptably small hash is output. We also use a
traditional hash function such as SHA1 to reduce our hashes to
standard 20-byte sizes, for convenient indexing at the network
and systems levels.

First, pick a parameter L to represent the size of the largest
hash that a user might download without the benefit of on-
the-fly verification. A reasonable value for L might be 1 MB.
Define the following:

H0
G(F) = F

H i
G(F) = HG(H i−1

G (F)) for i > 0

IG(F) = (G, j, Hj
G(F))

for minimal j such that |IG(F)| < L

JG(F) = SHA1(IG(F))

That is, H i
G(F) denotes i recursive applications of HG. Note

that J outputs hashes that are the standard 20 bytes in size.
Now, the different components of the system are modified
accordingly:

Filename to Hash Mappings. Lookup services map
N(F)→ JG(F), for some G.

File Publication. To publish a file F , a publisher must
compute the hashes chain of hashes H1

G(F), . . . , Hj
G(F), and

also the hashes IG(F) and JG(F). For i ∈ {0, ..., j− 1},
the publisher stores H i

G(F) under the key (JG(F), i), and he
additionally stores IG(F) under the key (JG(F),−).

File Download. To retrieve a file F , a downloader first
performs the name-to-hash lookup N(F)→ JG(F), for some
G. He then uses the peer-to-peer routing layer to determine
a set of sources who serve the file and hashes corresponding
to JG(F). The downloader queries one of the mirrors with
the key (JG(F),−), and expects to receive IG(F). This
transfer can be at most L big. Assuming the hash JG(F) =
SHA1(IG(F)) correctly verifies, the downloader knows the
value j, and the jth order hash Hj

G(F). He can then request
the next hash in the sequence simultaneously from all of the
mirrors who serve F . The downloader queries these servers
with the key (JG(F), j−1), expecting the hash H j−1

G (F) in
response. This transfer also can be completed using erasure
encoding and our hash verification protocol. The downloader
iteratively queries its sources for lower-order hashes until it
receives the 0th order hash, or rather, the file itself.

In practice, it would be rare to see a j greater than 3.
With our sample hash parameters, the third-order hash of a
512 GB file is a mere 32 KB. However, this scheme can

scale to arbitrarily large files. Also note that because each
application of the hash function cuts the size of the input by
a factor of β/λp, the total overhead in hash transmission will
be bounded below a small fractional multiple of the original
file size, namely:

overhead
filesize

=

j
∑

i=1

(

λp

β

)i

<
∞
∑

i=1

(

λp

β

)i

<
1

1− λp/β
− 1 =

λp

β − λp

With our example parameters, λp/(β − λp) ≈ 0.79%.

V. ANALYSIS

In this section, we analyze our hashing scheme and report
performance numbers of a sample implementation.

A. Correctness

We first claim that homomorphic hashing scheme coupled
with the batch verifier given in Section IV-D guarantees cor-
rectness. That is, a verifier should always accept the encoded
output from an honest sender. Our proof is in Appendix I.
Given the proof of this more involved probabilistic verifier, it
is easy to see that the naı̈ve verifier is also correct.

B. Running Time Analysis

In analyzing the running time of our algorithms, we count
the number of multiplications over

�
∗
p and

�
q needed. For

instance, a typical exponentiation yx in
�

∗
p requires 1.5|x|

multiplications using the “iterative squaring” technique. |x|
multiplications are needed to produce a table of values y2z

,
for all z such that 1 ≤ z < |x|. Assuming data compression,
half of the bits of x on average will be 1, thus requiring
|x|/2 multiplications of values in the table. In our analysis,
we denote MultCost(p) as the cost of multiplication in

�
∗
p,

and MultCost(q) as the cost of multiplication in
�

q.
Note that computations of the form

∏m
i=1 gxi

i are com-
puted at various stages of the different hashing protocols.
As mentioned above, the precomputation of the g2z

i requires
mλq multiplications over

�
∗
p. But the product itself can be

computed in (mλq/2) MultCost(p) computations—and not
the (mλq/2 + m − 1) MultCost(p) one might expect—by
keeping a “running product.”

We recognize that certain operations like modular squaring
are cheaper than generic modular multiplication. Likewise,
multiplying an element of

�
q by a 32-bit number is less

expensive than multiplying two random elements from
�

q. In
our analysis, we disregard these optimizations and seek only
simplified upper bounds.

Per-Publisher Hash Generation. Publishers first precom-
pute a table g2z

for all z such that 1 ≤ z < λq . This
table can then be used to compute HG(F) for any file F .
Here and throughout this analysis, we can disregard the one-
time precomputation, since n � m. Thus, the n-vector
exponentiation in Equation 4 requires an expected nλq/2
multiplications in

�
∗
p. To compute rF as in Equation 4, mn

Algorithm FastMult ((y1, s1), . . . , (yt, st))
y ← 1
for j = l − 1 down to 0 do

for i = 1 to t do
if si[j] = 1 then y← yyi

done
if l > 0 then y← y2

done
return y

Fig. 4. Algorithm for computing � t
i=1 ysi

i . Each si is an l-bit number,
and the notation si[j] gives the jth bit of si, si[0] being the least significant
bit. This algorithm is presented in [19], although we believe there to be an
off-by-one-error in that paper, which we have corrected here.

multiplications are needed in
�

q. The total cost is therefore
mn MultCost(q) + nλq MultCost(p)/2.

Global Hash Generation. Publishers using the global hashing
scheme do not know r and hence must do multiple expo-
nentiations per block. That is, they must explicitly compute
the product given in Equation 1, with only the benefit of the
precomputed squares of the gi. If we ignore these costs, Global
Hash Generation requires a total of nmλq MultCost(p)/2
worth of computation.

Naı̈ve Hash Verification. Hash verifiers who chose not to
gain batching speed-ups perform much the same operations
as the global hash generators. That is, they first precompute
tables of squares, and then compute the left side of Equation 3
for the familiar cost of mλq MultCost(p)/2. The right side of
the equation necessitates an average of d multiplications in

�
∗
p,

where d, we recall, is the average degree of a check block c.
Thus, the expected per-block cost is (mλq/2+d)MultCost(p).

Fast Hash Verification. We refer to the algorithm described
in Section IV-D. In Step 2, recall that C is a m × t matrix,
and hence the matrix multiplication costs mt MultCost(q). V
determines γj in Step 3 with d multiplications over

�
∗
p, at a

total cost of td MultCost(p). In Step 4, computing y′ costs
mλq/2 MultCost(p) with access to precomputed tables of the
form g2x

i . For y, no such precomputations exist; the bases in
this case are γj , of which there are more than n. To compute
y efficiently, we suggest the FastMult algorithm described in
Figure 4, which costs (tl/2 + l − 1) MultCost(p).2 Summing
these computations and amortizing over the batch size t yields
a per-block cost of:

m ·MultCost(q) +

[

d +
l

2
+

mλq/2 + l − 1

t

]

·MultCost(p)

C. Microbenchmarks

We implemented a version of these hash primitives using the
GNU MP library, version 4.1.2. Table II shows the results of
our C++ testing program when run on a 3.0 GHz Pentium
4, with the sample parameters given in Table I and the
batching parameters given in Section IV-D. On this machine,

2FastMult offers no per-block performance improvement for naı̈ve verifi-
cation, thus we only consider it for fast verification.

MultCost(p) ≈ 6.2 µsecs and MultCost(q) ≈ 1.0 µsecs.
Our results are reported in both cost per block and overall
throughput. For comparison, we include similar computations
for SHA1 and for the Rabin signature scheme with 1024-bit
keys [20]. We also include disk bandwidth measurements for
reading blocks off a Seagate 15K Cheetah SCSI disk drive (in
batches of 64), and maximum theoretical packet arrival rate on
a T1. We will call on these benchmarks in the next section.

Although batched verification of hashes is almost an order
of magnitude slower than a more conventional hash function
such as SHA1, it is still more than an order of magnitude
faster than the maximum packet arrival rate on a good Internet
connection. Furthermore, by adjusting the batch parameter
t, downloaders can upper-bound the amount of time they
waste receiving bad check blocks. That is, receivers with
faster connections can afford to download more potentially
bogus check blocks, and can therefore increase t (and thus
verification throughput) accordingly.

Our current scheme for global hash generation is rather
slow, but publishers with reasonable amounts of RAM can
use k-ary exponentiation to achieve a four-fold speedup (see
Appendix III for details). Our performance analysis focuses on
the per-publisher scheme, which we believe to be better-suited
for copyright-friendly distribution of bulk data.

D. Performance Comparison

In Section III-A, we discussed other strategies for on-the-
fly verification of check blocks in peer-to-peer networks. We
now describe these proposals in greater detail, to examine
how our scheme compares in terms of bandwidth, storage,
and computational requirements. There are three schemes in
particular to consider:

High-Degree SHA1 Hash Tree. The publisher generates
n/r check blocks, and then hashes each one. Since this
collection of hashes might be quite large, the publisher uses
the recursive scheme described in Section IV-E to reduce it to
a manageable size. The publisher distributes the file, keyed by
the root of the hash tree. Downloaders first retrieve all nodes in
the hash tree and then can verify check blocks as they arrive.

Binary SHA1 Hash Tree. As before, the publisher gen-
erates n/r check blocks, but then computes a binary hash
tree over all check blocks. The publisher keys the file by
the root of its hash tree. In this scheme, mirrors need access
to the entire hash tree, but clients do not. Rather, when the
mirrors send check blocks, they prepend the “authentication
path” describing the particular check block’s location in the
hash tree. If downloaders know the hash tree’s root a priori,
they can, given the correct authentication path, verify that a
received check block is one of those intended by the publisher.

Sign Every Block. A publisher might generate n/r blocks
and simply sign every one. The hash of the file is then the
SHA1 of the filename and the publisher’s public key. The
mirrors must download and store these signatures, prepending
them to check blocks before they are sent to remote clients. To
retrieve the file, clients first obtain the publisher’s public key

TABLE II

MICROBENCHMARKS

time throughput
Operation on 16 KB block b (msec) (MB/sec)

Per-publisher computation of hG(b) 1.39 11.21
Global computation of hG(b) 420.90 0.037
Naı̈ve verification of hG(b) 431.82 0.038
Batched Verification of hG(b) 2.05 7.62

SHA1(b) 0.28 56.25
Sign b with Rabin-1024 1.98 7.89
Verify Rabin-1024 Signature of b 0.29 53.88

Receiving b on a T1 83.33 0.186
Reading b from disk (sequentially) 0.27 57.87

from the network, and verify this key against the hash of the
file. When they arrive from mirrors, the check blocks contain
their own signatures and are thus easily verified.

These three schemes require a suitable value of r. For codes
with rate r, a file with n message blocks will be expanded
into n/r check blocks. For simple lower bounds, assume that
any set of n of these check blocks suffices to reconstruct
the file. In a multicast scenario, a client essentially collects
these blocks at random, and the well-known “coupon collector
bound” predicts that he will receive −(n/r) ln(1 − r) check
blocks on average before collecting n unique check blocks.3

Using this bound, we can estimate the expected additional
transmission overheads due to repeated check blocks:

r −(1/r) ln(1 − r)
1/2 0.3863
1/4 0.1507
1/8 0.0683

1/16 0.0326
1/32 0.0160

That is, with an encoding rate r=1/2, a receiver expects an
additional 39% overhead corresponding to duplicate blocks. In
many-to-many transmission schemes, small encoding rates are
essential to achieving good bandwidth utilization.

We now present a performance comparison of the three
fixed-rate schemes and our homomorphic hashing proposal,
focusing on key differences between them: hash generation
costs incurred by the publisher, storage requirements at the
mirror, bandwidth utilization between the mirror and down-
loader, and verification performance.

1) Hash Generation: Fixed-rate schemes such as the three
presented above can generate signatures only as fast as they
can generate check blocks. Encoding performance depends
upon the file’s size, but because we wish to generalize our
results to very large files, we must assume that the publisher
cannot store the entire input file (or output encoding) in main
memory. Hence, secondary storage is required.

Our implementation experience with Online Codes has
shown that the encoder works most efficiently if it stores the
relevant pieces of the encoding graph structure and a fixed
number of check blocks in main memory.4 The encoder can

3This asymptotic bound is within a 10−5 neighborhood of the exact
probability when n = 216.

4With little impact on performance, our implementation also stores auxiliary
blocks in memory.

make several sequential passes through the file. With each
pass, it adds message blocks from disk into check blocks in
memory, as determined by the encoding graph. As the pass
is completed, it flushes the completed batch of check blocks
to the network, to disk, or to functions that compute hashes
or signatures. This technique exploits the fact that sequential
reads from disk are much faster than random seeks.

Our current implementation of Online Codes can achieve
encoding throughputs of about 21 MB/sec (on 1 GB files,
using roughly 512 MB of memory). However, to better com-
pare our system against fixed-rate schemes, we will assume
that an encoder exists than can achieve the maximum possible
throughput. This upper bound is ae/(βn), where the file has
n blocks, the block size is β, the amount of memory available
for storing check blocks is a, and the disk’s sequential read
throughput is e.

When publishers use fixed-rate schemes to generate hashes,
they must first precompute n/r check blocks. Using the
encoder described above, this computation requires nβ/(ra)
scans of the entire file. Moreover, each scan of the file involves
n block reads, so n2β/(ra) block reads in total are required.
Concurrent with these disk reads, the publisher computes
hashes and signatures of the check blocks and the implied
hash trees if necessary.

The theoretical requirements for all four schemes are sum-
marized in Table III. In the final three columns, we have
attempted to provide some concrete realizations of our theoret-
ical bounds. Throughout, we assume (1) a 1 GB file, broken
up into n = 216 blocks, each of size β = 16 KB, (2) the
publisher has a = 512 MB of memory for temporary storage
of check blocks, and (3) disk throughputs can be sustained
at 57.87 MB/sec as we observed on our machine. Under
these conditions, an encoder can achieve theoretical encoding
throughputs of up to 28.9 MB/sec. We further assume that
(4) looking to keep overhead due to redundant check blocks
below 5%, the publisher uses an encoding rate of r=1/16 and
(5) a publisher can entirely overlap disk I/O and computations
and therefore only cares about whichever takes longer. In the
right-most column, we present reasonable lower bounds on
hash generation performance for the four different schemes.

Despite our best efforts to envision a very fast encoder, the
results for the three fixed-rate schemes are poor, largely due
to the cost encoding of n/r file blocks. Moreover, in the sign-
every-block scheme, CPU becomes the bottleneck due to the
expense of signature computation.

By contrast, the homomorphic hashing scheme can escape
excessive disk accesses, because it hashes data before it is
encoded. It therefore requires only one scan of the input
file to generate the hashes of the message blocks. The pub-
lisher’s subsequent computation of the higher-level hashes
H2(F), H3(F), . . . easily fit into memory. Our prototype can
compute a homomorphic hash of a 1 GB file in 123.63
seconds, reasonably close to the lower bound of 91.81 seconds
predicted in Table III.

Of course, performance for the three fixed-rate schemes
worsens as r becomes smaller or n becomes larger. It is

TABLE III

HASH GENERATION

Scheme Block Reads DLog Hashes SHA1 Hashes Sigs Disk (sec) CPU (sec) Lower Bound (sec)

Homomorphic Hashing n nβ/(β − λp) 1 1 17.69 91.81 91.81
Big-Degree SHA1 Hash Tree n2β/(ra) 0 (n/r)β/(β − 160) 1 566.23 293.96 566.23
Binary SHA1 Hash Tree n2β/(ra) 0 2n/r 1 566.23 587.20 587.20
Sign Every Block n2β/(ra) 0 0 n/r 566.23 2076.18 2076.18

TABLE IV

ADDITIONAL STORAGE REQUIREMENTS FOR MIRRORS

Scheme Overhead Storage (MB)

Homomorphic Hash 0.008 8.06
Big-Degree Tree 0.020 20.02
Binary Tree 0.039 40.00
Sign Every Block 0.125 128.00

possible to ameliorate these problems by raising the block
size β or by striping the file into several different files, but
these schemes involve various trade-offs that are beyond the
scope of this paper.

2) Mirror’s Encoding Performance: In theory, the homo-
morphic hashing scheme renders encoding more computation-
ally expensive because it substitutes XOR block addition for
more expensive modular additions. We have measured that
our machine computes the exclusive OR of two 16 KB check
blocks in 8.5 µsecs. By comparison, our machine requires 37.4
µsecs to sum two blocks with modular arithmetic. The average
check-block degree in our implementation of Online Codes is
8.17, so check-block generation on average requires 69.5 µsecs
and 305 µsecs under the two types of addition. This translates
to CPU-bound throughputs of 224.8 MB/sec and 51.3 MB/sec,
respectively. However, recall that disk throughput and memory
limitations combine to bound encoding for both schemes at
only 28.9 MB/sec. Moreover, these throughputs are quite large
relative to typical network throughput; many P2P-CDN mirror
nodes would be happy with T1-rates at 1.5 Mbit/sec.

3) Storage Required on the Mirror: Mirrors participating in
P2P-CDNs agree to donate disk space for content distribution,
though usually they mirror files they also use themselves. All
four verification schemes require additional storage for hashes
and signatures. With homomorphic hashing, the mirror should
store the hash that the publisher provides. Regenerating the
hash is theoretically possible but computationally expensive.
Similarly, mirrors in the two SHA1 hash tree schemes should
retrieve complete hash trees from the publisher and store them
to disk, or otherwise must dedicate tremendous amounts of
disk I/O to generate them on-the-fly. Finally, in the sign-every-
block scheme, the mirror does not know the publisher’s private
key and hence cannot generate signatures. He has no choice
but to store all signatures. We summarize these additional
storage requirements in Table IV, again assuming a 1 GB input
file and an encoding rate of r=1/16.

4) Bandwidth: The bandwidth requirements of the various
schemes are given in terms of up-front and per-block costs.
These results are considered in Table V. The new parameter

λσ describes the size of signatures, which is 1024 bits in our
examples. In multicast settings, receivers of fixed-rate codes
incur additional overhead due to repeated blocks (reported
as “penalty”). At an encoding rate of r = 1/16, the coupon
collector bound predicts about 3.3% overhead. In all four
schemes, downloaders might see duplicate blocks when recon-
ciling partial transfers with other downloaders. That is, if two
downloaders participate in the same multicast tree, and then
try to exchange check blocks with each other, they will have
many blocks in common. This unavoidable problem affects
all four schemes equally and can be mitigated by general set-
reconciliation algorithms [8] and protocols specific to peer-to-
peer settings [9].

The binary SHA1 tree and the sign-every-block scheme
allow downloaders to retrieve a file without up-front transfer
of cryptographic meta-data. Of course, when downloaders
become full mirrors, they cannot avoid this cost. In the former
scheme, the downloader needs the hash tree in its entirety,
adding an additional 3.9% overhead to its total transfer. In the
latter, the downloader requests all those signatures not already
received. This translates to roughly 11.7% additional overhead
when r=1/16.

5) Verification: Table VI summarizes the per-block ver-
ification costs of the four schemes. For our homomorphic
hashing scheme, we assume batched verification with the
parameters given in Section IV-D. The Rabin signature scheme
was specially chosen due to its fast verification time, as shown.
Surprisingly, verifying a check block using a SHA1 binary tree
is more than twice as slow as using our homomorphic hashing
protocol, due to the height of the tree.

E. Discussion

For encoding rates such as r = 1/16, each of the three
fixed-rate schemes has important strengths and weaknesses.
Though the sign-every-block scheme is bandwidth-efficient,
requires no up-front hash transfer, and has good verification
performance, its hash generation costs are prohibitive and its
storage costs are higher. Similarly, though the binary hash
tree method has no up-front transfer, its bandwidth, storage
and verification costs make it less attractive than hash trees
with larger fan-out. The homomorphic hashing scheme entails
no such tradeoffs, as it performs well across all categories
considered. Homomorphic hashing ranks less favorably when
considering verification throughput, but as argued in Sec-
tion V-C, tuning batch size allows throughput to scale with
available bandwidth.

TABLE V

BANDWIDTH

Up-Front Per-Block
Scheme Predicted (bits) e.g. (MB) Predicted (bits) e.g. (KB) Total (GB) Total w/ Penalty (GB)

Homomorphic Hashing λpnβ/(β − λp) 8.06 β + m 16.06 1.0118 1.0118
Big-Degree SHA1 Hash Tree 160nβ/(β − 160) 20.02 β 16.00 1.0196 1.0528
Binary SHA1 Hash Tree 0 0 β + 160 log2(n/r) 16.39 1.0244 1.0578
Sign Every Block 0 0 β + λσ 16.13 1.0078 1.0407

TABLE VI

PER-BLOCK VERIFICATION PERFORMANCE

Scheme Batch SHA1 Rabin Total (msec)

Homomorphic Hash 1 0 0 2.05
Big-Degree Tree 0 1 0 0.28
Binary Tree 0 log2(n/r) 0 5.60
Sign Every Block 0 0 1 0.29

VI. SECURITY

In modern real-world P2P-CDNs, an honest receiver who
wishes to obtain the file F from the network communicates
almost exclusively with untrusted parties. As mentioned in
Section III, a crucial stage of the file transmission protocol—
mapping file names to file hashes—is beyond the scope of
this paper. In our analysis, we assume that the receiver can
reliably resolve N(F)→JG(F) through a trusted, out-of-band
channel. We wish to prove, however, that given JG(F), the
downloader can recover F from the network while recognizing
certain types of dishonest behavior almost immediately.

A. Collision-Resistant Hash Functions

First, we formally define a collision-resistant hash function
(CRHF) in the manner of [21]. Recall that a family of
hash functions is given by a pair of PPT algorithms F =
(HGen,H). HGen denotes a hash generator function, taking
an input of security parameters (λp, λq , m) and outputting a
description of a member of the hash family, G. HG will hash
inputs of size mλq to outputs of size λp, exactly as we have
seen thus far. A hash adversary A is a probabilistic algorithm
that attempts to find collisions for the given function family.

Definition 1: For any CRHF family F , any probabilistic
algorithm A, and security parameter λ = (λp, λq , m) where
λq < λp and m ≤ poly(λp), let

Advcol-atk
F ,λ (A) = Pr

[

G← HGen(λ); (x1, x2)← A(G) :

HG(x1) = HG(x2) ∧ x1 6= x2

]

F is a (τ, ε)-secure hash function family if, for all PPT
adversaries A with time-complexity τ(λ), Advcol-atk

F ,λ (A) <
ε(λ), where ε(λ) is negligible in λ and τ(λ) is polynomial
in λ.

Our definition of the hash primitive h per Section IV fits
naturally into this definition. In fact, the PickGroup algorithm
is a reasonable candidate for the function HGen(). See [21]
for a proof that the function family hG is collision-resistant
hash function, assuming that the discrete log problem is hard
over the group parameterized by (λp, λq).

B. Security of Encoding Verifiers

We can now define a notion of security against bogus-
encoding attacks. For simplicity, we assume erasure codes
that have a precoding algorithm P , and an encoder amenable
to succinct matrix representation; as discussed in Section II,
examples include LT, Raptor, and Online Codes.

As usual, consider an adversary A against an honest verifier
V . The adversary A succeeds in a bogus-encoding attack if he
can convince the verifier V to accept blocks from “forged” or
bogus file encodings. When making the decision of whether
or not to accept a given encoding, V can only access the hash
HG(F ′) of the precoded file F ′ he expects. In this definition,
the adversary has the power to generate the file F , which is
the precoded as normal to obtain F ′.

Definition 2 (Secure Encoding Verifier): For any CRHF H,
any probabilistic algorithm A, any honest verifier V , any
m, n > 0, any batch size t > 1, let:

Advenc-atk
H,V,m,n,t(A) =

Pr
[

G← HGen(H); (F, X, C)← A(G, m, n, t);

F ′ ← P(F); b← V(HG(F ′), G, X, C) :

F is m× n ∧ F ′ is m× n′ ∧ X is n′ × t

∧ C is m× t ∧ F ′X 6= C ∧ b = Accept
]

(5)

The encoding verifier V is (τ, ε)-secure if, ∀ m, n > 0, t >
1 and PPT adversaries A with time-complexity τ(m, n, t),
Advenc-atk

H,V,m,n,t(A) < ε(m, n, t).
Our definition requires that V be (τ, ε)-secure for all values

of t > 1. Thus, a protocol that uses a secure encoding verifier
can tune t as desired to trade computational efficiency for
communication overhead. From here, we can prove that the
batch verification procedure presented previously is secure.
See Appendix II.

Theorem 1: Given security parameters l, λp, λq , batch size
t, number of generators m, and the (τ, ε)-secure hash family
h generated by (λq , λp, m), the batched verification procedure
V given above is a (τ ′, ε′)-secure encoding verifier, where
τ ′ = τ −mt(MultCost(q) + MultCost(p)) and ε′ = ε + 2−l.

We do not state or prove the corresponding theorem for
the naı̈ve verifier, but it is straightforward to check that it
has equivalent or stronger properties than that of the batch
verifier. The security of the recursive hashing scheme outlined
in Section IV-E follows from an inductive application of
Theorem 1.

C. Future Work and End-To-End Security

These security guarantees, while necessary, are not sufficient
for all multicast settings. In Section III, we proposed both the
bogus-encoding attack and the distribution attack. While we
have solved the former, one can imagine malicious encoders
who thwart the decoding process through an incorrect distri-
bution of well-formed check blocks. Because Tornado, Raptor,
Online, and LT Codes are all based on irregular graphs, their
output symbols are not interchangeable. Bad encoders could
corrupt degree distributions; they could also purposefully avoid
outputting check blocks derived from some particular set of
message blocks. Indeed, the homomorphic hashing scheme
and the three fixed-rate schemes discussed in Section V-D are
all vulnerable to the distribution attack.

In future work, we hope to satisfy a truly end-to-end
definition of security for encoding schemes. For the end-to-end
model, we envision an experiment in which the adversary can
chose to supply the recipient with either its own check blocks,
or those from an honest encoder. The X and C parameters of
the verifier function now correspond to the entire download
history, not just the most recent batch of blocks. The verifier
outputs Reject if it believes it is talking to a malicious encoder,
in which case the experiment discards the batch of blocks
just received. In the end, the experiment runs the decoder
on all retained check blocks after receiving (1 + ε)n′ + aB
total blocks, where a is a constant allowance for wasted
bandwidth per bad encoder, and B is the number of times the
verifier correctly output Reject after receiving blocks from the
adversary. The adversary succeeds if this decoding fails with
non-negligible probability.

One approach toward satisfying such a definition might be
to require a sender to commit to a pseudo-random sequence
determined by a succinct seed, and then send check blocks
whose xi portions are entirely determined by the pseudo-
random sequence. But in the context of non-reliable network
transport or multicast “downsampling,” a malicious sender can
drop particular blocks in the sequence and place the blame on
congestion. If, for example, the sender drops all degree-one
blocks, or drops all check blocks that mention a particular
message block, decoding will never succeed.

A more promising approach involves validating an exist-
ing set of check blocks by simulating the receipt of fu-
ture check blocks. Given an existing set of check blocks
〈x1, c1〉, 〈x2, c2〉, . . . , 〈xQ, cQ〉, the verifier can run the en-
coder (without the contents of F) to generate a stream of
block descriptions xQ+1,xQ+2, If the file would not be
recoverable given cQ+1, cQ+2, . . ., this is evidence that the
distribution of x1, . . . ,xQ has been skewed. If the file would
be recoverable, the verifier can repeat the experiment several
times to amplify its confidence in x1, . . . ,xQ. To be of any
use, such a verifier can do no more than O(log n) operations
per check block received. Thus simulated streams should be
re-used for efficiency, with the effects of the first simulated
block xQ+1 replaced by those of the next real block received.
The feasibility of efficiently “undoing” encoding remains an

open question; therefore we leave the description and analysis
of an exact algorithm to future work.

VII. RELATED WORKS

Multicast source-authentication is well-studied problem in
the recent literature; for a taxonomy of security concerns and
some schemes, see [22]. Preexisting solutions fall into two
broad categories: (1) sharing secret keys among all participants
and MACing each block, or (2) using asymmetric cryptogra-
phy to authenticate each block sent. Unfortunately, the former
lacks any source authentication, while the latter is costly with
respect to both computation resources and bandwidth.

A number of papers have looked at providing source authen-
tication via public key cryptography, yet amortizing asymmet-
ric operations over several blocks. Gennaro and Rohatgi [23]
propose a protocol for stream signatures, which follows an
initial public-key signature with a chain of efficient one-time
signatures, although it does not handle block erasures (e.g.,
from packet loss). Wong and Lam [24] delay consecutive
packets into a pool, then form an authentication hash and sign
the tree’s root. Rohatgi [25] uses reduced-size online/offline k-
time signatures instead of hashes. Recent tree-based [26] and
graph-based [27] approaches reduce the time/space overheads
and are designed for bursty communication and random packet
loss. More recent work [28], [29] makes use of trusted erasure
encoding in order to authenticate blocks, while most schemes,
including our own, try to authenticate blocks in spite of
untrusted erasure encoding.

Another body of work is based solely on symmetric key
operations or hash functions for real-time applications. Several
protocols used the delayed disclosure of symmetric keys to
provide source authentication, including Chueng [30], the Guy
Fawkes protocol [31], and more recently TESLA [32], [33],
by relying on loose time synchronization between senders
and recipients. The recent BiBa [34] protocol exploits the
birthday paradox to generate one-time signatures from k-wise
hash collisions. The latter two can withstand arbitrary packet
loss; indeed, they were explicitly developed for Digital Foun-
tain’s content distribution system [6], [7] to support video-on-
demand and other similar applications. Unfortunately, these
delayed-disclosure key schemes require that publishers remain
online during transmission.

In the traditional settings considered above, the publisher
and the encoder are one in the same. In our P2P-CDN setting,
untrusted mirrors generate the check blocks; moreover a
trusted publisher cannot explicitly authenticate every possible
check block, since their number grows exponentially with file
size. Thus, a publisher must generate its authentication tokens
on the initial message blocks, and we require a hash function
that preserves the group structure of the encoding process.

Our basic homomorphic hashing scheme is complementary
to existing threads of work that make use of homomorphic
group operations. One-way accumulators [35], [36] and in-
cremental hashing [21], based on RSA and DL constructions
respectively, examine commutative hash functions that yield
an output independent of the operations’ order. Improvements

to the schemes’ efficiency [37], [38], [39], however, largely
focus on dynamic or incremental changes to the elements
being hashed/authenticated, e.g., the modification of an entry
of an authenticated dictionary. More recent work has inves-
tigated homomorphic signature schemes for specific applica-
tions: undirected transitive signatures [40], authenticated prefix
aggregation [41], redactable signatures [42], and set-union
signatures via accumulators [42]. We use similar techniques to
maintain group structure across applications of cryptographic
functions, but to different ends. Composing homomorphic
signatures with traditional hash functions such as SHA1 [13]
would not solve our problem, as the application of the tra-
ditional hash function would destroy the group structure we
hope to preserve.

VIII. CONCLUSIONS

Current peer-to-peer content distribution networks, such as
the widely popular file-sharing systems, suffer from unveri-
fied downloads. A participant may download an entire file,
increasingly in the hundreds of megabytes, before determining
that the file is corrupted or mislabeled. Current downloading
techniques can use simple cryptographic primitives such as
signatures and hash trees to authenticate data. However, these
approaches are not efficient for low encoding rates, and are
not possible for rateless codes.

To our knowledge, this paper is the first to consider non-
interactive, on-the-fly verification of rateless erasure codes.
We present a discrete-log-based hash scheme that provides
useful homomorphic properties for verifying the integrity of
downloaded content. Because recipients can compose hashes
just as encoders compose message blocks, they can ver-
ify any possible check block. Using batching techniques to
improve verification efficiency, we provide implementation
results that suggest this scheme is practical for real-world use.
A tight reduction proves our scheme secure under standard
cryptographic assumptions. We leave formalization of end-
to-end security and protection against distribution attacks as
interesting open problems.

ACKNOWLEDGMENTS

We thank Michael Walfish for first alerting us to the
distribution attack. We also thank Petar Maymounkov and
Benny Pinkas for helpful discussions, and our shepherd Dan
Wallach for his feedback. This research was conducted as
part of the IRIS project (http://project-iris.net/),
supported by the NSF under Cooperative Agreement No. ANI-
0225660. Maxwell Krohn is supported by an MIT EECS
Fellowship, Michael Freedman by an NDSEG Fellowship, and
David Mazières by an Alfred P. Sloan Research Fellowship.

REFERENCES

[1] S. Saroui, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M.
Levy, “An analysis of Internet content delivery systems,” in Proc. 5th
Symposium on Operating Systems Design and Implementation (OSDI),
Boston, MA, Oct. 2002.

[2] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Ste-
mann, “Practical loss-resilient codes,” in Proc. 29th Annual ACM
Symposium on Theory of Computing (STOC), El Paso, TX, May 1997.

[3] M. Luby, “LT codes,” in Proc. 43rd Annual Symposium on Foundations
of Computer Science (FOCS), Vancouver, Canada, Nov. 2002.

[4] P. Maymounkov, “Online codes,” NYU, Tech. Rep. 2002-833, Nov.
2002.

[5] A. Shokrollahi, “Raptor codes,” Digital Fountain, Inc., Tech. Rep.
DF2003-06-001, June 2003.

[6] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A Digital Fountain
approach to reliable distribution of bulk data,” in Proc. ACM SIGCOMM
’98, Vancouver, Canada, Sept. 1998.

[7] J. Byers, M. Luby, and M. Mitzenmacher, “Accessing multiple mirror
sites in parallel: Using Tornado codes to speed up downloads,” in Proc.
IEEE INFOCOM ’99, New York, NY, Mar. 1999.

[8] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed content
delivery across adaptive overlay networks,” in Proc. ACM SIGCOMM
’02, Aug. 2002.

[9] P. Maymounkov and D. Mazières, “Rateless codes and big downloads,”
in Proc. 2nd International Workshop on Peer-to-Peer Systems (IPTPS),
Berkeley, CA, Feb. 2003.

[10] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “Splitstream: High-bandwidth multicast in a cooperative
environment,” in Proc. 18th ACM Symposium on Operating Systems
Principles (SOSP), Bolton’s Landing, NY, Oct. 2003.

[11] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
bandwidth data dissemination using an overlay mesh,” in Proc. 18th
ACM Symposium on Operating Systems Principles (SOSP), Bolton’s
Landing, NY, Oct. 2003.

[12] L. Rizzo, “Effective erasure codes for reliable computer communication
protocols,” ACM Computer Communication Review, vol. 27, no. 2, Apr.
1997.

[13] FIPS 180-1, Secure Hash Standard, U.S. Department of Com-
merce/N.I.S.T., National Technical Information Service, Springfield, VA,
Apr. 1995.

[14] C. Karlof, N. Sastry, Y. Li, A. Perrig, and J. Tygar, “Distillation codes
and applications to DoS resistant multicast authentication,” in Proc.
11th Network and Distributed Systems Security Symposium (NDSS), San
Diego, CA, Feb. 2004.

[15] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Advances in Cryptology—CRYPTO ’87, Santa Barbara, CA,
Aug. 1987.

[16] National Institute of Standards and Technology, “Digital Signature
Standard (DSS),” Federal Information Processing Standards Publication
186-2, U.S. Dept. of Commerce/NIST, 2000.

[17] T. P. Pedersen, “Non-interactive and information-theoretic secure veri-
fiable secret sharing,” in Advances in Cryptology—CRYPTO ’91, Santa
Barbara, CA, Aug. 1991.

[18] D. Chaum, E. van Heijst, and B. Pfitzmann, “Cryptographically strong
undeniable signatures, unconditionally secure for the signer,” in Ad-
vances in Cryptology—CRYPTO ’91, Santa Barbara, CA, Aug. 1991.

[19] M. Bellare, J. Garay, and T. Rabin, “Fast batch verification for modular
exponentiation and digital signatures,” in Advances in Cryptology—
EUROCRYPT 98, Helsinki, Finland, May 1998.

[20] M. O. Rabin, “Digitalized signatures and public key functions as
intractable as factorization,” MIT Laboratory for Computer Science,
Tech. Rep. TR-212, Jan. 1979.

[21] M. Bellare, O. Goldreich, and S. Goldwasser, “Incremental cryptogra-
phy: The case of hashing and signing,” in Advances in Cryptology—
CRYPTO ’94, Santa Barbara, CA, Aug. 1994.

[22] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas,
“Multicast security: A taxonomy and some efficient constructions,” in
Proc. IEEE INFOCOM ’99, New York, NY, 1999.

[23] R. Gennaro and P. Rohatgi, “How to sign digital streams,” in Advances
in Cryptology—CRYPTO ’97, Santa Barbara, CA, Aug. 1997.

[24] C. K. Wong and S. S. Lam, “Digital signatures for flows and multicasts,”
in Proc. IEEE International Conference on Network Protocols, Austin,
TX, Oct. 1998.

[25] P. Rohatgi, “A compact and fast hybrid signature scheme for multicast
packet authentication,” in Proc. 6th ACM Conference on Computer and
Communication Security (CCS), Singapore, Nov. 1999.

[26] P. Golle and N. Modadugu, “Authenticated streamed data in the pre-
sernce of random packet loss,” in Proc. Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2001.

[27] S. Miner and J. Staddon, “Graph-based authentication of digital
streams,” in Proc. IEEE Symposium on Security and Privacy, Oakland,
CA, May 2000.

[28] A. Pannetrat and R. Molva, “Efficient multicast packet authentication,”
in Proc. Network and Distributed System Security Symposium (NDSS),
San Diego, CA, Feb. 2003.

[29] J. M. Park, E. K. P. Chong, and H. J. Siegel, “Efficient multicast stream
authentication using erasure codes,” ACM Trans. Inf. Syst. Secur., vol. 6,
no. 2, 2003.

[30] S. Cheung, “An efficient message authentication scheme for link state
routing,” in Proc. 13th Annual Computer Security Applications Confer-
ence, San Diego, CA, Dec. 1997.

[31] R. Anderson, F. Bergadano, B. Crispo, J.-H. Lee, C. Manifavas, and
R. Needham, “A new family of authentication protocols,” Operating
Systems Review, vol. 32, no. 4, Oct. 1998.

[32] A. Perrig, R. Canetti, D. Song, and D. Tygar, “Efficient authentication
and signature of multicast streams over lossy channels,” in Proc. IEEE
Symposium on Security and Privacy, Oakland, CA, May 2000.

[33] ——, “Efficient and secure source authentication for multicast,” in
Proc. Network and Distributed System Security Symposium (NDSS), San
Diego, CA, Feb. 2001.

[34] A. Perrig, “The BiBa one-time signature and broadcast authentication
protocol,” in Proc. 8th ACM Conference on Computer and Communica-
tion Security (CCS), Philadelphia, PA, Nov. 2001.

[35] J. Benaloh and M. de Mare, “One-way accumulators: A decentral-
ized alternative to digital sinatures,” in Advances in Cryptology—
EUROCRYPT 93, Lofthus, Norway, May 1993.

[36] N. Barić and B. Pfitzmann, “Collision-free accumulators and fail-
stop signature schemes without trees,” in Advances in Cryptology—
EUROCRYPT 97, Konstanz, Germany, May 1997.

[37] M. Bellare and D. Micciancio, “A new paradigm for collision-free
hashing: Incrementality at reduced cost,” in Advances in Cryptology—
EUROCRYPT 97, Konstanz, Germany, May 1997.

[38] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and appli-
cation to efficient revocation of anonymous credentials,” in Advances in
Cryptology—CRYPTO 2002, Santa Barbara, CA, Aug. 2002.

[39] G. Tsudik and S. Xu, “Accumulating composites and improved group
signing,” in Advances in Cryptology—ASIACRYPT-2003, Taipei, Taiwan,
Nov. 2003.

[40] S. Micali and R. Rivest, “Transitive signature schemes,” in Progress in
Cryptology — CT-RSA 2002, San Jose, CA, Feb. 2002.

[41] S. Chari, T. Rabin, and R. Rivest, “An efficient signature scheme for
route aggregation,” Feb. 2002.

[42] R. Johnson, D. Molnar, D. Song, and D. Wagner, “Homomorphic
signature schemes,” in Progress in Cryptology — CT-RSA 2002, San
Jose, CA, Feb. 2002.

APPENDIX I
CORRECTNESS OF BATCHED VERIFICATION

Consider the batched verification algorithm given in Sec-
tion IV-D. To prove it correct (i.e., that correct check
blocks will be validated), let us examine an arbitrary hash
(G, HG(F)). For notational convenience, we write y and y′

computed in Step 4 in terms of an element g ∈
�

p of order q
and row vector r such that gr = g mod p. These elements
are guaranteed to exist, even if they cannot be computed
efficiently. Thus,

y′ =
m
∏

i=1

gzi

i =
m
∏

i=1

grizi = g � m
i=1

ziri = grz

By the definition of z from Step 2, we conclude y′ = grCs.
Now we examine the other side of the verification, y.

Recalling Equation 1, rewrite hashes of check blocks in terms
of a common generator g:

hG(cj) =

m
∏

i=1

grici,j = g � m
i=1

rici,j = grcj

As noted in Step 3, for an honest sender, γj = hG(cj).
Thus, we can write that γj = gsjrcj . Combining with the

computation of y in Step 4:

y =

t
∏

j=1

gsjrcj = g � t
j=1

sjrcj = grCs

Thus we have that y′ ≡ y mod p, proving the correctness of
the validator.

APPENDIX II
PROOF OF THEOREM 1

We now prove the security of the batched verification
scheme by proving Theorem 1 given in Section VI-B. Our
proof follows that from [19], with some additional complexity
due to our multi-dimensional representation of a file.

Consider the hash function family h parameterized by
(λp, λq , m). For any file size n, batch size t < n, consider an
arbitrary adversaryA′ that (τ ′, ε′)-attacks the encoding verifier
V . Based on this adversary, define a CRHF-adversary A(G)
that works as follows:

Algorithm A(G)
1) (F, X, C)← A′(G, m, n, t)
2) If F is not m × n or X is not n′ × t or C is

not m× t then Fail.
3) F ′ ← P(F)
4) If F ′X = C, then Fail

5) If V(HG(F ′), G, X, C) = Reject, then Fail.
6) If HG(F ′X) 6= HG(C), then Fail.
7) Find a column j such that F ′xj 6= cj . Return

(F ′xj , cj).

By our selection of the adversary A′, running it in Step 1 will
require time complexity τ ′ and will succeed in the experiment
given in Definition 2 with probability ε′. By construction, A
corresponds naturally to the steps of our definitional experi-
ment in Equation 5. Step 2 enforces appropriate dimensional-
ity. Step 4 enforces the requirements that 〈X, C〉 not be a legal
encoding, given in Equation 5 by F ′X 6= C. Step 5 requires
that the verifier V accepts the “forged” input. We can conclude
that the Algorithm A will arrive at Step 6 with probability ε′.

We now argue that A fails at Step 6 with probability 2−l.
To arrive at this step, the verifier V as defined in Section IV-D
must have output Accept. Using the same manipulations as
those given in Appendix I, we take the fact that V accepted
to mean that:

grF ′Xs ≡ grCs mod p (6)

Note that the exponents on both sides of the equation are
scalars. Because g has order q, we can say that these exponents
are equivalent mod q; that is rF ′Xs ≡ rCs mod q, and
rearranging,

r (F ′X − C) s ≡ 0 mod q. (7)

If the algorithm A′ fails at Step 6, then HG(F ′X) 6=
HG(C). Rewriting these row vectors in terms of the g and
r, we have that grF ′X 6≡ grC mod p. Recalling that g is order
q and that exponentiation of a scalar by a row vector is defined

component-wise, we can write that rF ′X 6≡ rC mod q, and
consequently:

r (F ′X − C) 6≡ 0 mod q (8)

For convenience, let the 1× t row vector u = r(F ′X−C).
Equation 8 gives us that u 6≡ 0 mod q; thus some element of
u must be non-zero. For simplicity of notation, say that u1

is the first non-zero cell, but our analysis would hold for any
index. Equation 7 gives us that us ≡ 0 mod q. Since u1 6= 0,
it has a multiplicative inverse, u−1

1 , in
�

∗
q. Therefore:

s1 ≡ −
(

u−1
1

)

t
∑

j=2

ujsj mod q (9)

Referring to Step 1 of verifier V , s1 was selected at random
from 2l possible values; consequently, the probability of its
having the particular value in Equation 9 is at most 2−l. Thus,
A can fail at Step 6 with probability at most 2−l.

Combining our results, we have that algorithm A will reach
Step 7 with probability ε′−2−l. At this point in the algorithm,
A is assured that F ′X 6= C, since execution passed Step 4.
If we consider this inequality column-wise, we conclude there
must be some j ∈ {1, ..., t} such that F ′xj 6= cj , where xj

and cj are the jth columns of X and C, respectively. Because
Step 6 guarantees that HG(F ′X) = HG(C) at this point in
the algorithm, we can use the definition of HG to claim that
for all j, hG(F ′xj) = hG(cj). Thus, (F ′xj , cj) represents a
hash collision for the hash function hG.

Analyzing the time-complexity of A, Step 1 completes with
time-complexity τ ′, the matrix multiplication F ′X in Step 4
requires mt multiplications in

�
q, and the hash computations

in Step 6 each require tm/2 multiplications in
�

∗
p, assuming

the usual precomputations. Therefore,A has a time complexity
given by τ = τ ′ + mt(MultCost(q) + MultCost(p)).

Therefore, we have shown that if an adversary A′

exists that is successful in a (τ ′, ε′)-attack against V ,
then another adversary A exists that is (τ, ε)-successful
in finding collisions for the hash function h, where
τ ′ = τ −mt(MultCost(q) + MultCost(p)) and ε = ε′ + 2−l.
This completes the proof of Theorem 1.

APPENDIX III
k-ARY EXPONENTIATION

In order to speed up global hash generation, one can make
an exponential space-for-time tradeoff, using k-ary exponenti-
ation. That is, we can speed up each exponentiation by a factor
of x/2 while costing a factor of (2x − 1)/x in core memory.
For simplicity, assume that x|(λq − 1):

1) For 1 ≤ i ≤ m, for 0 < j < 2x, for 0 ≤ k < (λq−1)/x,

precompute gj2kx

i . Store each value in an array A under
the index A[i][j][k].

2) To compute gzi

i , write zi in base 2x:

zi = a0 + a12
x + a22

2x + · · ·+ a(λq−1)/x−12
λq−x

Let K = {k | ak 6= 0}. Then compute the product:

gzi

i =
∏

k∈K

A[i][ak][k]

The storage requirement for the table A is m(2x− 1)(λq −
1)λp/x bits, which is exponential in x. Disregarding the one-
time precomputation in Step 1, the computation of zi in Step 2
costs (λq − 1) MultCost(p)/x. Compared to the conventional
iterative-squaring technique, this method achieves a factor of
x/2 speed-up.

Setting x = 8, the size of the tables |A| = 510 MB, and
we can hash a 1 GB file with global parameters in less than
2 hours (of course hashing is much faster in the per-publisher
model).

