
Research statement
Michael J. Freedman

My research interests span the areas of distributed
systems, security, networking, and cryptography. I
particularly enjoy devising technologies that make
new functionality broadly available. My work gener-
ally tackles systems problems by coupling principled
designs with real-world deployments.

A common thread in my research is the exten-
sion of systems designed for centralized or trusted
entities into decentralized, untrusted, unreliable, or
chaotic settings. These scenarios offer significant
challenges, yet they are ones ideally suited for aca-
demic research: Such problems or architectures do
not naturally arise from within industry, even though
the techniques often may be applied back into man-
aged environments,e.g., to survive disasters or to op-
erate safely under attack. More than that, open sys-
tems encourage further innovation.

I approach these problems through the innovative
use of cryptography, algorithms, or abstractions. By
leveraging the resulting properties, one can create
self-organizing systems out of unreliable nodes, in-
centivize proper operation, curtail the impact of ma-
licious behavior, or improve manageability to over-
come system brittleness.

Such solutions still require solid engineering, al-
ways with the end-user in mind. By providing de-
sired functionality, even research systems can attract
users, gain traction, and then truly test the system’s
mettle. Deployed systems provide real data to direct
future design decisions, and they can serve as plat-
forms for otherwise intractable experiments. While
much research relies solely on simulation and em-
ulation, only at scale can we truly evaluate many
systems—learning from their strengths, weaknesses,
and emergent properties—and thus discover new re-
search problems and directions.

Cooperative content distribution. My thesis re-
search focuses on making content delivery more
widely available by federating large numbers of un-
trusted or unreliable machines to share localized re-
sources. Content distribution networks (CDNs) are
not a new idea, but the architectures of commercial
CDNs are tightly bound to centralized control, static
deployments, and cost recovery.

My initial system, CoralCDN [1], explores how to
build a self-organizing cooperative web CDN using
unreliable hosts. Through its scalable distributed in-
dex, nodes can record and locate data without over-
loading any node, regardless of a file’s popularity or
system dynamics [1, 2]. Decentralized clustering al-
gorithms enable nodes to find nearby data without
querying more distant machines.

CoralCDN incorporates a number of engineering
mechanisms for sharing resources fairly and prevent-
ing abuse—learned through deployment and com-
munity feedback—yet the system is inherently open.
Simply modify a URL, and the requested content is
automatically retrieved and cached by CoralCDN’s
proxies. As such, it has been widely adopted in of-
ten innovative ways: by servers to dynamically off-
load flash crowds, by browser extensions to recover
from server failures, by podcasting and RSS soft-
ware, and by daily links on Slashdot and other por-
tals. CoralCDN currently handles about 25 million
requests daily from over one million clients.

One challenge in designing CoralCDN was how
to compel our unmodified clients to use nearby, un-
loaded proxies. While commercial systems also de-
ploy anycastto select servers, their techniques need
handle only a single deployment, often comprised of
a mere handful of data centers. Ideally, one public
infrastructure could provide anycast for many far-
flung services, such that the more services that use
it, the more accurate its server-selection results and
the lower the bandwidth cost per service.

I built a subsequent system, OASIS [3], that
does exactly this: OASIS currently provides any-
cast among thousands of servers from more than a
dozen distributed systems, from both the academic
and open-source communities. It flexibly supports
a variety of interfaces—currently DNS, HTTP, and
RPC—with which clients can discover good servers
belonging to the requested system. OASIS can do so
because it tackles several problems simultaneously:
using nodes from participating services to perform
network measurement, detecting and disambiguating
erroneous results, representing locality stably across
time and deployment changes, and scalably manag-
ing state information about many services.

1



This success at building content delivery from un-
reliable resources raised the question as to whether
we could extend this approach to mutually distrustful
clients. Shark [4] provides a distributed file system
that improves scalability and performance through
cooperative reads, using Coral’s indexing layer to lo-
cate content. Still, Shark preserves traditional se-
mantics and security: End-to-end cryptography en-
sures that clients need not trust one another.

We also considered security mechanisms for hosts
using rateless erasure codes for cooperative large
file distribution. Unfortunately, these codes cannot
use traditional authenticators (e.g., hash trees) that
guarantee the integrity of individual blocks. There-
fore, we devised a homomorphic hash function that
can be used to verify downloaded blocks on-the-fly,
thus preventing malicious participants from polluting
the network with garbage [5]. Implementation as-
pects mattered in this seemingly-theoretical project.
The batching of public-key operations was needed
to achieve fast verification, while disk-read strate-
gies led to encoding speeds that even exceeded those
of hash trees for non-rateless codes. Finally, for
preventing pollution in these non-rateless codes, we
showed how simple implementation changes could
replace others’ heavyweightblack-boxmechanisms.

Recently, I have returned to the problem of mov-
ing CoralCDN from its current deployment on Plan-
etLab onto fully untrusted nodes, as CoralCDN’s
success has led to bandwidth usage that has long sat-
urated PlanetLab’s available capacity. As digital sig-
natures can guarantee content integrity, the challenge
is ensuring that sufficient capacity exists. Our latest
design promotes resource sharing through incentive-
compatible mechanisms: Contributing nodes receive
better quality-of-service when the system is under-
provisioned. The system applies market pricing tech-
niques to efficiently use available bandwidth, but
also incorporates network costs to “play friendly”
with service providers. Malicious parties cannot
cheat as lightweight cryptographic currency accu-
rately tracks nodes’ contributions.

While most of my work on cooperative content
distribution has focused on leveraging unreliable
or untrusted resources, I am not rigid in my ap-
proach. Indeed, some of these systems use logically-
centralized components, such as the core OASIS in-
frastructure or, for each file collection in this last
system, servers that manage file prices and currency
exchange. Rather, I look where it is sensible or

economical to leverage available resources—e.g., lo-
cal bandwidth for CDNs or measurement points for
anycast—and architect systems accordingly. Indeed,
these same cost arguments are behind industry’s in-
creased interest in such architectures, albeit without
the same consideration for security.

Securing decentralized systems. When large de-
centralized systems lack the necessary security
mechanisms, things eventually go awry. The In-
ternet’s inter-domain routing protocols (BGP) lack
source authentication and thus routes have been hi-
jacked, a weakness shared by DNS. Persistent email
spam is frustrating, while false positives from spam
filters have made email unreliable. Centralized solu-
tions are not the only answer, however.

Tackling the spam false-positive problem, Re: [6]
uses proximity in a social network as a basis for auto-
whitelisting email. This approach appears promis-
ing given our analysis of large email corpora. And
by incorporating our cryptographic protocols for pri-
vate matching [7, 8], Re: ensures that two parties can
maintain privacy without third-party intervention.

In a similar vein, websites want to securely iden-
tify their users, but ubiquitous client authentication
does not exist. Thus, sites often use weaker iden-
tifiers such as IP addresses for access-control deci-
sions, even though edge technologies (NATs, prox-
ies, and DHCP) occlude a server’s view of its clients.
By instrumenting CoralCDN, we used active web
content to measure and analyze the characteristics
of over 7 million clients; our results help quantify
when and how Internet services can use IP addresses
and related information to identify clients [9]. (In
fact, our techniques for real-time proxy detection and
geolocation were acquired by a leading IP analytics
company [10].) Here we see how a system, once
widely used, can become a vehicle for otherwise in-
feasible research. Indeed, we are starting to investi-
gate advertisement click fraud using this platform.

Enterprise networks similarly lack comprehensive
security “from the ground up.” Instead, a bewil-
dering array of mechanisms (firewalls, NATs, and
VLANs) have been retrofitted over the years, lead-
ing to brittle, inflexible networks. Begun as a clean-
slate design [11], Ethane provides a backwards-
compatible protection and management architecture
for enterprise networks, where switches establish vir-
tual circuits per flow, after using a domain controller
to enforce security policies. Because Ethane sim-

2



plifies so many network management tasks—testing
new policies, deploying new appliances or topolo-
gies, performing forensics or fault diagnosis, es-
tablishing network isolation classes—its architecture
empowers innovation and change within networks. I
am further interested in extending such techniques to
the wider area for managing autonomous systems.

Future work. Given the challenges of securing
and managing networked systems, I have begun to
think about new ways to simplify this task.

How can we determine when, where, and why per-
formance or persistent faults in distributed systems
occur? I intend to explore lightweight distributed
tracing to track transactions across hosts and within
processes. By tainting network communication and
annotating code, we can generate system-wide “call
graphs” during run-time. Of particular interest are
identifying normal and anomalous system behav-
ior, possibly through machine learning, and building
feedback loops for automated reconfiguration. Other
approaches to fault monitoring, detection, and diag-
nosis may be similarly promising. Of course, hav-
ing deployed systems to test such tools is a critical
advantage to experience the vagaries of failures in
production environments. (In fact, others have used
CoralCDN for exactly this [12].)

What new abstractions can provide better relia-
bility in the face of failures? I am currently think-
ing about how to partition large systems into smaller
groups, which can then apply heavyweight fault-
tolerance or detection protocols [13]. (Such par-
titioning appears necessary for scalability.) While
handling malicious parties in dynamic settings
presents many difficult problems, the goal remains
for better operation on faulty resources.

Finally, what privacy-preserving technologies can
promote greater information sharing? Researchers,
operators, and end-users can all benefit from greater
access to data, whether inter-domain routing policies
for traffic engineering, patient records for medical
research, census and other polling data for the so-
cial sciences, or social information for cooperative
filtering [6]. Unfortunately, privacy concerns often
limit data availability, leading to suggestions such
as private matching [7] for merging terrorist watch
lists [14]. Yet current general-purpose cryptographic
solutions are too inefficient for large datasets, while
statistical methods are often not sound. I am inter-
ested in leveraging specific application contexts to

build better protocols (as done in [8]), as well as ex-
ploring interface and architecture design for privacy-
preserving systems.

While technology trends may incrementally im-
prove system performance, new techniques are
needed to enhance security, scalability, reliability,
and manageability. I tackle these problems by ap-
plying methods from cryptography, distributed algo-
rithms, game theory, and other principled sources.
But real solutions require real testing: My research
will embrace both strong design and engineering
components, even as new problems arise over time.
This unusual dual approach already has enabled my
research systems to provide tens of millions of peo-
ple with their Internet fix, often in surprising ways.
Through such deployments we can discover new
problems, encourage further innovation, and ulti-
mately make new functionality broadly available.

References
[1] M. Freedman, E. Freudenthal, and D. Mazières. De-

mocratizing content publication with Coral. InProc. Net-
worked Systems Design and Implementation (NSDI), pages
239–252, Mar 2004.

[2] M. Freedman and D. Mazières. Sloppy hashing and self-
organizing clusters. InProc. International Workshop on
Peer-to-Peer Systems (IPTPS), pages 45–55, Feb 2003.

[3] M. Freedman, K. Lakshminarayanan, and D. Mazières.
OASIS: Anycast for any service. InProc. NSDI, pages
129–142, May 2006.

[4] S. Annapureddy,M. Freedman, and D. Mazières. Shark:
Scaling file servers via cooperative caching. InProc.
NSDI, pages 129–142, May 2005.

[5] M. Krohn, M. Freedman, and D. Mazières. On-the-fly
verification of rateless erasure codes for efficient content
distribution. InProc. IEEE Security and Privacy, pages
226–240, May 2004.

[6] S. Garriss, M. Kaminsky,M. Freedman, B. Karp, D. Maz-
ières, and H. Yu. Re: Reliable email. InProc. NSDI, pages
297–310, May 2006.

[7] M. Freedman, K. Nissim, and B. Pinkas. Efficient private
matching and set intersection. InAdvances in Cryptology
— EUROCRYPT 2004, pages 1–19, May 2004.

[8] M. Freedman and A. Nicolosi. Efficient private tech-
niques for verifying social proximity. InProc. IPTPS, Feb
2007.

[9] M. Casado andM. Freedman. Peering through the
shroud: The effect of edge opacity on IP-based client iden-
tification. InProc. NSDI, Apr 2007.

[10] Quova. http://www.quova.com/, 2006.
[11] M. Casado, T. Garfinkle, A. Akella,M. Freedman,

D. Boneh, N. McKeown, and S. Shenker. SANE: A protec-
tion architecture for enterprise networks. InProc. USENIX
Security Symposium, pages 137–151, Aug 2006.

[12] P. Reynolds, J. Wiener, J. Mogul, M. Aguilera, and A. Vah-
dat. WAP5: Black-box performance debugging for wide-
area systems. InProc. WWW, May 2006.

[13] M. Freedman, I. Stoica, D. Mazières, and S. Shenker.
Group therapy for systems: Using link-attestations to man-
age failures. InProc. IPTPS, Feb 2006.

[14] J. Dempsey and P. Rosenzweig. Technologies that can pro-
tect privacy as information is shared to combat terrorism.
Heritage Foundation Legal Memo #11, May 26 2004.

3


