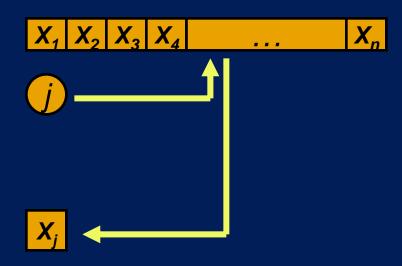
Keyword Search and Oblivious Pseudo-Random Functions

Mike Freedman NYU

Yuval Ishai, Benny Pinkas, Omer Reingold

Background: Oblivious Transfer

- Oblivious Transfer (OT) [R], 1-out-of-N [EGL]:
 - Input:
 - Server: $x_1, x_2, ..., x_n$
 - Client: $1 \le j \le n$
 - Output:
 - Server: nothing
 - Client: x_j



- Privacy:
 - Server learns nothing about j
 - Client learns nothing about x_i for $i \neq j$

- Well-studied, good solutions: O(n) overhead

Background: Private Information Retrieval (PIR)

- Private Information Retrieval (PIR) [CGKS,KO]
 - Client hides which element retrieved
 - Client can learn more than a single x_i
 - o(N) communication, O(N) computation

- Symmetric Private Information Retrieval (SPIR) [GIKM,NP]
 - PIR in which client learns only x_i
 - Hence, privacy for both client and server
 - "OT with sublinear communication"

Motivation: Sometimes, OT is not enough

- Bob ("Application Service Provider")
 - Advises merchants on credit card fraud
 - Keeps list of fraudulent card numbers
- Alice ("Merchant")
 - Received a credit card, wants to check if fraudulent
 - Wants to hide credit-card details from Bob, vice-versa

• Use OT?

– Table of $10^{16} \approx 2^{53}$ entries, 1 if fraudulent, 0 otherwise?

Keyword Search (KS): definition

• Input:

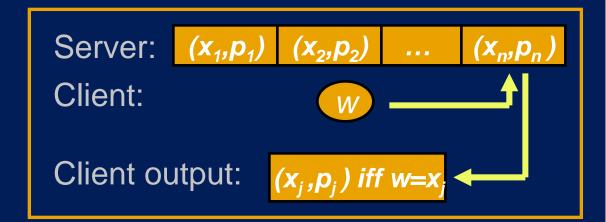
- Server: database $X = \{ (x_i, p_i) \}$, $1 \le i \le N$
 - *x_i* is a keyword
 - p_i is the payload

– Client: search word w

(e.g. number of a corrupt card)

- (e.g. why card is corrupt)
- (e.g. credit card number)

- Output:
 - Server: nothing
 - Client:
 - p_i if $\exists i : x_i = w$
 - otherwise nothing



Keyword Search from data structures? [KO,CGN]

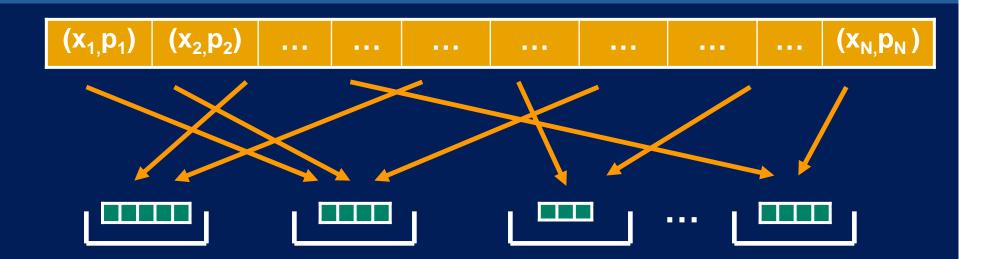
Take any efficient query-able data structure
 Hash table, search tree, trie, etc.

Replace direct query with OT / PIR

Achieves client privacy

We're done?

Keyword Search from hashing + OT [KO]



- Use hash function H to map (x_i, p_i) to bin $H(x_i)$
- Client uses OT to read bin H(w)
- Multiple per bin: no server privacy: client gets > 1 elt
- One per bin, N bins: no server privacy: H leaks info
- One per bin, >> N bins: not efficient

Keyword Search

- Variants
 - Multiple queries
 - Adaptive queries
 - Allowing setup
 - Malicious parties
- Prior Work
 - OT + Hashing = KS without server privacy [KO]
 - Add server privacy using trie and many rounds [CGN]
 - Adaptive KS [OK]
 - But, setup with linear communication, RO model, one-more-RSA-inversion assumption

Keyword Search: Results

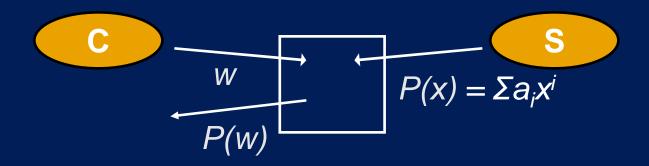
- Specific protocols for KS
 - One-time KS based on OPE (homomorphic encryption)
 - First 1-round KS with sublinear communication
- Adaptive KS by generic reduction
 - Semi-private KS + oblivious PRFs
- New notions and constructions of OPRFs

 Fully-adaptive (DDH- or factoring-specific)
 T-time adaptive (black-box use of OT)

Keyword Search based on Oblivious Evaluation of Polynomials

Specific KS protocols using polynomials

Tool: Oblivious Polynomial Evaluation (OPE) [NP]

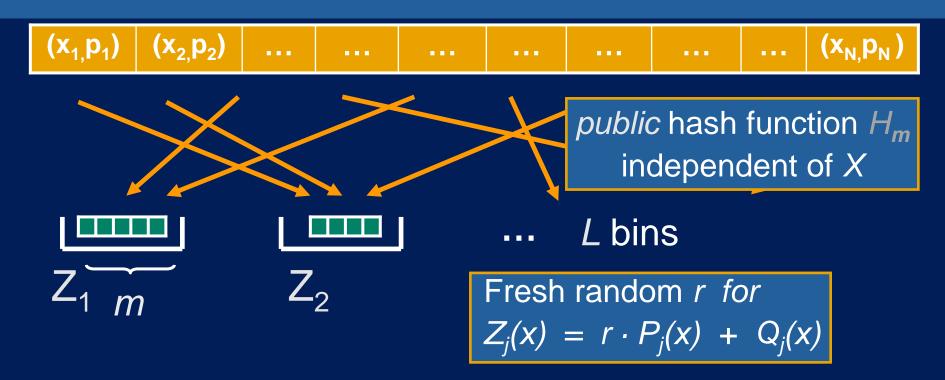


– Privacy: Server: nothing about w. Client: nothing but P(w)

1-round KS protocol using polynomials

- OPE implementation based on homomorphic encryption
 Given E(x), E(y), can compute E(x+y), E(c·x), w/o secret key
- Server defines on input $X = \{(x_i, p_i)\},$ $-Z(x) = r \cdot P(x) + Q(x)$, with fresh random $r \forall x_i$ If $x_i \in X$: $0 + p_i | 0^k$ If $x_i \notin X$: rand
- Client/server run OPE of Z(w), overhead O(N)
 - C sends: *E(w)*, *E(w²)*, ..., *E(w^d)*, *PK*
 - S returns: $E(r \cdot \Sigma p_i w^i + \Sigma q_i w^i) = E(r \cdot P(w) + Q(w)) = E(Z(w))$

Reducing the overhead using hashing...



- Client sends input for L OPE's of degree m
- Server has $E(Z_1(w)), \ldots, E(Z_L(w))$
- Client uses PIR to obtain OPE output from bin H(w)
- Comm: O(m = log N) + PIR overhead (polylog N)
- Comp: O(N) server, $O(m = \log N)$ client

What about malicious parties?

- Efficient 1 round protocol for non-adaptive KS
 - Only consider privacy: server need not commit or know DB
 - Similar relaxation used before in like contexts (PIR, OT)
- Privacy against a malicious server?
 - Server only sees client's interaction in an OT / PIR protocol
- Malicious clients?
 - Message in OPE might not correspond to polynomial values
 - Can enforce correct behavior with about same overhead
 - 1 OPE of degree-m polynomials \rightarrow m OPEs of linear poly's

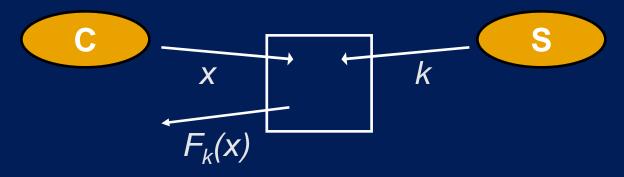
Keyword Search based on Oblivious Evaluation of Pseudo-Random Functions

Semi-Private Keyword Search

- Goal: Obtain KS from semi-private KS + OPRF
- Semi-Private Keyword Search (PERKY [CGN])
 - Provides privacy for client but not for server
 - Similar privacy to that of PIR
- Examples
 - Send database to client: O(N) communication
 - Hash-based solutions + PIR to obtain bin
 - Use any fancy data structure + PIR to query

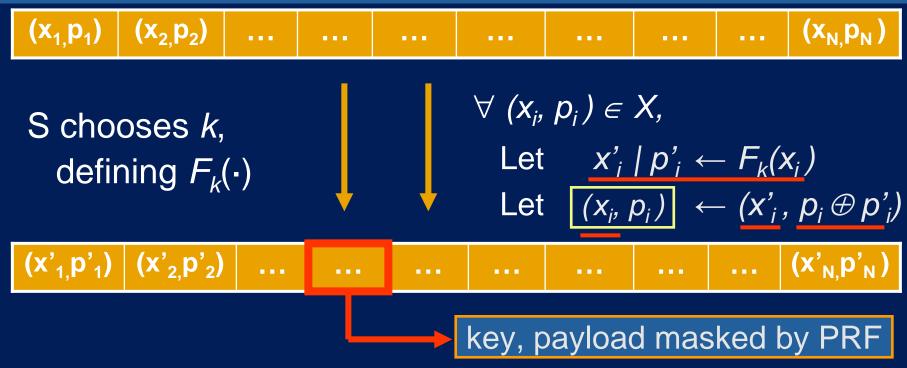
Oblivious Evaluation of Pseudo-Random Functions

- Pseudo-Random Function: $F_k : \{0, 1\}^n \rightarrow \{0, 1\}^n$
 - Keyed by k (chooses a specific instantiation of F)
 - Without *k*, the output of F_k cannot be distinguished from that of a random function
- Oblivious evaluation of a PRF (OPRF)



- Client: PRF output, nothing about k
- Server: Nothing

KS from Semi-Private KS + OPRF



- Client
 - Uses OPRF to compute
 - Uses *semi-private KS* to obtain
 - If entry in database, recovers

$$x' \mid p' \leftarrow F_k(w)$$

$$(x_i, p_i) \text{ where } x_i = x'$$

$$p_i = p_i \oplus p'$$

KS from Semi-Private KS + OPRF (x_{1,p_1}) (x_{2,p_2}) ...

S chooses k, defining $F_k(\cdot)$

 $(\mathbf{x}_{i}, \mathbf{p}_{i}) \leftarrow (\mathbf{x}_{i}, \mathbf{p}_{i} \oplus \mathbf{p}_{i})$ $(\mathbf{x}_{i}, \mathbf{p}_{i}) (\mathbf{x}_{2}, \mathbf{p}_{2}) \dots (\mathbf{x}_{N}, \mathbf{p}_{N})$ key, payload masked by PRF

 $\forall (x_i, p_i) \in X,$

Let $x'_i | p'_i \leftarrow F_k(x_i)$

Security

- Preserved even if client obtains all pseudo-database...
- Requires that client can't determine output of OPRF other than at inputs from legitimate queries

Weaker OPRF definition suffices for KS

- Strong OPRF: Secure 2PC of PRF functionality
 - No info leaked about key k for arbitrary f_k, other than what follows from legitimate queries
 - Same OPRF on multiple inputs w/o losing server privacy
- Relaxed OPRF: No info about outputs of random f_k, other than what follows from legitimate queries
 - Does not preclude learning partial info about k
 - Query set size bounded by t for t-time OPRFs
 - Indistinguishability: Outputs on unqueried inputs cannot be distinguished from outputs of random function

Other results: constructions of OPRF

- OPRF based on non-black-box OT [Y,GMW]
- OPRF based on specific assumptions [NP]
 - E.g., based on DDH or factoring
 - Fully adaptive
 - Quite efficient
- OPRF based on black-box OT

 Uses relaxed definition of OPRF
 Good for up to *t* adaptive queries

OPRF based on DDH ["scaled up" NP]

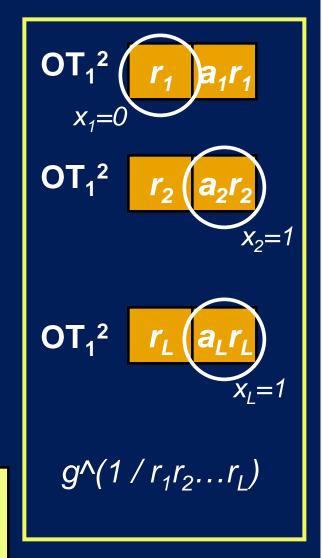
- The Naor-Reingold PRF:
 - Key k = $[a_1, ..., a_L]$
 - $\text{Input } x = x_1 x_2 x_3 \dots x_L$

 $F_k(x) = g^{(1)}(\prod_{x_i=1}a_i)$

Pseudorandom based on DDH

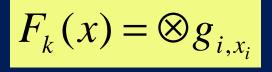
- OPRF based on PRF + OT
 - Server: $[a_1, ..., a_L], [r_1, ..., r_L]$
 - Client: $x = x_1 x_2 x_3 \dots x_L$
 - L OT's: r_i if $x_i = 0$, $a_i r_i$ otherwise

$$(g^{1/r_1...r_m})^{(r_1)...(a_mr_m)} = g^{\prod_{x_{i=1}}a_i} = F_k(x)$$

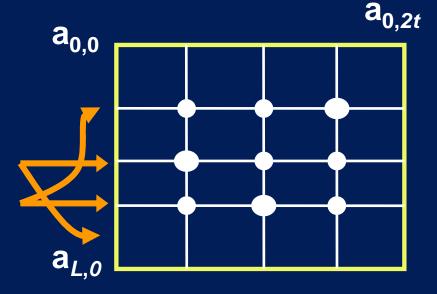


Relaxed OPRF based on OT

- Server key: L x 2t matrix
- Client input: $x = \{x_1, x_2, ..., x_L\}$



- Client gets *L* keys using OT_1^{2t}
- After t calls, learns t^L keys



- Map inputs to locations in *L*-dimensions using a (t+2)-wise independent, secret mapping h
- Client first obliviously computes h(x), then F(h(x))
- Learns *t* of *2t* keys in *L* dimensions
- Probability that other value uses these keys is $(1/2)^{L}$

Conclusions

- Keyword search is an important tool
- We show:
 - Efficient constructions based on OPE
 - Generic reduction to OPRF + semi-private KS
 - Fully-adaptive based on DDH
 - Black-box reduction via OT, yet only good for t invoc's
- Open problem:
 - Black-box reduction to OT good for poly invoc's?

Thanks....

25