Accountability and Resource Management

A discussion of issues for peer-to-peer systems

Roger Dingledine Reputation Technologies *arma@reputation.com* Michael J. Freedman MIT LCS *mfreed@mit.edu*

The Free Haven Project freehaven.net

The Resource Management Problem

- Goal: maximize a peer's *utility* to the overall system while minimizing its potential *threat*.
- Threat: peers eat resources

Managing scarce resources...

- Freenet: unpopular data is dropped; popular data is cached near the requester
- Gnutella: data is stored only on the publisher's own computer
- Publius: currently limits submissions to 100K

- Approach to resource management
- Resources more efficient and protected

Why is P2P accountability hard?

- Tragedy of the commons
- P2P discourages permanent public identification
- Hard to assess peer's history or predict future performance
- Legal contracts are outdated and impractical

Introducing accountability...

- Mojo Nation: micropayments are used for all peer-to-peer exchanges
- Free Haven: reputation system publishers must provide reliable space of their own
- Mixmaster: statistics pages track uptime

Discussion outline

- Accountability problem
- Current systems
- Models of P2P systems
- Resource management techniques
 - Electronic payments
 - Reputation systems
- Conclusions

- Intentional attacks (adversaries) and simple overuse (freeloaders)
- User attacks
 - Communication DoS (query flooding)
 - Storage flooding
 - Computational overload

Problems to tackle

- "Server" attacks low-quality service
 - Dropping data
 - Providing corrupted data
 - Ignoring requests
 - Going down when needed
 - Adversarial collusion

...not following system protocol !

Problems in current P2P systems

- Freenet
 - Bandwidth overuse (query flooding)
 - Cache flushing (data flooding)
- Gnutella
 - Vulnerable to query flooding
 - Freeloading
- Publius
 - Public server identities:

directed attack on bandwidth, storage space

Problems in current P2P systems

- Mojo Nation
 - How to set prices?
 - Performance tracking, not reputation
- Free Haven
 - Very vulnerable to query flooding
 - Protected against data flooding (reputation system is complex and untested)
- Mixmaster
 - No verifiability
 - Uptime is not reliability

Two accountability solutions

- Restrict access to resources
 Digital payment mechanisms
- Select favored users
 - Reputation schemes

P2P models

1. Static, identified operators

- Examples: Mixmaster remailer, Publius
- Limited users: legal mechanisms possible
- Reputation and payment schemes
- 2. Dynamic, identified operators
 - Examples: Gnutella, Freenet, Mojo Nation
 - Reputation and payment schemes

P2P models

3. Dynamic, pseudonymous operators

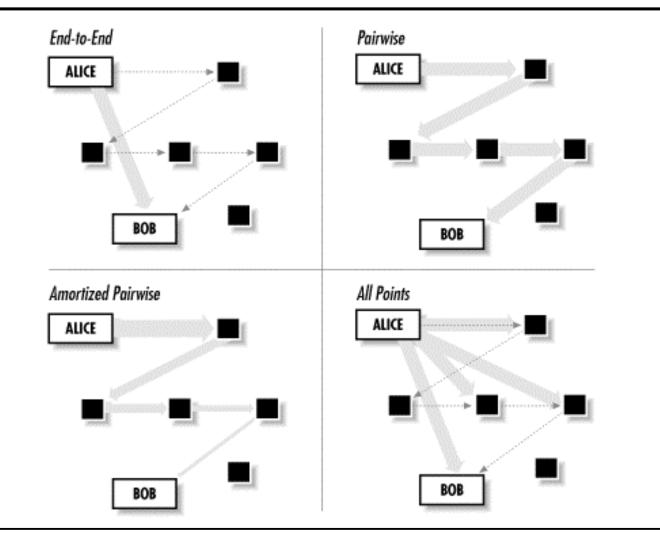
- Example: Free Haven
- Reputation and payment schemes
 - Decisions may be based on prior behavior
- 4. Dynamic, anonymous operators
 - Payment schemes only
 - All information is ephemeral
 - Decisions based only on current transaction

Goal of payment schemes

- Manage scarcity of resources
 Charge for access
- Prevent intentional attacks
- Restrict freeloading
- Result: optimize for "social efficiency"
 - Users contribute to overall system robustness

Payment schemes: models

- Proofs-of-Work (POWs)
 - Examples: hash cash, Client Puzzles
- Fungible non-anonymous payments
 - "Credit cards"
 - Examples: MicroMint, PayWord, Millicent, Mondex
- Fungible anonymous payments
 - "Cash"
 - Examples: Chaum's eCash, Brands' digital cash


Payment schemes: distributed use

- How to stop double spending?
- Centralization: central "bank" servers
 - Support balance transfer
 - Fungible payments
- Decentralization: recipient-specific payments
 - POWs encode recipient in solutions
 - Peers issue "own" currency

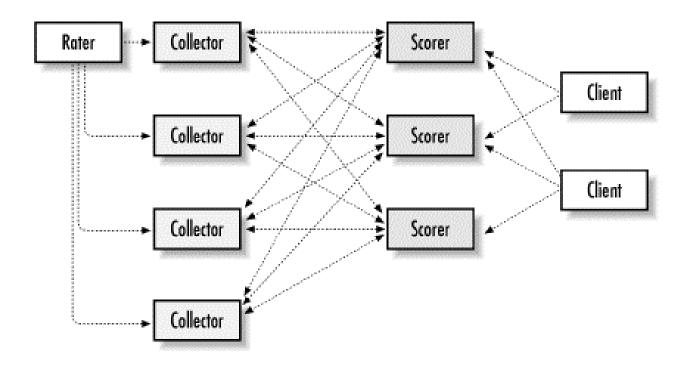
Congestion management

- Renewable resource allocation
 - Determine need dynamically
 - Areas: bandwidth, computation, caching
 - Solution? Only charge when congested
- Cumulative resource allocation
 - Once allocated, not easily recoverable
 - Area: persistent storage
 - Solution? Always charge

Payment models

Example: Anon communication

- Java Anon Proxy
 - Stop message flooding by recipient-specific tickets
 - All-pairs: O(*mn*) tickets, *m* edges, *n* core nodes
 - Proactively manages resources
- Reactive bandwidth throttling
 - Recipient-specific proofs-of-work
 - Pairwise for real-time connection-based networks


Example: Pseudonymous storage

- "Eternity Service"
 - All-or-nothing!
 - Pay servers fungible lump-sum
 - Reward partial work?
 - Small payments per time-slice
 - How ensure servers respond to requests?

\Rightarrow reputation systems

- Track performance to predict future behavior
- Risk resources based on anticipated benefit (resource management approach)

Reputation systems

Information provided by third parties

Example reputation systems

- PGP Web of Trust
 - Does not actually map key to person
 - Scalability? graph not dense enough
 - Certification to do what?
- Advogato
 - Uses maximum flow to calculate reputation
 - Three levels of certification: apprentice, journeyman, master
 - Resists pseudospoofing via trust bottlenecks

Example reputation systems

- eBay
 - Collects feedback about transactions
 - Small sales treated same as large
 - Almost no negative feedback given!
- Google, Clever
 - Many pages point to you \Rightarrow popular
 - Popular pages point to you \Rightarrow credible
- Mojo Nation
 - Remember how nodes treat you (performance, accuracy)
 - Hard to tune prices?

Example reputation systems

- Mix-net reputations
 - Scorers track delivery failures, publish reputations
 - Need to tune parameters, e.g., how long nodes remember ratings
 - Higher reputation draws more traffic
- Free Haven
 - Need to notice servers that drop data early
 - Need mechanism to "punish" misbehaving servers
 - Nodes periodically broadcast reputation referrals
 - Credibility different from reputation

Some goals for reputation systems

- Local / personalized reputation
- Resist pseudospoofing
- Resist shilling, e.g., verify transactions
- Collect enough data to be useful
- Distinguish between reputation and credibility

- Dynamically determine need and extent
- Digital payments
 - Adjust "amount" charged
- Reputation systems:
 - Adjust "trust" thresholds

Conclusion

- Peer-to-peer won't save you
- Accountability is not pixie dust
- Payment and reputation systems are efficient and flexible solutions
- Verifying behavior still necessary
- Convenience trumps accountability...

Further reading...

Peer-to-Peer:

Harnessing the Power of Disruptive Technologies

Chapter 16: Accountability

The Free Haven Project freehaven.net

May 2, 2001