## **RE: Reliable Email**

Michael Kaminsky (Intel Research Pittsburgh)

Scott Garriss (CMU) Michael Freedman (NYU/Stanford) Brad Karp (University College London) David Mazières (Stanford) Haifeng Yu (Intel Research Pittsburgh/CMU)

## Motivation

- Spam is a huge problem today
  - More than 50% of email traffic is spam.
  - Large investment by users/IT organizations (\$2.3b in 2003 on increased server capacity)
- But, more importantly...

# Email is no longer reliable

- Users can't say what they want any more
  - Ex: Intel job offer goes to spam folder
  - Ex: Discussion about spam filtering



# Outline

- Background / Related Work
- Design
  - Social networks and Attestations
  - Preserving Privacy
- Re: in Practice
- Evaluation
- Implementation
- Conclusion

# **Basic Terminology**

- False Positives (FP)
  - Legitimate email marked as spam
  - Can lose important mail
  - Email less reliable
- False Negatives (FN)
  - Spam marked as legitimate email
  - Annoying and/or offensive

#### A Typical Spam Defense System



## **Related Work**

- People use a variety of techniques
  - Content filters (SpamAssassin, Bayesian)



# **Traditional Whitelist Systems**



#### Traditional WLs suffer from two problems:

1) Spammers can forge sender addresses

# **Traditional Whitelist Systems**

list

þγ

Use anti-forgery mechanism to handle (1), similar to existing techniques.

Handle (2) with social networks

Traditional WLs suffer from two problems:

- 1) Spammers can forge sender addresses
- 2) Whitelists don't help with strangers

# Approach: Use Social Networks



- Bob whitelists people he trusts
- Bob signs attestation  $B \rightarrow A$ 
  - No one can forge attestations from Bob
  - Bob can share his attestations

# Approach: Use Social Networks



- What if sender & recipient are not friends? – Note that  $B \rightarrow A$  and  $A \rightarrow C$ 
  - B trusts C because he's a *friend-of-friend* (FoF)

## Find FoFs: Attestation Servers



Sharing attestations reveals your correspondents!



- Email recipients never reveal their friends
- Email senders only reveal specific friends queried for by recipients
- Only users who have actually received mail from the sender can query the sender for attestations

# Outline

- Background / Related Work
- Design
  - Social networks and Attestations
  - Preserving Privacy
- Re: in Practice
- Evaluation
- Implementation
- Conclusion

# Cryptographic Private Matching



# PM Details

- First implementation & use of PM protocol
- Based on our previous work [Freedman04]
- Attestations encoded in encrypted polynomial
- Uses Homomorphic Encryption
  - Ex: Paillier, ElGamal variant
  - $-enc(m1+m2) = enc(m1) \cdot enc(m2)$
  - $-\operatorname{enc}(c \cdot m1) = \operatorname{enc}(m1)^c$

# **Restricting FoF Queries**



Sender can use token to restrict FoF query

 Users have a public/secret key pair



• Sender can use token to restrict FoF query

- Users have a public/secret key pair

• Recipient can use token to detect forgery

# Outline

- Background / Related Work
- Design
  - Social networks and Attestations
  - Preserving Privacy
- Re: in Practice
- Evaluation
- Implementation
- Conclusion

## Scenario 1: Valid Mail Rejected



## Scenario 2: Direct Acceptance



#### Scenario 3: FoF Acceptance



# Outline

- Background / Related Work
- Design
  - Social networks and Attestations
  - Preserving Privacy
- Re: in Practice
- Evaluation
- Implementation
- Conclusion

## Evaluation

- How often do content filters produce false positives?
- How many opportunities for FoF whitelisting beyond direct whitelisting?
- Would Re: eliminate actual false positives?

## Trace Data

- For each message:
  - Sender and recipient (anonymized)
  - Spam or not as assessed by content-based spam filter
- Corporate trace
  - One month
  - -47 million messages total (58% spam)

## False Positive Data

- Corporate mail server bounces spam
- Bounce allows sender to report FP
- Server admin validates reports and decides whether to whitelist sender
- We have a list of ~300 whitelisted senders
  - 2837 messages in trace from these senders that were marked as spam by content filter
  - These are almost certainly false positives

## **Opportunities for FoF Whitelisting**

- FoF relationships help most when receiving mail from <u>strangers</u>.
- When user receives non-spam mail from a stranger, how often do they share a mutual correspondent?
  - **18%** of mail from strangers
  - Only counts mutual correspondents in trace
- Opportunity: when correspondents = friends

## Saved FPs: Ideal Experiment

<u>Ideally</u>: run Re: & content filter side-by-side
 Measure how many FPs avoided by Re:



## Saved FPs: Trace-Driven Experiment

- We have an implementation, but unfortunately, no deployment yet
- No social network data for traces
  - Infer friendship from previous non-spam messages
- Recall that 2837 messages were from people who reported FPs
- How many of these would Re: whitelist?

Re: would have saved 87% of these FPs (71% direct, 16% FoF)

## Implementation

- Prototype implementation in C++/libasync
  - Attestation Server
  - Private Matching (PM) implementation
  - Client & administrative utilities
  - 4500 LoC + XDR protocol description
- Integration
  - Mutt and Thunderbird mail clients
  - Mail Avenger SMTP server
  - Postfix mail client

## Performance

- Direct attestations are cheap
- Friend-of-friend is somewhat slower
  - PM performance bottleneck is on sender's AS
    - Ex: intersecting two 40-friend sets takes 2.8 sec versus 0.032 sec for the recipient
  - But…
    - Many messages accepted by direct attestation
    - Can be parallelized
    - Performance improvements possible

## Nuances

- Audit Trails
  - Recipients always know why they accepted a message (e.g., the mutual friend)
- Mailing Lists
  - Attest to list
  - Rely on moderator to eliminate spam
- Profiles
  - Senders use only a subset of possible attestations when answering FoF queries

## Conclusion

• Email is no longer reliable because of FPs

#### <u>Idea:</u>

Whitelist friends of friends

- Preserve privacy using PM protocol
- Opportunity for FoF whitelisting
- Re: could eliminate up to 87% of real FPs
- Acceptable performance cost

#### **Backup Slides**

# Coverage Tradeoff

- Trusting a central authority can get you more coverage (DQE)
  - Ex: random grad student



# Coverage Tradeoff

 Social relationships can help avoid the need to trust a central authority (Re:)

- Ex: friends, colleagues



# **Forgery Protection**



- Users have a public/secret key pair
- Sender attaches a *signed authentication token* to each outgoing email message



- Recipient asks sender's AS to verify token
  - Assume: man-in-the-middle attack is difficult
  - Advantage: Don't need key distribution/PKI
- Sender can use token to restrict FoF query

## Revocation

- What if A's key is lost or compromised?
- Two things are signed
  - Authentication tokens
  - Attestations
- Authentication tokens
  - User uploads new PK to AS
  - AS rejects tokens signed with the old key

## **Revocation:** Attestations

- Local attestations
  - Delete local attestations  $(A \rightarrow^*)$
- Remote attestations: <u>expiration</u>
  - If A gave A→B to B, Re: does not currently provide a way for A to tell B to delete the attestation
    - When  $A \rightarrow B$  expires, B will stop using it for FoF
  - If  $C \rightarrow A$ , C should stop trusting attestations signed by A's old key
    - When  $C \rightarrow A$  expires, C will re-fetch A's public key

# **False Negatives**

- Assumption: people will not attest to spammers
  - Therefore Re: does not have false negatives
- What if this assumption does not hold?
  - Remove offending attestations using audit trail
  - Attest without transitivity
    - A trusts B, but *not* B's friends
  - Don't share attestation with attestee
    - Ex: a mailing lists

## **PM Protocol Details**



the polynomial

### **PM Protocol Details**









For each  $y_1...y_{k_s}$  compute (people who have attested to *S*):

$$enc(P(y_i)) = enc\left(\sum_{u=0}^{k_R} a_u y_i^u\right) = enc(a_0) + enc(a_1)y_i + \dots + enc(a_{k_R})y_i^{k_R}$$



#### **PM Performance**



#### WL Effectiveness: Conservative





#### WL Effectiveness: Best Case



