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Internet users increasingly rely on publicly available data for everything from software installation to investment
decisions. Unfortunately, the vast majority of public content on the Internet comes with no integrity or authenticity
guarantees. This paper presents the self-certifying read-only file system, a content distribution system providing
secure, scalable access to public, read-only data.

The read-only file system makes the security of published content independent from that of the distribution
infrastructure. In a secure area (perhaps off-line), a publisher creates a digitally-signed database out of a file
system’s contents. The publisher then replicates the database on untrusted content-distribution servers, allowing
for high availability.

The read-only file system avoids performing any cryptographic operations on servers and keeps the overhead
of cryptography low on clients, allowing servers to scale to a large number of clients. Measurements of an
implementation show that an individual server running on a 550 Mhz Pentium III with FreeBSD can support
1,012 connections per second and 300 concurrent clients compiling a large software package.

Categories and Subject Descriptors: D.4.3 [Operating Systems]: File System Management—Distributed file
systems; D.4.6 [Operating Systems]: Security and Protection—Authentication; D.4.7 [Operating Systems]:
Organization and Design—Distributed systems
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1. INTRODUCTION

This paper presents the design and implementation of a distributed file system that allows a
large number of clients to access public, read-only data securely. Read-only data can have
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high performance, availability, and security needs. Some examples include executable
binaries, popular software distributions, bindings from hostnames to addresses or public
keys, and popular, static Web pages. In many cases, people widely replicate and cache
such data to improve performance and availability—for instance, volunteers often set up
mirrors of popular operating system distributions. Unfortunately, replication generally
comes at the cost of security. Each replica adds a new opportunity for attackers to break
in and tamper with data, or even for the replica’s own administrator maliciously to serve
modified data.

System designers have introduced a number of ad hoc mechanisms for dealing with the
security of public data, but these mechanisms often prove incomplete and of limited utility
to other applications. For instance, binary distributions of Linux software packages in
RPM [29] format can contain PGP signatures. However, few people actually check these
signatures, and packages cannot be revoked. In addition, when packages depend on other
packages being installed first, the dependencies cannot be made secure (e.g., one package
cannot explicitly require another package to be signed by the same author).

As another example, names of servers are typically bound to public keys through digi-
tally signed certificates issued by a trusted authority. These certificates are distributed by
the servers themselves, which naturally allows scaling to large numbers of servers. How-
ever, this approach also results in certificates having a long duration, which complicates
revocation to the point that in practice many systems omit it.

To distribute public, read-only data securely, we have built a high-performance, secure,
read-only file system designed to be widely replicated on untrusted servers. We chose to
build a file system because of the ease with which one can refer to the file namespace
in almost any context—from shell scripts to C code to a Web browser’s location field.
However, because of its security and scalability, the read-only file system can support a
wide range of applications, such as certificate authorities, that one could not ordinarily
implement using a network file system.

Each read-only file system has a public key associated with it. We use the naming
scheme of SFS [18], in which file names contain public keys. Thus, users can employ any
of SFS’s various key management techniques to obtain the public keys of file systems.

In our approach, an administrator creates a database of a file system’s contents and
digitally signs it off-line using the file system’s private key. The administrator then widely
replicates the database on untrusted machines. There, a simple and efficient server program
serves the contents of the database to clients, without needing access to the file system’s
private key. DNS round-robin scheduling or more advanced techniques can be used to dis-
tribute the load among multiple replicas. A trusted program on the client machine checks
the authenticity of data before returning it to the user.

The read-only file system avoids performing any cryptographic operations on servers
and keeps the overhead of cryptography low on clients. We accomplish this with two sim-
ple techniques. First, blocks and inodes are named by handles, which are collision-resistant
cryptographic hashes of their contents. Second, groups of handles are hashed recursively,
producing a tree of hashes. Inodes contain the handles of a file’s blocks. Directory blocks
contain lists of file name to handle bindings. Using the handle of the root inode of a file
system, a client can verify the contents of any block by recursively checking hashes.

The protocol between the client and server consists of only two remote procedure calls:
one to fetch the signed handle for the root inode of a file system, and one to fetch the data
(inode or file content) for a given handle. Since the server does not have to understand
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what it is serving, its implementation is both trivial and highly efficient: it simply looks up
handles in the database and sends them back to the client.

The read-only protocol allows the content producer to replicate a database at many
servers, supports frequent updates to the database, and enables clients to check the recent-
ness of the data they retrieve from a server. Since the protocol doesn’t need acccess to the
private key that signed the database, the database can be replicated at many servers without
compromising security. To allow for efficient updates of these many copies, servers incre-
mentally update their copy. Clients check the recentness of the data using time stamps.

We named the file system presented in this paper the SFS read-only file system because it
uses SFS’s naming scheme and fits into the SFS framework. The SFS read-only file system
consists of three programs: a database generator ( ���������	��
 ), a server ( ������������� ), and a
client ( ������������ ). In a trusted area the database generator creates a signed database from
a file system’s contents. The database is replicated on untrusted machines. In response to
requests from clients, the server looks up data from its copy of the database and returns
it to the client. The client verifies the retrieved data for authenticity and recentness, and
interprets it as a file system.

A performance evaluation shows that the server can support 1,012 short-lived connec-
tions per second on a PC (a 550 Mhz Pentium III with 256 Mbyte of memory) running
FreeBSD, which is 26 times better than a standard read-write SFS file server and 92 times
better than a secure Web server. In fact, the performance of the server is limited mostly by
the number of TCP connections per second, not by the overhead of cryptography, which
is offloaded to clients. For applications like sustained downloads that require longer-lived
connections, the server can support 300 concurrent sessions while still saturating a fast
Ethernet.

The rest of this paper is organized as follows. Section 2 relates our design to previous
work. Section 3 details the design of the read-only server. Section 4 describes its imple-
mentation. Section 5 presents the applications of the read-only server. Section 6 evaluates
the performance of these application and compares them to existing approaches. Section 7
concludes.

2. RELATED WORK

We are unaware of a read-only (or read-write) file system that can support a high number of
simultaneous clients and provide strong security. Many sites use a separate file system to
replicate and export read-only binaries, providing high availability and high performance.
AFS supports read-only volumes to achieve replication [23]. However, in all these cases
replicas are stored on trusted servers. Recently the OceanStore project has proposed a
design for a high-performance read-only file system with strong security, but design details
and implementation are currently work in progress [2].

Some file systems provide high security (e.g., the SFS read-write file system [18] or
Echo [3]), but compared to the SFS read-only file system these servers do not scale well
with the number of clients because their servers perform expensive cryptographic opera-
tions in the critical path (e.g., the SFS read-write server performs one private-key operation
per client connection, which takes about 24 msec on a 550 Mhz Pentium III).

Secure DNS [9] is an example of a read-only data service that provides security, high
availability, and high performance. In secure DNS, each individual resource record is
signed. This approach does not work for file systems. If each inode and 8 Kbyte-block of a
moderate file system—for instance, the 635 Mbyte Red Hat 6.2 i386 distribution—had to
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be signed individually with a 1,024-bit key, the signing alone would take about 36 minutes
(
�������������
	��

msec  on a 550 Mhz Pentium III. A number of read-only data services,
such as FTP archives, are 100 times bigger, making individual block signing impractical—
particularly since we want to allow frequent updates of the database and rapid expiration
of old signatures.

Secure HTTP servers are another example of servers that provide access to mostly read-
only data. These servers are difficult to replicate on untrusted machines, however, since
their private keys have to be on-line to prove their identity to clients. Furthermore, private-
key operations are expensive and are in the critical path: every SSL connection requires the
server to compute modular exponentiations as part of the public-key cryptography [12]. As
a result, software-only secure Web servers achieve low throughput (with a 1,024-bit key,
IIS and Netscape servers can typically support around 15 connections per second).

Content distribution networks built by companies such as Adero, Akamai, Cisco, and
Digital Island are an efficient and highly-available way of distributing static Web content.
Content stored on these networks is dynamically replicated on trusted caches scattered
around the Internet. Web browsers then connect to a cache that provides high performance.
The approach described in this paper would allow read-only Web content to be replicated
securely to untrusted machines and would provide strong data integrity to clients that run
our software. For clients that don’t run our software, one can easily configure any Web
server on an SFS client to serve the � ����� directory, trivially creating a Web-to-SFS gateway
for any Web clients that trust the server.

Signed software distributions are common in the open-source community. In the Linux
community, for example, a creator or distributor of a software package can sign RPM [29]
files with PGP or GNU GPG. RPM also supports MD5 hashes. A person downloading
the software can optionally check the signature. Red Hat Software, for example, publishes
their PGP public key on their Web site and signs all their software distributions with the
corresponding private key. This setup provides some guarantees to the person who checks
the signature on the RPM file and who makes sure that the public key indeed belongs to
Red Hat. However, RPMs do not provide an expiration time or revocation support. If
users were running the SFS client software and RPMs were stored on SFS read-only file
servers, the server would be authenticated transparently and the data would be checked
transparently for integrity and recentness.

The read-only file system makes extensive use of hash trees, which have appeared in
numerous other systems. Merkle used a hierarchy of hashes for an efficient digital signa-
ture scheme [19]. In the context of file systems, the Byzantine-fault-tolerant file system
uses hierarchical hashes for efficient state transfers between clients and replicas [6; 7]. The
cryptographic storage file system [13] uses cryptographic hashes in a similar fashion to the
SFS read-only file system. Duchamp uses hierarchical hashes to efficiently compare two
file systems in a toolkit for partially-connected operation [8]. TDB [17] uses hash trees
combined with a small amount of trusted storage to construct a trusted database system
on untrusted storage. Finally, a version of a network-attached storage device uses an in-
cremental “Hash and MAC” scheme to reduce the cost of protecting the integrity of read
traffic in storage devices that are unable to generate a MAC at full data transfer rates [15].

A number of proposals have been developed to make digital signatures cheaper to com-
pute [14; 21], some involving hash trees [28]. These proposals enable signing hundreds of
packets per second in applications such as multicast streams. However, if applied to file
systems, these techniques would introduce complications such as increased signature size.
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Moreover, because the SFS read-only file system was designed to avoid trusting servers,
read-only servers must function without access to a file system’s private key. This prevents
any use of dynamically computed digital signatures, regardless of the computational cost.

3. SFS READ-ONLY FILE SYSTEM

This section describes the design of the SFS read-only file system. We begin with an
overview of the file system’s architecture and the cryptographic primitives it employs.
Then Section 3.2 describes the read-only file system protocol. Section 3.3 describes the
data structures that comprise the file system. The final section describes the process of
updating the file system.

3.1 Overview
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Fig. 1. The SFS read-only file system. Shaded boxes show the trusted computing base.

Figure 1 shows the overall architecture of the SFS read-only file system. In a secure area,
a publisher runs the SFS database generator program ( � ��� ���	� 
 ), passing as arguments a
directory of files to export and a file containing a private key. The publisher replicates this
database on a number of untrusted replica servers, each of which runs the SFS read-only
server daemon ( ����� ������� ). The server is a simple program that simply looks up and returns
chunks of data from the database at the request of clients.

The bulk of the file system’s functionality is implemented by the client ( ������������ ). The
client handles all file system requests for read-only file systems. It requests chunks of data
from an appropriate server and interprets the data as inodes and directories, the formats
of which it understands. The client is responsible for parsing pathnames, searching direc-
tories, looking up blocks of files, and so forth. To locate a replica server for a given file
system, the client can use DNS round-robin scheduling or more advanced techniques (such
as [16]). Since the server is untrusted, the client must verify that any data received from
the server was indeed signed by the database generator using the appropriate private key.

The SFS read-only file system assumes that an attacker may compromise and assume
control of any read-only server machine. It therefore cannot prevent denial-of-service from
an attacker penetrating and shutting down every server for a given file system. However
the client does ensure that any data retrieved from a server is authentic, no older than a file
system-configurable consistency period, and also no older than any previously retrieved
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Operation Cost ( � sec)
Sign 68 byte fsinfo 24,400
Verify 68 byte fsinfo 82
SHA-1 256 byte iv+inode 17
SHA-1 8,208 byte iv+block 406

Table I. Performance of base primitives on a 550 Mhz Pentium III. Signing and verification use 1,024-bit
Rabin-Williams keys.

��������������
	�������
�� ���� � 	 � �� �������
������ ����������� � ��� �������
����������� ���������� ��
�� ���!����! ����������!��
�� ���!����!"��!#��$��% �

Fig. 2. Contents of the digitally signed root of an SFS read-only file system.

data from the same file system. The read-only file system does not provide confidentiality.
Thus, data on replicas does not have to be kept secret from attackers. The key security
property of the read-only file system is integrity.

Our design can also in principle be used to provide non-repudiation of file system con-
tents. An administrator of a server could commit to keeping every file system he ever
signed. Then, clients could just record the signed root handle. The server would be required
to prove what the file system contained on any previous day. In this way, an administrator
could never falsely deny that a file previously existed.

Table I lists the cryptographic primitives that we use in the read-only file system. We
chose the Rabin public key cryptosystem [27] for its fast signature verification time. The
implementation is secure against chosen-message attacks (using the redundancy function
proposed in [1]). As can be seen from Table I, computing digital signatures is somewhat
expensive, but verifying them it takes only 82 & sec—far cheaper than a typical network
round trip time, in fact.

SFS also uses the SHA-1 [10] cryptographic hash function. SHA-1 is a collision-
resistant hash function that produces a 20-byte output from an arbitrary-length input. Find-
ing any two inputs of SHA-1 that produce the same output is believed to be computationally
intractable. Modern machines can typically compute SHA-1 at a rate greater than the lo-
cal area network bandwidth. Thus, one can reasonably hash the result of every RPC in a
network file system protocol.

3.2 SFS read-only Protocol

The read-only protocol consists of two RPCs: getfsinfo and getdata. getfsinfo takes no
arguments and returns a digitally signed '�(*),+-'*. structure, depicted in Figure 2. The SFS
client verifies the signature using the public key embedded in the server’s name. As long
as the user got the key from a trusted source, the signature guarantees the integrity of the
structure.

The getdata RPC takes a 20-byte argument and returns a data block whose collision-
resistant cryptographic hash is that argument. The client uses getdata to retrieve parts of the
file system requested by the user. It hashes every response to check it against the requested
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hash. The collision-resistant property of the hash function ensures that an attacker cannot
construct a different data block with the same hash as a chunk of file system data. Thus, as
long as the requested hash itself is authentic, the response will be, too.

Because read-only file systems reside on untrusted servers, the protocol relies on time
to enforce consistency loosely but securely. The � ��� � � field of '�( )
+-'*. indicates the time
(in seconds since 1970) at which a file system was signed. Clients cache the highest value
they have seen to prevent an attacker from rolling back the file system to a previous state.
The ��� � ����� ��� field signifies the length of time for which the data structure should be
considered valid. It represents a commitment on the part of a file system’s owner to issue
a signature within a certain period of time. Clients reject an '�( ),+-'�. structure when the
current time exceeds � ��� � � + ��� � �	��� �	� . An attacker who skews a client’s clock may
delay the time it takes for the client to see an update beyond the old version’s expiration
time. However, once a client has seen a particular version of the file system, it will never
accept an older version with a lower � ��� � � time.

The read-only file system references arbitrary-length blocks of data using fixed-size
cryptographic hashes known as handles. The handle for a data item 
 is computed us-
ing SHA-1: ���
 �������������� ��� � 
  . ��� , the initialization vector, is chosen by the database
generator the first time it publishes a file system. Currently the value chosen is just a hash
of the file system’s name and public key. The initialization vector ensures that simply
knowing one particular collision of ��������� will not immediately give attackers collisions
of functions in use by SFS read-only file systems.
� � � � ��� is the handle of the file system’s root directory. It is a hash of the root directory’s

inode structure, which through recursive use of � specifies the contents of the entire file
system, as described below. ������
 is the hash of the root of a tree that contains every handle
reachable from the root directory. ������
 lets clients securely verify that a particular handle
does not exist, so that they can return stale file handle errors when file systems change.
����� 
 will not be necessary in future versions of the software, as described in Section 3.4.

3.3 SFS read-only data structures

Each data block a client retrieves from a server contains a file system data structure. The
primary read-only data structure clients interpret is the read-only inode structure, which
specifies the entire contents of a file. However, data blocks can also contain file or directory
data, or index structures for large files.

The database stores these file system data structures in XDR marshaled form [25]. Us-
ing XDR has three advantages. First, it simplifies the client implementation, as the client
can use the SFS RPC and crypto libraries to parse file system data. Second, the XDR rep-
resentation clearly defines what the database contains, which simplifies writing programs
that process the database (e.g., a debugging program). Finally, it improves performance of
the server by saving it from doing any marshaling—anything retrieved from the database
can be directly transmitted to a client.

3.3.1 Read-only inode. Figure 3 shows the format of an inode in the read-only file sys-
tem. The inode begins with some metadata, including the file’s type (regular file, exe-
cutable file, directory, opaque directory, or symbolic link), size, and modification time.
Permissions are not included because they can be synthesized on the client. The inode
then contains handles of successive 8 Kbyte blocks of file data. If the file contains more
than eight blocks, the inode contains the handle of an indirect block, which in turn contains
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Fig. 3. Format of a read-only file system inode.

handles of file blocks. Similarly, for larger files, an inode can also contain the handles of
double- and triple-indirect blocks. In this way, the blocks of small files can be verified
directly from the inode, while inodes can also indirectly verify large files—an approach
similar to the on-disk data structures of the Unix File System [20].

Inodes for symbolic links differ slightly from the depiction in Figure 3. Instead of con-
taining handles of blocks, the inode directly contains the destination path of the symbolic
link.

3.3.2 Directories. An SFS read-only directory is simply an inode of type directory or
opaque directory. The inode specifies data blocks and possibly indirect blocks, just as for
a regular file. However the data blocks of a directory have a fixed format known to the
client. They consist of lists of �������� ��� ���������� pairs binding file names to the hashes of
those file’s inodes. Thus, the directory inode lets clients verify directory data blocks, and
directory data blocks in turn let clients verify the inodes of files or subdirectories.

Directory entries are sorted lexicographically by name. Thus, clients can avoid travers-
ing the entire directory by performing a binary search when looking up files in very large
directories. This property also allows clients to verify inexpensively whether a file name
exists or not, without having to read the whole directory.

To avoid inconveniencing users with large directories, server administrators can set the
type field in an inode to “opaque directory.” When users list an opaque directory, they
see only entries they have already referenced—somewhat like Unix “automounter” direc-
tories [5]. Opaque directories are well-suited to giant directories containing, for instance,
all names in the �  ��� domain or all name-to-key bindings issued by a particular certificate
authority. If one used non-opaque directories for these applications, users could inadver-
tently download hundreds of megabytes of directory data by typing � � or using file name
completion in the wrong directory.

Each directory also contains its full pathname from the root of the file system. The
client uses the pathname to evaluate the file name “ � � ” locally, using it as a reference for
any directory’s parent. (Since a directory inode’s handle depends on the handles of all
subdirectories, a circular dependency makes it impossible to create directory entries of the
form � “ � � ” � parent’s handle � .) Clients verify that a directory contains the proper pathname
when first looking it up. This is not strictly necessary—an administrator signing a bad
database should expect undefined interpretations by clients. However, the sanity check
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reduces potentially confusing behavior on clients of malformed file systems.

3.4 File system updates

The biggest challenge in updating read-only file systems is dealing with data that no longer
exists in the file system. When a file system changes, the administrator generates a new
database and pushes it out to the server replicas. Files that persist across file system ver-
sions will keep the same handles. However, when a file is removed or modified, clients
can end up requesting handles no longer in the database. In this case, the read-only server
replies with an error.

Unfortunately, since read-only servers (and the network) are not trusted, clients cannot
necessarily believe “handle not found” errors they receive. Though a compromised server
can hang a client by refusing to answer RPCs, it must not be able to make programs spu-
riously abort with stale file handle errors. Otherwise, for instance, an application looking
up a key revocation certificate in a read-only file system might falsely believe that the
certificate did not exist.

We have two schemes to let clients securely determine whether a given file handle exists:
the old scheme uses the ��� ��
 field of the '�( ),+ '*. structure to verify that a handle no longer
exists. The new scheme is based on the pathnames of files.

3.4.1 Using
�������

in updates. ������
 is the root of a hash tree, the leaf nodes of which
contain a sorted list of every handle in the file system. Thus, clients can easily walk the
hash tree (using getdata) to see whether the database contains a given file handle.

The ��� ��
 scheme has advantages. It allows files to persist in the database even after
they have been deleted, as not every handle in the database need be reachable from the
root directory. Thus, by keeping handles of deleted files in a few subsequent revisions of
a database, a system administrator can support the traditional Unix semantics that one can
continue to access an open file even after it has been deleted.

Unfortunately, ��� ��
 has several drawbacks. Even small changes to the file system cause
most of the hash tree under ��� ��
 to change (making incremental database updates unneces-
sarily expensive). Furthermore, in the read-only file system, because handles are based on
file contents, there is no distinction between modifying a file and deleting then recreating
it. In some situations, one doesn’t want to have to close and reopen a file to see changes.
(This is always the case for directories, which therefore need a different mechanism any-
way.) Finally, under the �	����
 scheme, a server cannot change its ��� without causing all
open files to become stale on all clients.

3.4.2 Pathname-based approach to updates. To avoid the problems associated with
����� 
 , new versions of the software will eliminate it. In the new scheme, the client tracks
the pathnames of all files accessed in read-only file systems. It chooses NFS file handles
that are bound to the pathnames of files, rather than to hashes of the read-only inodes—thus
introducing an additional level of indirection. When a server '�(*),+-'*. structure is updated,
the client rebinds open NFS file handles to new read-only inodes. It does so by again
looking up the pathname of each NFS file handle.

Once clients track the pathnames of files, directories need no longer contain their full
pathnames: clients will have enough state to evaluate the parent directory name “ � � ” on
their own.

Those who really want an open file never to change can still emulate the old semantics
(albeit somewhat inelegantly) using a symbolic link to switch between the old and new
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version of a file while allowing both to exist simultaneously.

3.4.3 Incremental update and transfer. The read-only inode structure contains the mod-
ification and “inode change” times of a file. Thus, ���������	��
 could potentially update the
database incrementally after changes are made to the file system, recomputing only the
hashes from changed files up to the root handle and the signature on the '�( ),+-'�. struc-
ture. Our current implementation of ����� ���	� 
 creates a completely new database for each
version of the file system, but we plan to support incremental updates in a future release.

More important, however, replica servers can be updated without transferring the entire
contents of the file system over the network. We built a simple utility program, � � � � ��
 ,
that incrementally transfers a newer version of a database from a primary server to a replica.
The program fetches '�(*),+-'*. from the source server, and checks if the local copy of the
database is out of date. If so, the program recursively traverses the entire file system,
starting from the new root file handle, building on the side a list of all active handles. For
each handle encountered, if the handle does not already exist in the local database, � � � � ��

fetches the corresponding data with a getdata RPC and stores it in database. After the
traversal, � � � � ��
 swaps the '�( ),+-'�. structure in the database and then deletes all handles
no longer in the file system. If a failure appears before the transfer is completed, the
program can just be restarted, since the whole operation is idempotent.

4. IMPLEMENTATION
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Fig. 4. Implementation overview of the read-only file system in the SFS framework.

As illustrated in Figure 4, the read-only file system is implemented as two new daemons
( � ��� ���� � and � ��� ����� � ) in the SFS system [18]. ���������	��
 is a stand-alone program.

� ��� ���� � and ����� ������� communicate with Sun RPC over a TCP connection. (The exact
message formats are described in the XDR protocol description language [25].) We also
use XDR to define cryptographic operations. Any data that the read-only file system hashes
or signs is defined as an XDR data structure; SFS computes the hash or signature on the
raw, marshaled bytes.

� ��� ���� � , ����� ������� , and ����� � �	��
 are written in C++. To handle many connections
simultaneously, the client and server use SFS’s asynchronous RPC library. Both programs
are single-threaded, but the RPC library allows the client to have many outstanding RPCs.

Because of SFS’s support for developing new servers and the read-only server’s sim-
plicity, the implementation of ����� ������� is trivial—only 400 lines of C++. It gets requests
for data blocks by file handle, looks up pre-formatted responses in a B-tree, and responds
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to the client. The current implementation uses the Sleepycat database’s B-tree [24]. In the
measurements ����� ������� accesses the database synchronously.

The implementations of the other two programs ( � ��� ���	� 
 and ����� � ���� ) are more in-
teresting; we discuss them in more detail.

4.1 sfsrodb
���������	��
 is a 1,500-line, stand-alone C++ program. To publish a file system, a system
administrator runs ����� ���	��
 to produce a signed database from a private key and a directory
in an existing file system. The database generator computes every data block, indirect
block, inode, and directory block required for the file system, and stores these structures in
the database, indexed by hash value.

The database generator utility traverses the given file system depth-first to build the
database. The leaves of the file system tree are files or symbolic links. For each regular
file in a directory, the database generator creates a read-only inode structure and fills in the
metadata. Then, it reads the blocks of the file. For each block, � ��� ���	� 
 hashes the data
in that block to compute its handle, and then inserts the block into the database under the
handle (i.e., a lookup on the handle will return the block). The hash value is also stored in
an inode. When all file blocks of a file are inserted into the database, the filled-out inode is
inserted into the database under its hash value.

When all files in a given directory have been inserted into the database, the generator util-
ity inserts a file corresponding to the directory itself—it hashes blocks of � �� � � � � � ���� � �
pairs into an inode data structure. After the root directory tree has been inserted into the
database, the generator utility fills out an '�(*),+-'*. structure and signs it with the private
key of the file system. For simplicity, ����� ���	��
 stores the signed '�( ),+-'�. structure in the
database under a well-known, reserved key.

As motivated in section 3.3, the database contains data structures in XDR marshaled
form. One disadvantage of this is that physical representation of the data is slightly larger
than the actual data. For instance, an 8 Kbyte file block is slightly larger than 8 Kbyte. The
Sleepycat database does not support values just over a power of 2 in size very well; we are
developing a light-weight, asynchronous B-tree that handles such odd-sized values well.

A benefit of storing blocks under their hash is that blocks from different files that have
the same hash will only be stored once in the database. If a file system contains blocks with
identical content among multiple files, then � ��� ���	� 
 stores just one block under the hash.
In the RedHat 6.2 distribution, 5,253 out of 80,508 file data blocks share their hash with
another block. The overlap is much greater if one makes the same data available in two
different formats (for instance, the contents of the RedHat 6.2 distribution, and the image
of a CD-ROM containing that distribution).

4.2 sfsrocd

The client constitutes the bulk of the code in the read-only file system (1,500 lines of C++).
The read-only client behaves like an NFS3 [4] server, allowing it to communicate with the
operating system through ordinary networking system calls. The read-only client resolves
pathnames for file name lookups and handles reads of files, directories, and symbolic links.
It relies on the server only for serving blocks of data, not for interpreting or verifying those
blocks. The client checks the validity of all blocks it receives against the hashes by which
it requested them.

The client implements four caches with LRU replacement policies to improve perfor-
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mance by avoiding RPCs to ����� � ����� . It maintains an inode cache, an indirect-block cache,
a small file-block cache, and a cache for directory entries.

� ��� ���� � ’s small file-block cache primarily optimizes the case of the same block ap-
pearing in multiple files. In general, ������������ relies on the local operating system’s buffer
cache to cache the file contents. Thus, any additional caching of file contents will tend to
waste memory unless a block in appears multiple places. The small block cache optimizes
common cases—such as a file with many blocks of all zeros—without dedicating too much
memory to redundant caching.

Indirect blocks are cached so that � ��� ���� � can quickly fetch and verify multiple blocks
from a large file without refetching the indirect blocks. ����� ������ does not prefetch because
most operating systems already implement prefetching locally.

4.2.1 Example. We demonstrate how the client works by example. Consider a user
reading the file � � ��� � ����� � � ��� � �	����� 
���	����������	���� �
��� ������������������������������� ������������� ,
where 
	�� ��	� �	������ � �
���	�	�����������������	����������� is the representation of the public key of
the server storing the file ����������� . (In practice, symbolic links save users from ever having
to see or type pathnames like this.)

The local operating system’s NFS client will call into the protocol-independent SFS
client software, asking for the directory � ����� � ����� � � ��� � �	�	��� 
��� �����������������
���	�	�����
�	���	����������������� � . The client will contact ����� � � ��� � �	��� , which will respond that it im-
plements the read-only file system protocol. At that point, the protocol-independent SFS
client daemon will pass the connection off to the read-only client, which will subsequently
be asked by the kernel to interpret the file named ����������� .

The client makes a getfsinfo RPC to the server to get the file system’s signed '�( ),+ '*.
structure. It verifies the signature on the structure, ensures that the � ��� � � field is no older
than its previous value if the client has seen this file system before, and ensures that � ��� � �
+ �	� � ����� �	� is in the future.

The client then obtains the root directory’s inode by doing a getdata RPC on the � � � � ���
field of '�( ),+-'�. . Given that inode, it looks up the file ����������� by doing a binary search
among the blocks of the directory, which it retrieves through getdata calls on the block
handles in the directory’s inode (and possibly indirect blocks). When the client has the
directory entry ������������� � � � ���� � � , it calls getdata on handle to obtain ����������� ’s inode.
Finally, the client can retrieve the contents of ����������� by calling getdata on the block
handles in its inode.

5. APPLICATIONS

To demonstrate the usefulness of the SFS read-only file system, we describe two applica-
tions that we measure in Section 6: certificate authorities and software distribution.

5.1 Certificate Authorities

Certificate authorities for the Internet are servers that publish certificates binding host-
names to public keys. On the Web, for instance, the certificate authority Verisign certifies
server keys for Web servers. Verisign signs the domain name and the public key of the Web
server in an X.509 certificate, and returns this to the Web server administrator [11]. When
a browser connects to the Web server with secure HTTP, the server responds with the cer-
tificate. The browser checks the validity of the certificate by verifying it with Verisign’s
public key. Most popular browsers have Verisign’s key embedded in their binaries. One
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benefit of this approach is that Verisign does not have to be on-line when the browser con-
nects to a certified Web server. However, this comes at the cost of complicating certificate
revocation to the point that in practice no one does it.

In contrast, SFS uses file systems to certify public keys of servers. SFS certificate au-
thorities are nothing more than ordinary file systems serving symbolic links that trans-
late human-readable names into public keys that name file servers [18]. For example,
if Verisign acted as an SFS certificate authority, client administrators would likely cre-
ate symbolic links from their local disks, for instance � � ��� � � � � � , to Verisign’s self-
certifying pathname—a pathname containing the public key of Verisign’s file system. This
file system would in turn contain symbolic links to other SFS file systems. For example,
� � � � � � � � � � +���� might be a symbolic link to a self-certifying pathname for an SFS file
server that Verisign calls NYU.

Unlike traditional certificate authorities, SFS certificate authorities get queried interac-
tively. This simplifies certificate revocation, since revoking a key amounts to removing
the symbolic link. However, it also places high integrity, availability, and performance
demands on file systems serving as on-line certificate authorities.

By running certificate authorities as SFS read-only file systems, we can address these
needs. The SFS read-only file system improves performance by making the amount of
cryptographic computation proportional to the file system’s size and rate of change, rather
than to the number of clients connecting. SFS read-only also improves integrity by freeing
SFS certificate authorities from the need to keep any on-line copies of their private keys.
Finally, SFS read-only improves availability because it can be replicated on untrusted ma-
chines.

An administrator adds certificates to its SFS file system by adding new symbolic links.
The database is updated once a day, similarly to second-level DNS updates. The adminis-
trator (incrementally) replicates the database to other servers.

The certificate authority database (and thus its certificates) might be valid for one day.
The certificate that we bought from Verisign for our Web server is valid for 12 months. If
the private key of an SFS server is compromised, then the next day the certificate will be
out of the on-line database.

SFS certificate authorities also support key revocation certificates to revoke public keys
of servers explicitly. The key revocation certificates are self-authenticating [18] and signed
with the private key of the compromised server. Verisign could, for example, maintain an
SFS certificate authority that has a directory to which users upload revocation certificates
for some fee; since the certificates are self-authenticating, Verisign does not have to certify
them. Clients check this directory when they perform an on-line check for key certificates.
Because checks can be performed interactively, this approach works better than X.509
certificate revocation lists [11].

5.2 Software Distribution

Sites distributing popular software have high availability, integrity, and performance needs.
Open software is often replicated at several mirrors to support a high number of concur-
rent downloads. If users download a distribution with anonymous FTP, they have low data
integrity: a user cannot tell whether he is downloading a trojan-horse version instead of
the correct one. If users connect through the Secure Shell (SSH) or secure HTTP, then the
server’s throughput is low because of cryptographic operations it must perform. Further-
more, that solution doesn’t protect against attacks where the server is compromised and
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the attacker replaces a program on the server’s disk with a trojan horse.
By distributing software through SFS read-only servers, one can provide integrity, per-

formance, and high availability. Users with � ��� ���� � can even browse the distribution as a
regular file system and compile the software straight from the sources stored on the SFS file
system. ������������ will transparently check the authenticity of the file system data. To dis-
tribute new versions of the software, the administrator simply updates the database. Users
with only a browser could get all the benefits by just connecting through a Web-to-SFS
proxy to the SFS file system.

Software distribution using the read-only file systems complements signed RPMs. First,
RPMs do not provide any revocation support; the signature on an RPM is good forever.
Second, there is no easy way to determine whether an RPM is recent; an attacker can give
a user an older version of a software package without the user knowing it. Third, there is
no easy method for signing a collection of RPMs that constitute a single system. For an
example, there is currently no way of cryptographically verifying that one has the complete
Linux RedHat 6.2 distribution (or all necessary security patches for a release). Using SFS
read-only, Red Hat could securely distribute the complete 6.2 release, providing essentially
the same security guarantees as a physical CDROM distribution.

6. PERFORMANCE

This section presents the results of measurements to support the claims that (1) SFS read-
only provides acceptable application performance and (2) SFS read-only scales well with
the number of clients.

To support the first claim, we measure the performance of microbenchmarks and a large
software compilation. We compare the performance of the SFS read-only file system with
the performance on the local file system, insecure NFS, and the secure SFS read-write file
system.

To support the second claim, we measure the maximum number of connections per
server and the throughput of software downloads with an increasing number of clients.

We expect that the main factors affecting SFS read-only performance are the user-level
implementation of the client, hash verification in the client, and database lookups on the
server.

6.1 Experimental setup and methodology

We measured performance on 550 Mhz Pentium IIIs running FreeBSD 3.3. The client and
server were connected by 100 Mbit, full-duplex, switched Ethernet. Each machine had
a 100 Mbit Tulip Ethernet card, 256 Mbytes of memory, and an IBM 18ES 9 Gigabyte
SCSI disk. The client maintains inode, indirect-block, and directory entry caches that each
have a maximum of 512 entries, while the file-block cache has maximum of 64 entries.
Maximum TCP throughput between client and server, as measured by � �  � [26], was
11.31 Mbyte/sec.

Because the certificate authority benchmark in Section 6.4 requires many CPU cycles on
the client, we also employed two 700 Mhz Athlons running OpenBSD 2.7. Each Athlon
had a 100 Mbit Tulip Ethernet card and 128 Mbytes of memory. Maximum TCP through-
put between an Athlon and the FreeBSD server, as measured by � �  � , was 11.04 Mbyte/sec.
The Athlon machines generated the client SSL and SFSRW requests; we report the sum of
the performance measured on the two machines.

For some workloads, we also collected traces of the RPC traffic between a client and
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Fig. 5. Time to sequentially read 1,000 1 Kbyte files. Local is FreeBSD’s local FFS file system on the server.
The local file system was tested with a cold cache. The network tests were applied to warmed server caches, but
cold client caches. RW, RO, and RONV denote respectively the read-write protocol, the read-only protocol, and
the read-only protocol with no verification.

a server. We have written a simple client program that replays these traces so that we
can evaluate the performance of the server itself and how many clients a single server can
support.

For all experiments we report the average of five runs. To demonstrate that we have
consistent measurements, we report the percentage at which the samples are within the
average.

6.2 Microbenchmarks

To evaluate the performance of the SFS read-only system, we perform small and large file
microbenchmarks.

6.2.1 Small file benchmark. We use the read phases of the LFS benchmarks [22] to
obtain a basic understanding of single client/single server performance. Figure 5 shows the
latency of sequentially reading 1,000 1 Kbyte files on the different file systems. The files
contain random data and are distributed evenly across ten directories. For the read-only
and NFS experiments, all samples were within 0.4% of the average. For the read-write
experiment, all samples were within 2.7% of the average. For the local file system, all
samples were within 6.9% of the average.

As expected, the SFS read-only server performs better than the SFS read-write server
(2.43 vs. 3.27 seconds). The read-only file server performs worse than NFSv3 over TCP
(2.43 vs. 1.14 seconds). To understand the performance of the read-only file server, we
break down the 2.43 seconds spent in the read-only client (see Table II).

To measure the cost of the user-level implementation we measured the time spent in the
NFS loopback. We used the �������� � operation against a file in a read-only file system
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Breakdown Cost (sec) Percent
NFS loopback 0.661 26%
Computation in client 1.386 54%
Communication with server 0.507 20%
Total 2.55 100%

Table II. Breakdown of SFS read-only performance reported in Fig 5.

to measure the time spent in the user-level NFS loopback file system. This operation
generates NFS RPCs from the kernel to the read-only client, but no traffic between the
client and the server. The average over 1,000 �������� � operations is 167 & sec. By contrast,
the average for attempting an ���������� of a local file with permission denied is 2.4 & sec.
The small file benchmark generates 4,015 NFS loopback RPCs. Hence, the overhead of the
client’s user-level implementation is at least (167 & sec - 2.4 & sec) * 4015 = 0.661 seconds.

We also measured the CPU time spent during the small file benchmark in the read-only
client at 1.386 seconds. With verification disabled, this drops to 1.300 seconds, indicating
that for this workload, file handle verification consumes very little CPU time.

To measure the time spent communicating with the read-only server, we timed the play-
back of a trace of the 2,101 getdata RPCs of the benchmark to the read-only server. This
took 0.507 seconds.

These three measurements total to 2.55 seconds. With an error margin of 5%, this ac-
counts for the 2.43 seconds to run the benchmark. We attribute this error to a small amount
of double counting of cycles between the NFS loopback measurement and the computation
in the client.

In summary, the cryptography accounts for very little of the time in the SFS read-only
file system. The CPU time spent on verification is only 0.086 seconds. Moreover, end-
to-end measurements show that data verification has little impact on performance. RONV
performs slightly better than RO (2.31 vs. 2.43 seconds). Therefore, any optimization will
have to focus on the non-cryptographic portions of the system.

6.2.2 Large file benchmark. Figure 6 shows the performance of sequentially and ran-
domly reading a large (40 Mbyte) file containing random data. We read in blocks of
8 Kbytes. In the network experiments, the file is in the server’s cache, but not in the
client’s cache. Thus, we are not measuring the server’s disk. This experiment isolates the
software overhead of cryptography and SFS’s user-level design. For the local file system,
all samples were within 1.4% of the average. For NFSv3 over UDP and the read-write
experiments, all samples were within 1% of the average. For NFSv3 over TCP and the
read-only experiments, all samples were within 4.3% of the average. This variability and
the poor NFSv3 over TCP performance appears to be due to a pathology of FreeBSD.

The SFS read-only server performs better than the read-write server because the read-
only server performs no on-line cryptographic operations. On the sequential workload,
verification costs 1.4 Mbyte/s in throughput. NFSv3 over TCP performs substantially bet-
ter (9.8 vs. 6.5 Mbyte/s) than the read-only file system without verification, even though
both run over TCP and do similar amounts of work; the main difference is that NFS is
implemented in the kernel.

If the large file contains only blocks of zeros, SFS read-only obtains a throughput of
17 Mbyte/s since all blocks hash to the same handle. In this case, the measurement is
dominated by the throughput of loop-back NFSv3 over UDP on the client machine.
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Fig. 6. Throughput of sequential and random reads of a 40 Mbyte file. The experimental conditions are the
same as in Figure 5.

6.3 Software distribution

To evaluate how well the read-only file system performs on a larger application benchmark,
we compiled (with optimization and debugging disabled) Emacs 20.6 with a local build
directory and a remote source directory. The results are shown in Figure 7. The RO ex-
periment performs 1% worse (1 second) than NFSv3 over UDP and 4% better (3 seconds)
than NFSv3 over TCP. Disabling integrity checks in the read-only file system (RONV)
does not speed up the compile because our caches absorb the cost of hash verification.
However, disabling caching does decrease performance (RONC). During a single Emacs
compilation, the read-only server consumes less than 1% of its CPU while the read-only
client consumes less than 2% of its CPU. This demonstrates that the read-only protocol
introduces negligible performance degradation in an application benchmark.

To evaluate how well the server scales, we took a trace of a single client compiling
the Emacs 20.6 source tree, repeatedly played the trace to the server from an increasing
number of simulated, concurrent clients, and plotted the aggregate throughput delivered
by the server. The results are shown in Figure 8. Each sample represents the throughput
of playing traces for 100 seconds. Each trace consists of 1,428 getdata RPCs. With 300
simultaneous clients, the server consumes 96% of the CPU.

With more than 300 clients, FreeBSD reboots because of a bug in its TCP implementa-
tion. We replaced FreeBSD with OpenBSD, and measured that the server maintains a rate
of 10 Mbyte/s of file system data up to 600 simultaneous clients.

6.4 Certificate authority

To evaluate whether the read-only file system performs well enough to function as an
on-line certificate authority, we compare the number of connections a single read-only file
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Fig. 7. Compiling the Emacs 20.6 source. Local is FreeBSD’s local FFS file system on the server. The local
file system was tested with a cold cache. The network tests were applied to warmed server caches, but cold
client caches. RW, RO, RONV, and RONC denote respectively the read-write protocol, the read-only protocol,
the read-only protocol with no verification, and the read-only protocol with no caching.

server can sustain with the number of connections to the SFS read-write server, the number
of SSL connections to an Apache Web server, and the number of HTTP connections to an
Apache server.

The SFS servers use 1,024-bit keys. The SFS read-write server performs one Rabin-
Williams decryption per connection while the SFS read-only server performs no on-line
cryptographic operations. The Web server was Apache 1.3.12 with OpenSSL 0.9.5a and
ModSSL 2.6.3-1.3.12. Our SSL ServerID certificate and Verisign CA certificate use 1,024-
bit RSA keys. All the SSL connections use the TLSv1 cipher suite consisting of Ephemeral
Diffie-Hellman key exchange, DES-CBC3 for confidentiality, and SHA-1 HMAC for in-
tegrity.

To generate enough load to saturate the servers, we wrote a simple client program that
sets up connections, reads a small file containing a self-certifying path, and terminates
the connection as fast as it can. We run this client program simultaneously on the two
OpenBSD machines. In all experiments, the certificate is in the main memory of the server,
so we are limited by software performance, not by disk performance. This scenario is
realistic since we envision that important on-line certificate authorities would have large
enough memories to avoid frequent disk accesses, like DNS second-level servers.

The SFS read-only protocol performs client-side name resolution, unlike the Web server
which performs server-side name resolution. We measured both single-component and
multi-component lookups. (For instance, � � � ��� � � ����� � � � � � � � � causes a single-component
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Fig. 8. The aggregate throughput delivered by the read-only server for an increasing number of clients simulta-
neously compiling the Emacs 20.6 source. The number of clients is plotted on a log scale.

lookup while � ��� ��� � � ����� � � � � 
 �  � � � � � � � caused a multi-component lookup.) The
read-only client makes a linear number of getdata RPCs with respect to the number of
components in a lookup. On the other hand, the HTTP client makes only one HTTP re-
quest regardless of the number of components in the URL path.

The HTTP and SSL single- and multi-component tests consist of a GET � � ��� � � �	 � � � �
and GET � �	��� � � ��� � � � ����� � � ��� � � �� � � � � respectively, where � ��� � � �	 � � � � contains
the string � ����� � ����� �

������ ���  � � � ��� � �	����� 
���	�� �������	������
��� ���������	���	��������� ������� � . The
SFS read-only and read-write tests consist of comparable operations. We play a trace of
reading a symlink that points to the above self-certifying path. The single-component trace
of the read-only file system consists of 5 getdata RPCs to read a symlink in the top-level
directory. The multi-component trace consists of 11 getdata RPCs to read a symlink in a
directory three levels deep. The single-component SFSRW trace consists of 6 RPCs while
the multi-component trace consists of 12 RPCs.

Figure 9 shows that the read-only server scales well. For single-component lookups, the
SFS read-only server can process 26 times more certificate downloads than the SFS read-
write server because the read-only server performs no on-line cryptographic operations.
The read-write server is bottlenecked by public key decryptions, which each take 24 msec.
Hence, the read-write server can at best achieve 38 (1000/24) connections per second. By
comparing the read-write server to the Apache Web server with SSL, we see that the read-
write server is in fact quite efficient; the SSL protocol requires a higher number of more
expensive cryptographic operations on the server than the SFS read-only protocol.

By comparing the read-only server with an insecure Apache server, we can conclude
that the read-only server is a good platform for serving read-only data to many clients;
the number of connections per second is only 32% lower than that of the insecure Apache
server. In fact, the performance of SFS read-only is within an order of magnitude of the
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Fig. 9. Maximum sustained certificate downloads per second. HTTP is an insecure Web server, SSL is a secure
Web server, SFSRW is the secure SFS read-write file system, and SFSRO is the secure read-only file system.
Light bars represent single-component lookups while dark bars represent multi-component lookups.

performance of a DNS root server, which according to Network Solutions can sustain about
4,000 lookups per second (DNS uses UDP instead of TCP). Since the DNS root servers
can support on-line name resolution for the Internet, this comparison suggests that it is
reasonable to build a distributed on-line certificate authority using SFS read-only servers.

A multi-component lookup is faster with HTTP than with the SFS read-only file system.
The SFS read-only client must make two getdata RPCs per component. Hence, there is
a slowdown for deep directories. In practice, the impact on performance will depend on
whether clients do multi-component lookups once, and then never look at the same direc-
tory again, or rather, amortize the cost of walking the file system over multiple lookups. In
any situation in which a single read-only client does multiple lookups in the same direc-
tory, the client should have performance similar to the single-component case because it
will cache the components along the path.

In the case of our CA benchmark, it is realistic to expect all files to reside in the root
directory. Thus, this usage scenario minimizes people’s true multi-component needs. On
the other hand, if the root directory is huge, then SFS read-only will require a logarithmic
number of round-trips for a lookup. However, SFS read-only will still outperform HTTP
on a typical file system because Unix typically performs directory lookups in time linear
in the number of directory entries; SFS read-only performs a lookup in logarithmic time in
the number of directory entries.

7. CONCLUSION

The SFS read-only file system is a distributed file system that allows a high number of
clients to securely access public, read-only data. The data of the file system is stored in a
database, which is signed off-line with the private key of the file system. The private key of
the file system does not have to be on-line, allowing the database to be replicated on many
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untrusted machines. To allow for frequent updates, the database can be replicated incre-
mentally. The read-only file system pushes the cost of cryptographic operations from the
server to the clients, allowing read-only servers to be simple and to support many clients.
An implementation of the design in the context of the SFS global file system confirms that
the read-only file system can support a large number of clients, while providing individual
clients with acceptable application performance.
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