
Complications of Multiprogramming

• Makes it hard to allocate space contiguously
- Convenient for stack, large data structures, etc.

• Need fault isolation between processes
- Someone else testing tcpproxy on your machine. . .

• Processes can consume more than available
memory

- Dormant processes (wating for event) still have core images



Solution: Address Spaces

• Give each program its own address space

• Only “privileged” software can manipulate
mappings

• Isolation is natural
- Can’t even name other proc’s memory



Alternatives

• Segmentation
- Part of each memory reference implicit in segment register

segreg← 〈offset, limit〉

- By loading segment register code can be relocated

- Can enforce protection by restricting segment register loads

• Language-level protection (Java)
- Single address space for different modules

- Language enforces isolation



Paging

• Divide memory up into small “pages”

• Map virtual pages to physical pages
- Each process has separate mapping

• Allow OS to gain control on certain operations
- Read-only pages trap to OS on write

- Invalid pages trap to OS on write

- OS can change mapping and resume application

• Other features sometimes found:
- Hardware can set “dirty” bit

- Control caching of page



Example: Paging on PDP-11

• 64K virtual memory, 8K pages

• 8 Instruction page translations, 8 Data page
translations

• Swap 16 machine registers on each context switch



Example: VAX

• Virtual memory partitioned
- First 2 Gigs for applications

- Last 2 Gigs for OS—mapped same in all address spaces

- One page table for system memory, one for each process

• Each user page table is 8 Megabytes
- 512-byte pages, 4 bytes/translation,

1 Gig for application (not counting stack)

• User page tables stored in paged kernel memory
- No need for 8 physical Megs/proc. only virtual



Example: MIPS

• Hardware has 64-entry TLB
- References to addresses not in TLB trap to kernel

• Each TLB entry has the following fields:
Virtual page, Pid, Page frame, NC, D, V, Global

• Kernel itself unpaged
- All of physical memory contiguously mapped in high VM

- Kernel uses these pseudo-physical addresses

• User TLB fault hander very efficient
- Two hardware registers reserved for it

- utlb miss handler can itself fault—allow paged page tables



Example: Paging on x86

• Page table: 1024 32-bit translations for 4 Megs of
Virtual mem

• Page directory: 1024 pointers to page tables

• %cr3—page table base register

• %cr0—bits enable protection and paging

• INVLPG – tell hardware page table modified



OS effects on application performance

• Page replacement
- Optimal – Least soon to be used (impossible)

- Least recently used (hard to implement)

- Random

- Not recently used

• Direct-mapped physical caches

• Page table structures
- Left to OS on architectures like MIPS

- Hashed vs. hierarchical page table affects performance



Paging in day-to-day use

• Demand paging, demand zero-fill

• Shared libraries

• Shared memory

• Copy-on-write (fork, mmap, etc.)

• Optimized unix pipes



Benefits and disadvantages

• What happens to user/kernel crossings?
- More crossings into kernel

- Pointers in syscall arguments must be checked

• What happens to IPC?
- Must change hardware address space

- Increases TLB misses

- Context switch flushes TLB entirely on x86



Example: 4.4 BSD VM system

• Each process has a vmspace structure containing
- vm map – machine-independent virtual address space

- vm pmap – machine-dependent data structures

- statistics – e.g. for syscalls like getrusage ()

• vm map is a linked list of vm map entry structs
- vm map entry covers contiguous virtual memory

- points to vm object struct

• vm object is source of data
- e.g. vnode object for memory mapped file

- points to list of vm page structs (one per mapped page)

- shadow objects point to other objects for copy on write



Pmap (machine-dependent) layer

• Pmap layer holds architecture-specific VM code

• VM layer invokes pmap layer
- On page faults to install mappings

- To protect or unmap pages

- To ask for dirty/accessed bits

• Pmap layer is lazy and can discard mappings
- No need to notify VM layer

- Process will fault and VM layer must reinstall mapping

• Pmap handles restrictions imposed by cache



Example uses

• vm map entry structs for a process
- r/o text segment→ file object

- r/w data segment→ shadow object→ file object

- r/w stack→ anonymous object

• New vm map entry objects after a fork:
- Share text segment directly (read-only)

- Share data through two new shadow objects
(must share pre-fork but not post fork changes)

- Share stack through two new shadow objects

• Must discard/collapse superfluous shadows
- E.g., when child process exits



What happens on a fault?

• Traverse vm map entry list to get appropriate entry
- No entry? Protection violation? Send process a SIGSEGV

• Traverse list of [shadow] objects

• For each object, traverse vm page structs

• Found a vm page for this object?
- If first vm object in chain, map page

- If read fault, install page read only

- Else if write fault, install copy of page

• Else get page from object
- Page in from file, zero-fill new page, etc.


