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Motivation

• Network file systems are a useful abstraction. . .

• But few people use them over wide-area networks
- E.g., people who travel use network file systems

- But don’t use them over 802.11b while traveling

- FSes used over WAN provide non-traditional semantics

• Network file systems require too much bandwidth
- Saturate bottleneck links

- Interfere with other users

- Block processes for seconds while waiting for network



Other ways of accessing remote data

• Relax consistency semantics (CODA, CVS, . . . )
- Many applications need strict consistency (email, RCS, . . . )

• Copy files back and forth to work on them
- Threatens consistency—where is latest version?

- Not all files will work if copied (symlinks, CVS/Root, . . . )

• Use remote login to work on files remotely
- Graphical applications require too much bandwidth

(figure editors, postscript previewers, . . . )

- Interactive programs sensitive to latency and packet loss

- Delayed character echoes are extremely frustrating!



Remote login frustration!
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Client→server bandwidth
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Observation: Much inter-file commonality

• Editing/word processing workloads
- Often only modify one part of a large file

- Generate “autosave” files with mostly redundant content

• Software development workloads
- Modify header & recompile → recreate similar object files

- Concatenate object files into a library

• LBFS: Exploit commonality to save bandwidth
- Won’t always work, but big potential savings



Avoiding redundant data transfers

• Identify blocks by collision-resistant hash

• To transfer a file between client and server
- Break file into ∼8K data chunks

- Send hashes of the file’s chunks

- Only send chunks actually needed by recipient

• Index file system and client cache to find chunks
- Keep database mapping hash→ 〈file, offset, len〉

- Use chunks from any file in reconstructing any other



Dividing files into chunks

• Straw man: Split file into aligned 8K chunks
- Inserting one byte at start of file changes all chunks

• Base chunks on file contents, not position
- Allow variable-length chunks

- Compute running hash of every overlapping 48-byte region

- If hash mod 8K is special value, create chunk boundary

• Chunk boundaries insensitive to shifting offsets
- Inserting/deleting data only effects surrounding chunk(s)



Example: Breaking a file into chunks

c1 c3c2 c4 c6 c7c5a.

c1 c3c2 c7c5 c6c8b.

c1 c3c2 c6 c7c8 c9 c10c.

c1 c11 c7c8 c9 c10 c6d.



Pathological cases

• Tiny chunks
- E.g., caused by unlucky 48-byte region repeated

- Sending hashes consume more bandwidth than data

• Enormous chunks
- E.g., long run of all zeros

- Hard to handle (can’t hold chunks in memory)

• Solution: Impose min/max chunk sizes (2K/64K)
- Could conceivably derail alignment

- Just an optimization, can afford low-probability failures

- “Problem-cases” often very compressible!



LBFS overview

• Provides traditional file system semantics
- Close-to-open consistency

- Data safely stored on server before close returns

• Large client cache holds user’s working set
- Eliminates all communication not required for consistency

- When user modifies file, must write through to server

- When different client modifies file, download new version

• Elides transfers of redundant data

• Conventionally compresses remaining traffic



LBFS protocol

• Derived from the NFS protocol

• Adds more aggressive caching
- Persistent, on-disk cache holds user’s entire working set

- Callbacks & Leases save an RPC for many open/stat calls

• Client and server index data chunks with a B-tree

• Five new RPCs exploit inter-file commonality
- GETHASH – like read, but returns hashes not data

- CONDWRITE – a write that takes a hash instead of data

- 3 RPCs for atomic file updates



Read caching

• Leases let client validate cached attributes
- Most file operations grant client a lease on attributes

- Server must notify client if attributes change while leased

• Attributes let client validate cached file contents
- Check modification/change times

• When client must downloaded a file
- Retrieve file’s chunk hashes with GETHASH

- Request chunks not already in cache using normal READs

- Update the local chunk index to reflect new cache data



Read protocol

Client

(hash2, size2)
(hash3, size3)
EOF

Server

data3
data2

READ
READ

GETHASH
(hash1, size1)



Writing back a modified file

• Idea: First send hashes, then missing data

• Complications:
- New file likely contains many chunks it is overwriting

- Unaligned writes can be expensive (cause disk read)

- Reordering writes creates confusing intermediary states

- What if client crashes in the middle of sending file?

• Solution: Atomic updates
- Write data to new temporary file

- Commit contents of temporary file to file being written



Atomic update RPCs

• MKTMPFILE RPC creates a temporary file
- File named by client-chosen descriptor

• CONDWRITE sends hashes of chunks
- Can be immediately pipelined behind MKTMPFILE

- Server writes chunk if in DB, else returns NOTFOUND

• TMPWRITE sends data for NOTFOUND chunks

• COMMITTMP copies temporary file to target file

• Server updates chunk index



Update protocol
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Implementation
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• Client – uses xfs, device driver of ARLA AFS clone

• Server – accesses FS by pretending to be NFS client

• Index – uses BerkeleyDB B-tree



Implementation details

• Never assume chunk index is correct
- Automatically fix errors as encountered

- No need for expensive crash-recovery precautions

- Allows server to be updated by non-LBFS clients

• Keep old temporary files around
- Often contain useful chunks for subsequent files

- Move to trash directory, evict in FIFO order

• Background thread deletes invalid DB entries



Bandwidth: emacs recompile
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Performance: emacs recompile
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• Evaluated over simulated ADSL line
- 1.5 Mbit/sec downstream, 348 Kbit upstream, 30 ms latency

- LBFS on ADSL beats NFS on 100Mbit/sec LAN



Compile time vs. bandwidth
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Saving 1.4 MByte MSWord doc
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Effect of network latency on performance
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Related work

• Weaken consistency (CODA)

• Send deltas (Diff/patch, CVS, xdelta)
- Requires server to keep around old versions of files

• The rsync algorithm (synchronize two files)
- One file often contains chunks of many files (e.g., ar)

- Not obvious which file to choose at receiving end
(emacs: #foo#→foo, RCS: 1v22825→foo,v, . . . )



Conclusions

• Network file system often best way to access data
- Copying files back and forth threatens consistency

- Remote login frustrating given latency or packet loss

• Most file systems too bandwidth-hungry for WAN

• LBFS exploits file commonality to save bandwidth
- Break files into variable-size chunks based on contents

- Index chunks in file system and client cache

- Avoid sending chunks already present in other files

• LBFS works where other file systems impractical


