
A Low-bandwidth Network File System

Athicha Muthitacharoen, Benjie Chen
MIT Lab for Computer Science

David Mazières
NYU Department of Computer Science



Motivation

• Network file systems are a useful abstraction. . .

• But few people use them over wide-area networks
- E.g., people who travel use network file systems

- But don’t use them over 802.11b while traveling

- FSes used over WAN provide non-traditional semantics

• Network file systems require too much bandwidth
- Saturate bottleneck links

- Interfere with other users

- Block processes for seconds while waiting for network



Other ways of accessing remote data

• Relax consistency semantics (CODA, CVS, . . . )
- Many applications need strict consistency (email, RCS, . . . )

• Copy files back and forth to work on them
- Threatens consistency—where is latest version?

- Not all files will work if copied (symlinks, CVS/Root, . . . )

• Use remote login to work on files remotely
- Graphical applications require too much bandwidth

(figure editors, postscript previewers, . . . )

- Interactive programs sensitive to latency and packet loss

- Delayed character echoes are extremely frustrating!



Remote login frustration!

0

500

1000

1500

2000

0% 2% 4% 6% 8%

Ex
ec

ut
io

n 
ti

m
e 

(s
ec

on
ds

)

Loss rate

ssh
AFS

Leases+Gzip
LBFS



Client→server bandwidth

0

10

20

30

40

50

M
B

yt
es

Keys typed

NFS

AFS

LBFS



Observation: Much inter-file commonality

• Editing/word processing workloads
- Often only modify one part of a large file

- Generate “autosave” files with mostly redundant content

• Software development workloads
- Modify header & recompile → recreate similar object files

- Concatenate object files into a library

• LBFS: Exploit commonality to save bandwidth
- Won’t always work, but big potential savings



Avoiding redundant data transfers

• Identify blocks by collision-resistant hash

• To transfer a file between client and server
- Break file into ∼8K data chunks

- Send hashes of the file’s chunks

- Only send chunks actually needed by recipient

• Index file system and client cache to find chunks
- Keep database mapping hash→ 〈file, offset, len〉

- Use chunks from any file in reconstructing any other



Dividing files into chunks

• Straw man: Split file into aligned 8K chunks
- Inserting one byte at start of file changes all chunks

• Base chunks on file contents, not position
- Allow variable-length chunks

- Compute running hash of every overlapping 48-byte region

- If hash mod 8K is special value, create chunk boundary

• Chunk boundaries insensitive to shifting offsets
- Inserting/deleting data only effects surrounding chunk(s)



Example: Breaking a file into chunks

c1 c3c2 c4 c6 c7c5a.

c1 c3c2 c7c5 c6c8b.

c1 c3c2 c6 c7c8 c9 c10c.

c1 c11 c7c8 c9 c10 c6d.



Pathological cases

• Tiny chunks
- E.g., caused by unlucky 48-byte region repeated

- Sending hashes consume more bandwidth than data

• Enormous chunks
- E.g., long run of all zeros

- Hard to handle (can’t hold chunks in memory)

• Solution: Impose min/max chunk sizes (2K/64K)
- Could conceivably derail alignment

- Just an optimization, can afford low-probability failures

- “Problem-cases” often very compressible!



LBFS overview

• Provides traditional file system semantics
- Close-to-open consistency

- Data safely stored on server before close returns

• Large client cache holds user’s working set
- Eliminates all communication not required for consistency

- When user modifies file, must write through to server

- When different client modifies file, download new version

• Elides transfers of redundant data

• Conventionally compresses remaining traffic



LBFS protocol

• Derived from the NFS protocol

• Adds more aggressive caching
- Persistent, on-disk cache holds user’s entire working set

- Callbacks & Leases save an RPC for many open/stat calls

• Client and server index data chunks with a B-tree

• Five new RPCs exploit inter-file commonality
- GETHASH – like read, but returns hashes not data

- CONDWRITE – a write that takes a hash instead of data

- 3 RPCs for atomic file updates



Read caching

• Leases let client validate cached attributes
- Most file operations grant client a lease on attributes

- Server must notify client if attributes change while leased

• Attributes let client validate cached file contents
- Check modification/change times

• When client must downloaded a file
- Retrieve file’s chunk hashes with GETHASH

- Request chunks not already in cache using normal READs

- Update the local chunk index to reflect new cache data



Read protocol

Client

(hash2, size2)
(hash3, size3)
EOF

Server

data3
data2

READ
READ

GETHASH
(hash1, size1)



Writing back a modified file

• Idea: First send hashes, then missing data

• Complications:
- New file likely contains many chunks it is overwriting

- Unaligned writes can be expensive (cause disk read)

- Reordering writes creates confusing intermediary states

- What if client crashes in the middle of sending file?

• Solution: Atomic updates
- Write data to new temporary file

- Commit contents of temporary file to file being written



Atomic update RPCs

• MKTMPFILE RPC creates a temporary file
- File named by client-chosen descriptor

• CONDWRITE sends hashes of chunks
- Can be immediately pipelined behind MKTMPFILE

- Server writes chunk if in DB, else returns NOTFOUND

• TMPWRITE sends data for NOTFOUND chunks

• COMMITTMP copies temporary file to target file

• Server updates chunk index



Update protocol

TMPWRITE

Client

CONDWRITE
CONDWRITE

MKTMPFILE

OK
NOTFOUND

OK
COMMITTMP

OK

Server



Implementation

LBFS chunk
index

file
sys.

xfs
client

client
LBFSchunk

index

cache

TCP

server
NFS

server

• Client – uses xfs, device driver of ARLA AFS clone

• Server – accesses FS by pretending to be NFS client

• Index – uses BerkeleyDB B-tree



Implementation details

• Never assume chunk index is correct
- Automatically fix errors as encountered

- No need for expensive crash-recovery precautions

- Allows server to be updated by non-LBFS clients

• Keep old temporary files around
- Often contain useful chunks for subsequent files

- Move to trash directory, evict in FIFO order

• Background thread deletes invalid DB entries



Bandwidth: emacs recompile

Upstream Downstream
0

10

20

30

M
By

te
s

NFS

AFS

Leases+Gzip

LBFS, new DB

LBFS



Performance: emacs recompile

0

500

1000

Se
co

nd
s

138

1312

470

193 182
113

NFS LAN

NFS

AFS

Leases+Gzip

LBFS, new DB

LBFS

• Evaluated over simulated ADSL line
- 1.5 Mbit/sec downstream, 348 Kbit upstream, 30 ms latency

- LBFS on ADSL beats NFS on 100Mbit/sec LAN



Compile time vs. bandwidth

0

200

400

600

800

1000

1200

1400

1600

0.1 1 10

Ex
ec

ut
io

n 
ti

m
e 

(S
ec

on
ds

)

Bandwidth (Mbps)

AFS
Leases+Gzip

LBFS



Saving 1.4 MByte MSWord doc

Upstream b/w
0

1

2

3

4

5

M
B

yt
es

Run time
0

20

40

60

80

100

Se
co

nd
s

CIFS LAN

AFS LAN

CIFS

AFS

Leases+Gzip

LBFS



Effect of network latency on performance

0

50

100

150

200

250

300

350

400

20 40 60 80 100

Ex
ec

ut
io

n 
ti

m
e 

(s
ec

on
ds

)

Round trip time (ms)

AFS
Leases+Gzip

LBFS



Related work

• Weaken consistency (CODA)

• Send deltas (Diff/patch, CVS, xdelta)
- Requires server to keep around old versions of files

• The rsync algorithm (synchronize two files)
- One file often contains chunks of many files (e.g., ar)

- Not obvious which file to choose at receiving end
(emacs: #foo#→foo, RCS: 1v22825→foo,v, . . . )



Conclusions

• Network file system often best way to access data
- Copying files back and forth threatens consistency

- Remote login frustrating given latency or packet loss

• Most file systems too bandwidth-hungry for WAN

• LBFS exploits file commonality to save bandwidth
- Break files into variable-size chunks based on contents

- Index chunks in file system and client cache

- Avoid sending chunks already present in other files

• LBFS works where other file systems impractical


