
The following paper was originally published in the
Proceedings of the USENIX 1996 Annual Technical Conference

San Diego, California, January 1996

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Scalability in the XFS File System

Adam Sweeney
Silicon Graphics



Scalability in the XFS File System

Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto, and Geoff Peck

Silicon Graphics, Inc.

Abstract
In this paper we describe the architecture and design
of a new file system, XFS, for Silicon Graphics’ IRIX
operating system. It is a general purpose file system
for use on both workstations and servers. The focus of
the paper is on the mechanisms used by XFS to scale
capacity and performance in supporting very large file
systems. The large file system support includes mech-
anisms for managing large files, large numbers of
files, large directories, and very high performance I/O.

In discussing the mechanisms used for scalability we
include both descriptions of the XFS on-disk data
structures and analyses of why they were chosen. We
discuss in detail our use of B+ trees in place of many
of the more traditional linear file system structures.

XFS has been shipping to customers since December
of 1994 in a version of IRIX 5.3, and we are continu-
ing to improve its performance and add features in
upcoming releases. We include performance results
from running on the latest version of XFS to demon-
strate the viability of our design.

1. Introduction
XFS is the next generation local file system for Sili-
con Graphics’ workstations and servers. It is a general
purpose Unix file system that runs on workstations
with 16 megabytes of memory and a single disk drive
and also on large SMP network servers with gigabytes
of memory and terabytes of disk capacity. In this
paper we describe the XFS file system with a focus on
the mechanisms it uses to manage large file systems
on large computer systems.

The most notable mechanism used by XFS to increase
the scalability of the file system is the pervasive use of
B+ trees [Comer79]. B+ trees are used for tracking
free extents in the file system rather than bitmaps. B+
trees are used to index directory entries rather than
using linear lookup structures. B+ trees are used to
manage file extent maps that overflow the number of
direct pointers kept in the inodes. Finally, B+ trees are
used to keep track of dynamically allocated inodes
scattered throughout the file system. In addition, XFS

uses an asynchronous write ahead logging scheme for
protecting complex metadata updates and allowing
fast file system recovery after a crash. We also support
very high throughput file I/O using large, parallel I/O
requests and DMA to transfer data directly between
user buffers and the underlying disk drives. These
mechanisms allow us to recover even very large file
systems after a crash in typically less than 15 seconds,
to manage very large file systems efficiently, and to
perform file I/O at hardware speeds that can exceed
300 MB/sec.

XFS has been shipping to customers since December
of 1994 in a version of IRIX 5.3, and XFS will be the
default file system installed on all SGI systems start-
ing with the release of IRIX 6.2 in early 1996. The file
system is stable and is being used on production
servers throughout Silicon Graphics and at many of
our customers’ sites.

In the rest of this paper we describe why we chose to
focus on scalability in the design of XFS and the
mechanisms that are the result of that focus. We start
with an explanation of why we chose to start from
scratch rather than enhancing the old IRIX file sys-
tem. We next describe the overall architecture of XFS,
followed by the specific mechanisms of XFS which
allow it to scale in both capacity and performance.
Finally, we present performance results from running
on real systems to demonstrate the success of the XFS
design.

2. Why a New File System?
The file system literature began predicting the coming
of the "I/O bottleneck" years ago [Ousterhout90], and
we experienced it first hand at SGI. The problem was
not the I/O performance of our hardware, but the limi-
tations imposed by the old IRIX file system, EFS
[SGI92]. EFS is similar to the Berkeley Fast File Sys-
tem [McKusick84] in structure, but it uses extents
rather than individual blocks for file space allocation
and I/O. EFS could not support file systems greater
than 8 gigabytes in size, files greater than 2 gigabytes
in size, or give applications access to the full I/O
bandwidth of the hardware on which they were



running. EFS was not designed with large systems and
file systems in mind, and it was faltering under the
pressure coming from the needs of new applications
and the capabilities of new hardware. While we con-
sidered enhancing EFS to meet these new demands,
the required changes were so great that we decided it
would be better to replace EFS with an entirely new
file system designed with these new demands in mind.

One example of a new application that places new
demands on the file system is the storage and retrieval
of uncompressed video. This requires approximately
30 MB/sec of I/O throughput for a single stream, and
just one hour of such video requires 108 gigabytes of
disk storage. While most people work with com-
pressed video to make the I/O throughput and capac-
ity requirements easier to manage, many customers,
for example those involved in professional video edit-
ing, come to SGI looking to work with uncompressed
video. Another video storage example that influenced
the design of XFS is a video on demand server, such
as the one being deployed by Time Warner in
Orlando. These servers store thousands of compressed
movies. One thousand typical movies take up around
2.7 terabytes of disk space. Playing two hundred high
quality 0.5 MB/sec MPEG streams concurrently uses
100 MB/sec of I/O bandwidth. Applications with sim-
ilar requirements are appearing in database and scien-
tific computing, where file system scalability and per-
formance is sometimes more important than CPU per-
formance. The requirements we derived from these
applications were support for terabytes of disk space,
huge files, and hundreds of megabytes per second of
I/O bandwidth.

We also needed to ensure that the file system could
provide access to the full capabilities and capacity of
our hardware, and to do so with a minimal amount of
overhead. This meant supporting systems with multi-
ple terabytes of disk capacity. With today’s 9 gigabyte
disk drives it only takes 112 disk drives to surpass 1
terabyte of storage capacity. These requirements also
meant providing access to the large amount of disk
bandwidth that is available in such high capacity sys-
tems. Today, SGI’s high end systems have demon-
strated sustained disk bandwidths in excess of 500
megabytes per second. We needed to make that band-
width available to applications using the file system.
Finally, these requirements meant doing all of this
without using unreasonable portions of the available
CPU and memory on the systems.

3. Scalability Problems Addressed by
XFS
In designing XFS, we focused in on the specific prob-
lems with EFS and other existing file systems that we
felt we needed to address. In this section we consider
several of the specific scalability problems addressed
in the design of XFS and why the mechanisms used in
other file systems are not sufficient.

Slow Crash Recovery
A file system with a crash recovery procedure that is
dependent on the file system size cannot be practically
used on large systems, because the data on the system
is unavailable for an unacceptably long period after a
crash. EFS and file systems based on the BSD Fast
File System [McKusick84] falter in this area due to
their dependence on a file system scavenger program
to restore the file system to a consistent state after a
crash. Running fsck over an 8 gigabyte file system
with a few hundred thousand inodes today takes a few
minutes. This is already too slow to satisfy modern
availability requirements, and the time it takes to
recover in this way only gets worse when applied to
larger file systems with more files. Most recently
designed file systems apply database recovery tech-
niques to their metadata recovery procedure to avoid
this pitfall.

Inability to Support Large File Systems
We needed a file system that could manage even
petabytes of storage, but all of the file systems we
know of are limited to either a few gigabytes or a few
terabytes in size. EFS is limited to only 8 gigabytes in
size. These limitations stem from the use of data
structures that don’t scale, for example the bitmap in
EFS, and from the use of 32 bit block pointers
throughout the on-disk structures of the file system.
The 32 bit block pointers can address at most 4 billion
blocks, so even with an 8 kilobyte block size the file
system is limited to a theoretical maximum of 32 ter-
abytes in size.

Inability to Support Large, Sparse Files
None of the file systems we looked at support full 64
bit, sparse files. EFS did not support sparse files at all.
Most others use the block mapping scheme created for
FFS. We decided early on that we would manage
space in files with variable length extents (which we
will describe later), and the FFS style scheme does not
work with variable length extents. Entries in the FFS
block map point to individual blocks in the file, and
up to three levels of indirect blocks can be used to



track blocks throughout the file. This scheme requires
that all entries in the map point to extents of the same
size. This is because it does not store the offset of
each entry in the map with the entry, and thus forces
each entry to be in a fixed location in the tree so that it
can be found. Also, a 64 bit file address space cannot
be supported at all without adding more levels of indi-
rection to the FFS block map.

Inability to Support Large, Contiguous
Files
Another problem is that the mechanisms in many
other file systems for allocating large, contiguous files
do not scale well. Most, including EFS, use linear
bitmap structures for tracking free and allocated
blocks in the file system. Finding large regions of con-
tiguous space in such bitmaps in large file systems is
not efficient. For EFS this has become a significant
bottleneck in the performance of writing newly allo-
cated files. For other file systems, for example FFS,
this has not been a problem up to this point, because
they do not try very hard to allocate files contiguously.
Not doing so, however, can have bad implications for
the I/O performance of accessing files in those file
systems [Seltzer95].

Inability to Support Large Directories
Another area which has not been addressed by other
Unix file systems is support for directories with more
than a few thousand entries. While some, for example
Episode [Chutani92] and VxFS [Veritas95], at least
speed up searching for entries within a directory block
via hashing, most file systems use directory structures
which require a linear scan of the directory blocks in
searching for a particular file. The lookup and update
performance of these unindexed formats degrades lin-
early with the size of the directory. Others use in-
memory hashing schemes layered over simple on-disk
structures [Hitz94]. These in memory schemes work
well to a point, but in very large directories they
require a large amount of memory. This problem has
been addressed in some non-Unix file systems, like
NTFS [Custer94] and Cedar [Hagmann87], by using
B trees to index the entries in the directory.

Inability to Support Large Numbers of
Files
While EFS and other file system can theoretically sup-
port very large numbers of files in a file system, in
practice they do not. The reason is that the number of
inodes allocated in these file systems is fixed at the
time the file system is created. Choosing a very large
number of inodes up front wastes the space allocated

to those inodes when they are not actually used. The
real number of files that will reside in a file system is
rarely known at the time the file system is created.
Being forced to choose makes the management of
large file systems more difficult than it should be.
Episode [Chutani92] and VxFS [Veritas95] both solve
this problem by allowing the number of inodes in the
file system to be increased dynamically.

In summary, there are several problems with EFS and
other file systems that we wanted to address in the
design of XFS. While these problems may not have
been important in the past, we believe the rules of file
system design have changed. The rest of this paper
describes XFS and the ways in which it solves the
scalability problems described here.

4. XFS Architecture
Figure 1. gives a block diagram of the general struc-
ture of the XFS file system.

System Call and VNODE Interface

I/O Manager Directory Mgr

Space Manager

Transaction Manager

Buffer Cache

Volume Manager

Disk Drivers

Figure 1. XFS Architecture

The high level structure of XFS is similar to a conven-
tional file system with the addition of a transaction
manager and a volume manager. XFS supports all of
the standard Unix file interfaces and is entirely POSIX
and XPG4 compliant. It sits below the vnode interface
[Kleiman86] in the IRIX kernel and takes full



advantage of services provided by the kernel, includ-
ing the buffer/page cache, the directory name lookup
cache, and the dynamic vnode cache.

XFS is modularized into several parts, each of which
is responsible for a separate piece of the file system’s
functionality. The central and most important piece of
the file system is the space manager. This module
manages the file system free space, the allocation of
inodes, and the allocation of space within individual
files. The I/O manager is responsible for satisfying file
I/O requests and depends on the space manager for
allocating and keeping track of space for files. The
directory manager implements the XFS file system
name space. The buffer cache is used by all of these
pieces to cache the contents of frequently accessed
blocks from the underlying volume in memory. It is
an integrated page and file cache shared by all file sys-
tems in the kernel. The transaction manager is used by
the other pieces of the file system to make all updates
to the metadata of the file system atomic. This enables
the quick recovery of the file system after a crash.
While the XFS implementation is modular, it is also
large and complex. The current implementation is
over 50,000 lines of C code, while the EFS implemen-
tation is approximately 12,000 lines.

The volume manager used by XFS, known as XLV,
provides a layer of abstraction between XFS and its
underlying disk devices. XLV provides all of the disk
striping, concatenation, and mirroring used by XFS.
XFS itself knows nothing of the layout of the devices
upon which it is stored. This separation of disk man-
agement from the file system simplifies the file system
implementation, its application interfaces, and the
management of the file system.

5. Storage Scalability
XFS goes to great lengths to efficiently support large
files, large file systems, large numbers of files, and
large directories. This section describes the mecha-
nisms used to achieve such scalability in size.

5.1. Allocation Groups
XFS supports full 64 bit file systems. All of the global
counters in the system are 64 bits in length. Block
addresses and inode numbers are also 64 bits in
length. To avoid requiring all structures in XFS to
scale to the 64 bit size of the file system, the file sys-
tem is partitioned into regions called allocation groups
(AGs). These are somewhat similar to the cylinder
groups in FFS, but AGs are used for scalability and
parallelism rather than disk locality.

Allocation groups keep the size of the XFS data struc-
tures in a range where they can operate efficiently
without breaking the file system into an unmanage-
able number of pieces. Allocation groups are typically
0.5 to 4 gigabytes in size. Each AG has its own sepa-
rate data structures for managing the free space and
inodes within its boundaries. Partitioning the file sys-
tem into AGs limits the size of the individual struc-
tures used for tracking free space and inodes. The par-
titioning also allows the per-AG data structures to use
AG relative block and inode pointers. Doing so
reduces the size of those pointers from 64 to 32 bits.
Like the limitations on the size of the region managed
by the AG, this helps to keep the per-AG data struc-
tures to an optimal size.

Allocation groups are only occasionally used for disk
locality. They are generally far too large to be of much
use in this respect. Instead, we establish locality
around individual files and directories. Like FFS, each
time a new directory is created, we place it in a differ-
ent AG from its parent. Once we’ve allocated a direc-
tory, we try to cluster the inodes in that directory and
the blocks for those inodes around the directory itself.
This works well for keeping directories of small files
clustered together on disk. For large files, we try to
allocate extents initially near the inode and afterwards
near the existing block in the file which is closest to
the offset in the file for which we are allocating space.
That implies blocks will be allocated near the last
block in the file for sequential writers and near blocks
in the middle of the file for processes writing into
holes. Files and directories are not limited to allocat-
ing space within a single allocation group, however.
While the structures maintained within an AG use AG
relative pointers, files and directories are file system
global structures that can reference inodes and blocks
anywhere in the file system.

The other purpose of allocation groups is to allow for
parallelism in the management of free space and inode
allocation. Previous file systems, like SGI’s EFS, have
single threaded block allocation and freeing mecha-
nisms. On a large file system with large numbers of
processes running, this can be a significant bottleneck.
By making the structures in each AG independent of
those in the other AGs, XFS enables free space and
inode management operations to proceed in parallel
throughout the file system. Thus, processes running
concurrently can allocate space in the file system con-
currently without interfering with each other.



5.2. Managing Free Space
Space management is key to good file system perfor-
mance and scalability. Efficiently allocating and free-
ing space and keeping the file system from becoming
fragmented are essential to good file system perfor-
mance. XFS has replaced the block oriented bitmaps
of other file systems with an extent oriented structure
consisting of a pair of B+ trees for each allocation
group. The entries in the B+ trees are descriptors of
the free extents in the AG. Each descriptor consists of
an AG relative starting block and a length. One of the
B+ trees is indexed by the starting block of the free
extents, and the other is indexed by the length of the
free extents. This double indexing allows for very
flexible and efficient searching for free extents based
on the type of allocation being performed.

Searching an extent based tree is more efficient than a
linear bitmap scan, especially for large, contiguous
allocations. In searching a tree describing only the
free extents, no time is wasted scanning bits for allo-
cated blocks or determining the length of a given
extent. According to our simulations, the extent based
trees are just as efficient and more flexible than hierar-
chical bitmap schemes such as binary buddy bitmaps.
Unfortunately, the results of those simulations have
been lost, so we will have to settle here for an analyti-
cal explanation. Unlike binary buddy schemes, there
are no restrictions on the alignment or size of the
extents which can be allocated. This is why we con-
sider the B+ trees more flexible. Finding an extent of a
given size with the B+ tree indexed by free extent
size, and finding an extent near a given block with the
B+ tree indexed by extent starting block are both
O(log N) operations. This is why we feel that the B+
trees are just as efficient as binary buddy schemes.
The implementation of the allocation B+ trees is cer-
tainly more complex than normal or binary buddy
bitmap schemes, but we believe that the combination
of flexibility and performance we get from the B+
trees is worth the complexity.

5.3. Supporting Large Files
XFS provides a 64 bit, sparse address space for each
file. The support for sparse files allows files to have
holes in them for which no disk space is allocated.
The support for 64 bit files means that there are poten-
tially a very large number of blocks to be indexed for
ev ery file. In order to keep the number of entries in
the file allocation map small, XFS uses an extent map
rather than a block map for each file. Entries in the
extent map are ranges of contiguous blocks allocated
to the file. Each entry consists of the block offset of

the entry in the file, the length of the extent in blocks,
and the starting block of the extent in the file system.
In addition to saving space over a block map by com-
pressing the allocation map entries for up to two mil-
lion contiguous blocks into a single extent map entry,
using extent descriptors makes the management of
contiguous space within a file efficient.

Even with the space compression provided by an
extent map, sparse files may still require large num-
bers of entries in the file allocation map. When the
number of extents allocated to a file overflows the
number that can fit immediately within an XFS inode,
we use a B+ tree rooted within the inode to manage
the extent descriptors. The B+ tree is indexed by the
block offset field of the extent descriptors, and the
data stored within the B+ tree are the extent descrip-
tors. The B+ tree structure allows us to keep track of
millions of extent descriptors, and, unlike an FFS
style solution, it allows us to do so without forcing all
extents to be of the same size. By storing the offset
and length of each entry in the extent map in the entry,
we gain the benefit of entries in the map which can
point to variable length extents in exchange for a more
complicated map implementation and less fan out at
each level of the mapping tree (since our individual
entries are larger we fit fewer of them in each indirect
block).

5.4. Supporting Large Numbers of Files
In addition to supporting very large files, XFS sup-
ports very large numbers of files. The number of files
in a file system is limited only by the amount of space
in the file system to hold them. Rather than statically
pre-allocating the inodes for all of these files, XFS
dynamically allocates inodes as needed. This relieves
the system administrator of having to guess the num-
ber of files that will be created in a given file system
and of having to recreate the file system when that
guess is wrong.

With dynamically allocated inodes, it is necessary to
use some data structure for keeping track of where the
inodes are located. In XFS, each allocation group
manages the inodes allocated within its confines. Each
AG uses a B+ tree to index the locations of the inodes
within it. Inodes are allocated in chunks of sixty-four
inodes. The inode allocation B+ tree in each AG
keeps track of the locations of these chunks and
whether each inode within a chunk is in use. The
inodes themselves are not actually contained in the B+
tree. The B+ tree records only indicate where each
chunk of inodes is located within the AG.



The inode allocation B+ trees, containing only the off-
set of each inode chunk along with a bit for each
inode in the chunk, can each manage millions of
inodes. This flexibility comes at the cost of additional
complexity in the implementation of the file system.
Deciding where to allocate new chunks of inodes and
keeping track of them requires complexity that does
not exist in other file systems. File system backup pro-
grams that need to traverse the inodes of the file sys-
tem are also more complex, because they need to be
able to traverse the inode B+ trees in order to find all
of the inodes. Finally, having a sparse inode number-
ing space forced us to use 64 bit inode numbers, and
this introduces a whole series of system interface
issues for returning file identifiers to programs.

5.5. Supporting Large Directories
The millions of files in an XFS file system need to be
represented in the file system name space. XFS imple-
ments the traditional Unix hierarchical name space.
Unlike existing Unix file systems, XFS can efficiently
support large numbers of files in a single directory.
XFS uses an on-disk B+ tree structure for its directo-
ries.

The directory B+ tree is a bit different from the other
B+ trees in XFS. The difference is that keys for the
entries in the directory B+ tree, the names of the files
in the directory, vary in length from 1 to 255 bytes. To
hide this fact from the B+ tree index management
code, the directory entry names are hashed to four
byte values which are used as the keys in the B+ tree
for the entries. The directory entries are kept in the
leaves of the B+ tree. Each stores the full name of the
entry along with the inode number for that entry.
Since the hash function used for the directories is not
perfect, the directory code must manage entries in the
directory with duplicate keys. This is done by keeping
entries with duplicate hash values next to each other
in the tree. The use of fixed size keys in the interior
nodes of the directory B+ tree simplifies the code for
managing the B+ tree, but by making the keys non-
unique via hashing we add significant complexity. We
feel that the increased performance of the directory
B+ trees that results from having fixed size keys,
described below, is worth the increased complexity of
the implementation.

The hashing of potentially large, variable length key
values to small, constant size keys increases the
breadth of the directory B+ trees. This reduces the
height of the tree. The breadth of the B+ tree is
increased by using small, constant sized keys in the
interior nodes. This is because the interior nodes are

fixed in size to a single file system block, and com-
pressing the keys allows more of them to fit into each
interior node of the tree. This allows each interior
node to have more children, thus increasing the
breadth of the tree. In reducing the height of the tree,
we reduce the number of levels that must be examined
in searching for a given entry in the directory. The B+
tree structure makes lookup, create, and remove oper-
ations in directories with millions of entries practical.
However, listing the contents of a directory with a
million entries is still impractical due to the size of the
resulting output.

5.6. Supporting Fast Crash Recovery
File systems of the size and complexity of XFS can-
not be practically recovered by a process which exam-
ines the file system metadata to reconstruct the file
system. In a large file system, examining the large
amount of metadata will take too long. In a complex
file system, piecing the on-disk data structures back
together will take even longer. An example is the
recovery of the XFS inode table. Since our inodes are
not located in a fixed location, finding all of the
inodes in the worst case where the inode B+ trees
have been trashed can require scanning the entire disk
for inodes. To avoid these problems, XFS uses a write
ahead logging scheme that enables atomic updates of
the file system. This scheme is very similar to the one
described very thoroughly in [Hisgen93].

XFS logs all structural updates to the file system
metadata. This includes inodes, directory blocks, free
extent tree blocks, inode allocation tree blocks, file
extent map blocks, AG header blocks, and the
superblock. XFS does not log user data. For example,
creating a file requires logging the directory block
containing the new entry, the newly allocated inode,
the inode allocation tree block describing the allo-
cated inode, the allocation group header block con-
taining the count of free inodes, and the superblock to
record the change in its count of free inodes. The
entry in the log for each of these items consists of
header information describing which block or inode
this is and a copy of the new image of the item as it
should exist on disk.

Logging new copies of the modified items makes
recovering the XFS log independent of both the size
and complexity of the file system. Recovering the
data structures from the log requires nothing but
replaying the block and inode images in the log out to
their real locations in the file system. The log recovery
does not know that it is recovering a B+ tree. It only
knows that it is restoring the latest images of some file



system blocks.

Unfortunately, using a transaction log does not
entirely obsolete the use of file system scavenger pro-
grams. Hardware and software errors which corrupt
random blocks in the file system are not generally
recoverable with the transaction log, yet these errors
can make the contents of the file system inaccessible.
We did not provide such a repair program in the initial
release of XFS, naively thinking that it would not be
necessary, but our customers have convinced us that
we were wrong. Without one, the only way to bring a
corrupted file system back on line is to re-create it
with mkfs and restore it from backups. We will be
providing a scavenger program for all versions of XFS
in the near future.

6. Performance Scalability
In addition to managing large amounts of disk space,
XFS is designed for high performance file and file
system access. XFS is designed to run well over large,
striped disk arrays where the aggregate bandwidth of
the underlying drives ranges in the tens to hundreds of
megabytes per second.

The keys to performance in these arrays are I/O
request size and I/O request parallelism. Modern disk
drives hav e much higher bandwidth when requests are
made in large chunks. With a striped disk array, this
need for large requests is increased as individual
requests are broken up into smaller requests to the
individual drives. Since there are practical limits to
individual request sizes, it is important to issue many
requests in parallel in order to keep all of the drives in
a striped array busy. The aggregate bandwidth of a
disk array can only be achieved if all of the drives in
the array are constantly busy.

In this section, we describe how XFS makes that full
aggregate bandwidth available to applications. We
start with how XFS works to allocate large contiguous
files. Next we describe how XFS performs I/O to
those files. Finally, we describe how XFS manages its
metadata for high performance.

6.1. Allocating Files Contiguously
The first step in allowing large I/O requests to a file is
to allocate the file as contiguously as possible. This is
because the size of a request to the underlying drives
is limited by the range of contiguous blocks in the file
being read or written. The space manager in XFS goes
to great lengths to ensure that files are allocated con-
tiguously.

Delaying Allocation
One of the key features of XFS in allocating files con-
tiguously is delayed file extent allocation. Delayed
allocation applies lazy evaluation techniques to file
allocation. Rather than allocating specific blocks to a
file as it is written in the buffer cache, XFS simply
reserves blocks in the file system for the data buffered
in memory. A virtual extent is built up in memory for
the reserved blocks. Only when the buffered data is
flushed to disk are real blocks allocated for the virtual
extent. Delaying the decision of which and how many
blocks to allocate to a file as it is written provides the
allocator with much better knowledge of the eventual
size of the file when it makes its decision. When the
entire file can be buffered in memory, the entire file
can usually be to be allocated in a single extent if the
contiguous space to hold it is available. For files that
cannot be entirely buffered in memory, delayed allo-
cation allows the files to be allocated in much larger
extents than would otherwise be possible.

Delayed allocation fits well in modern file system
design in that its effectiveness increases with the size
of the memory of the system. As more data is buffered
in memory, the allocator is provided with better and
better information for making its decisions. Also, with
delayed allocation, short lived files which can be
buffered in memory are often never allocated any real
disk blocks. The files are removed and purged from
the file cache before they are pushed to disk. Such
short lived files appear to be relatively common in
Unix systems [Ousterhout85, Baker91], and delayed
allocation reduces both the number of metadata
updates caused by such files and the impact of such
files on file system fragmentation.

Another benefit of delayed allocation is that files
which are written randomly but have no holes can
often be allocated contiguously. If all of the dirty data
can be buffered in memory, the space for the ran-
domly written data can be allocated contiguously
when the dirty data is flushed out to disk. This is espe-
cially important for applications writing data with
mapped files where random access is the norm rather
than the exception.

Supporting Large Extents
To make the management of large amounts of con-
tiguous space in a file efficient, XFS uses very large
extent descriptors in the file extent map. Each descrip-
tor can describe up to two million file system blocks,
because we use 21 bits in the extent descriptor to store
the length of the extent. Describing large numbers of
blocks with a single extent descriptor eliminates the



CPU overhead of scanning entries in the extent map to
determine whether blocks in the file are contiguous.
We can simply read the length of the extent rather
than looking at each entry to see if it is contiguous
with the previous entry.

The extent descriptors used by XFS are 16 bytes in
length. This is actually their compressed size, as the in
memory extent descriptor needs 20 bytes (8 for file
offset, 8 for the block number, and 4 for the extent
length). Having such large extent descriptors forces
us to have a smaller number of direct extent pointers
in the inode than we would with smaller extent
descriptors like those used by EFS (8 bytes total). We
feel that this is a reasonable trade-off for XFS because
of our focus on contiguous file allocation and the
good performance of the indirect extent maps even
when we do overflow the direct extents.

Supporting Variable Block Sizes
In addition to the above features for keeping disk
space contiguous, XFS allows the file system block
size to range from 512 bytes to 64 kilobytes on a per
file system basis. The file system block size is the
minimum unit of allocation and I/O request size.
Thus, setting the block size sets the minimum unit of
fragmentation in the file system. Of course, this must
be balanced against the large amount of internal frag-
mentation that is caused by using very large block
sizes. File systems with large numbers of small files,
for example news servers, typically use smaller block
sizes in order to avoid wasting space via internal frag-
mentation. File systems with large files tend to make
the opposite choice and use large block sizes in order
to reduce external fragmentation of the file system and
their files’ extents.

Av oiding File System Fragmentation
The work by Seltzer and Smith [Seltzer95] shows that
long term file system fragmentation can degrade the
performance of FFS file systems by between 5% and
15%. This fragmentation is the result of creating and
removing many files over time. Even if all of the files
are allocated contiguously, eventually, the remaining
files are scattered about the disk. This fragments the
file system’s free space. Given the propensity of of
XFS for doing large I/O to contiguously allocated
files, we could expect the degradation of XFS from its
optimum performance to be even worse.

While XFS cannot completely avoid this problem,
there are a few reasons why its impact is not as severe
as it could be with XFS file systems. The first is the
combination of delayed allocation and the allocation

B+ trees. In using the two together XFS makes
requests for larger allocations to the allocator and is
able to efficiently determine one of the best fitting
extents in the file system for that allocation. This
helps in delaying the onset of the fragmentation prob-
lem and reducing its performance impact once it
occurs. A second reason is that XFS file systems are
typically larger than EFS and FFS file systems. In a
large file system, there is typically a larger amount of
free space for the allocator to work with. In such a
file system it takes much longer for the file system to
become fragmented. Another reason is that file sys-
tems tend to be used to store either a small number of
large files or a large number of small files. In a file
system with a smaller number of large files, fragmen-
tation will not be a problem, because allocating and
deleting large files still leaves large regions of con-
tiguous free space in the file system. In a file system
containing mostly small files, fragmentation is not a
big problem, because small files have no need for
large regions of contiguous space. However, in the
long term we still expect fragmentation to degrade the
performance of XFS file systems, so we intend to add
an on-line file system defragmentation utility to opti-
mize the file system in the future.

6.2. Performing File I/O
Given a contiguously allocated file, it is the job of the
XFS I/O manager to read and write the file in large
enough requests to drive the underlying disk drives at
full speed. XFS uses a combination of clustering, read
ahead, write behind, and request parallelism in order
to exploit its underlying disk array. For high perfor-
mance I/O, XFS allows applications to use direct I/O
to move data directly between application memory
and the disk array using DMA. Each of these is
described in detail below.

Handling Read Requests
To obtain good sequential read performance, XFS
uses large read buffers and multiple read ahead
buffers. By large read buffers, we mean that for
sequential reads we use a large minimum I/O buffer
size (typically 64 kilobytes). Of course, for files
smaller than the minimum buffer size, we reduce the
size of the buffers to match the files. Using a large
minimum I/O size ensures that even when applica-
tions issue reads in small units the file system feeds
the disk array requests that are large enough for good
disk I/O performance. For larger application reads,
XFS increases the read buffer size to match the appli-
cation’s request. This is very similar to the read



clustering scheme in SunOS [McVoy90], but it is
more aggressive in using memory to improve I/O per-
formance.

While large read buffers satisfy the need for large
request sizes, XFS uses multiple read ahead buffers to
increase the parallelism in accessing the underlying
disk array. Traditional Unix systems have used only a
single read ahead buffer at a time [McVoy90]. For
sequential reads, XFS keeps outstanding two to three
requests of the same size as the primary I/O buffer.
The number varies because we try to keep three read
ahead requests outstanding, but we wait until the pro-
cess catches up a bit with the read ahead before issu-
ing more. The multiple read ahead requests keep the
drives in the array busy while the application pro-
cesses the data being read. The larger number of read
ahead buffers allows us to keep a larger number of
underlying drives busy at once. Not issuing read
ahead blindly, but instead waiting until the application
catches up a bit, helps to keep sequential readers from
flooding the drive with read ahead requests when the
application is not keeping up with the I/O anyway.

Handling Write Requests
To get good write performance, XFS uses aggressive
write clustering [McVoy90]. Dirty file data is buffered
in memory in chunks of 64 kilobytes, and when a
chunk is chosen to be flushed from memory it is clus-
tered with other contiguous chunks to form a larger
I/O request. These I/O clusters are written to disk
asynchronously, so as data is written into the file
cache many such clusters will be sent to the underly-
ing disk array concurrently. This keeps the underlying
disk array busy with a stream of large write requests.

The write behind used by XFS is tightly integrated
with the delayed allocation mechanism described ear-
lier. The more dirty data we can buffer in memory for
a newly written file, the better the allocation for that
file will be. This is balanced with the need to keep
memory from being flooded with dirty pages and the
need to keep I/O requests streaming out to the under-
lying disk array. This is mostly an issue for the file
cache, however, so it will not be discussed in this
paper.

Using Direct I/O
With very large disk arrays, it is often the case that the
underlying I/O hardware can move data faster than the
system’s CPUs can copy that data into or out of the
buffer cache. On these systems, the CPU is the bottle-
neck in moving data between a file and an application.
For these situations, XFS provides what we call direct

I/O. Direct I/O allows a program to read or write a
file without first passing the data through the system
buffer cache. The data is moved directly between the
user program’s buffer and the disk array using DMA.
This avoids the overhead of copying the data into or
out of the buffer cache, and it also allows the program
to better control the size of the requests made to the
underlying devices. In the initial implementation of
XFS, direct I/O was not kept coherent with buffered
I/O, but this has been fixed in the latest version. Direct
I/O is very similar to traditional Unix raw disk access,
but it differs in that the disk addressing is indirected
through the file extent map.

Direct I/O provides applications with access to the full
bandwidth of the underlying disk array without the
complexity of managing raw disk devices. Applica-
tions processing files much larger than the system’s
memory can avoid using the buffer cache since they
get no benefit from it. Applications like databases that
consider the Unix buffer cache a nuisance can avoid it
entirely while still reaping the benefits of working
with normal files. Applications with real-time I/O
requirements can use direct I/O to gain fine grained
control over the I/O they do to files.

The downsides of direct I/O are that it is more restric-
tive than traditional Unix file I/O and that it requires
more sophistication from the application using it. It is
more restrictive in that it requires the application to
align its requests on block boundaries and to keep the
requests a multiple of the block size in length. This
often requires more complicated buffering techniques
in the application that are normally handled by the
Unix file cache. Direct I/O also requires more of the
application in that it places the burden of making effi-
cient I/O requests on the application. If the application
writes a file using direct I/ O and makes individual 4
kilobyte requests, the application will run much
slower than if it made those same requests into the file
cache where they could be clustered into larger
requests. While direct I/O will never entirely replace
traditional Unix file I/O, it is a useful alternative for
sophisticated applications that need high performance
file I/O.

Using Multiple Processes
Another barrier to high performance file I/O in many
Unix file systems is the single threading inode lock
used for each file. This lock ensures that only one pro-
cess at a time may have I/O outstanding for a single
file. This lock thwarts applications trying to increase
the rate at which they can read or write a file using
multiple processes to access the file at once.



XFS uses a more flexible locking scheme that allows
multiple processes to read and write a file at once.
When using normal, buffered I/O, multiple readers
can access the file concurrently, but only a single
writer is allowed access to the file at a time. The sin-
gle writer restriction is due to implementation rather
than architectural restrictions and will eventually be
removed. When using direct I/O, multiple readers and
writers can all access the file simultaneously. Cur-
rently, when using direct I/O and multiple writers, we
place the burden of serializing writes to the same
region of the file on the application. This differs from
traditional Unix file I/O where file writes are atomic
with respect to other file accesses, and it is one of the
main reasons why we do not yet support multiple
writers using traditional Unix file I/O.

Allowing parallel access to a file can make a signifi-
cant difference in the performance of access to the
file. When the bottleneck in accessing the file is the
speed at which the CPU can move data between the
application buffer and the buffer cache, parallel access
to the file allows multiple CPUs to be applied to the
data movement. When using direct I/O to drive a
large disk array, parallel access to the file allows
requests to be pipelined to the disk array using multi-
ple processes to issue multiple requests. This feature
is especially important for systems like IRIX that
implement asynchronous I/O using threads. Without
parallel file access, the asynchronous requests would
be serialized by the inode lock and would therefore
provide almost no performance benefit.

6.3. Accessing and Updating Metadata
The other side of file system performance is that of
manipulating the file system metadata. For many
applications, the speed at which files and directories
can be created, destroyed, and traversed is just as
important as file I/O rates. XFS attacks the problem of
metadata performance on three fronts. The first is to
use a transaction log to make metadata updates fast.
The second is to use advanced data structures to
change searches and updates from linear to logarith-
mic in complexity. The third is to allow parallelism in
the search and update of different parts of the file sys-
tem. We hav e already discussed the XFS data struc-
tures in detail, so this section will focus on the XFS
transaction log and file system parallelism.

Logging Transactions
A problem that has plagued traditional Unix file sys-
tems is their use of ordered, synchronous updates to
on-disk data structures in order to make those updates

recoverable by a scavenger program like fsck. The
synchronous writes slow the performance of the meta-
data updates down to the performance of disk writes
rather than the speed of today’s fast CPUs [Rosen-
blum92].

XFS uses a write ahead transaction log to gather all
the writes of an update into a single disk I/O, and it
writes the transaction log asynchronously in order to
decouple the metadata update rate from the speed of
the disks. Other schemes such as log structured file
systems [Rosenblum92], shadow paging [Hitz94], and
soft updates [Ganger94] have been proposed to solve
this problem, but we feel that write ahead logging pro-
vides the best trade-off among flexibility, perfor-
mance, and reliability. This is because it provides us
with the fast metadata updates and crash recovery we
need without sacrificing our ability to efficiently sup-
port synchronous writing workloads, for example that
of an NFS server [Sandberg85], and without sacrific-
ing our desire for large, contiguous file support. How-
ev er, an in depth analysis of write ahead logging or
the tradeoffs among these schemes is beyond the
scope of this paper.

Logging Transactions Asynchronously
Traditional write ahead logging schemes write the log
synchronously to disk before declaring a transaction
committed and unlocking its resources. While this
provides concrete guarantees about the permanence of
an update, it restricts the update rate of the file system
to the rate at which it can write the log. While XFS
provides a mode for making file system updates syn-
chronous for use when the file system is exported via
NFS, the normal mode of operation for XFS is to use
an asynchronously written log. We still ensure that the
write ahead logging protocol is followed in that modi-
fied data cannot be flushed to disk until after the data
is committed to the on-disk log. Rather than keeping
the modified resources locked until the transaction is
committed to disk, however, we instead unlock the
resources and pin them in memory until the transac-
tion commit is written to the on-disk log. The
resources can be unlocked once the transaction is
committed to the in-memory log buffers, because the
log itself preserves the order of the updates to the file
system.

XFS gains two things by writing the log asyn-
chronously. First, multiple updates can be batched
into a single log write. This increases the efficiency of
the log writes with respect to the underlying disk
array [Hagmann87, Rosenblum92]. Second, the per-
formance of metadata updates is normally made inde-
pendent of the speed of the underlying drives. This



independence is limited by the amount of buffering
dedicated to the log, but it is far better than the syn-
chronous updates of older file systems.

Using a Separate Log Device
Under very intense metadata update workloads, the
performance of the updates can still become limited
by the speed at which the log buffers can be written to
disk. This occurs when updates are being written into
the buffers faster than the buffers can be written into
the log. For these cases, XFS allows the log to be
placed on a separate device from the rest of the file
system. It can be stored on a dedicated disk or non-
volatile memory device. Using non-volatile memory
devices for the transaction log has proven very effec-
tive in high end OLTP systems [Dimino94]. It can be
especially useful with XFS on an NFS server, where
updates must be synchronous, in both increasing the
throughput and decreasing the latency of metadata
update operations.

Exploiting Parallelism
XFS is designed to run well on large scale shared
memory multiprocessors. In order to support the par-
allelism of such a machine, XFS has only one central-
ized resource: the transaction log. All other resources
in the file system are made independent either across
allocation groups or across individual inodes. This
allows inodes and blocks to be allocated and freed in
parallel throughout the file system.

The transaction log is the most contentious resource in
XFS. All updates to the XFS metadata pass through
the log. However, the job of the log manager is very
simple. It provides buffer space into which transac-
tions can copy their updates, it writes those updates
out to disk, and it notifies the transactions when the
log writes complete. The copying of data into the log
is easily parallelized by making the processor per-
forming the transaction do the copy. As long as the
log can be written fast enough to keep up with the
transaction load, the fact that it is centralized is not a
problem. However, under workloads which modify
large amount of metadata without pausing to do any-
thing else, like a program constantly linking and
unlinking a file in a directory, the metadata update rate
will be limited to the speed at which we can write the
log to disk.

7. Experience and Performance Results
In this section we present results demonstrating the
scalability and performance of the XFS file system.
These results are not meant as a rigorous investigation

of the performance of XFS, but only as a demonstra-
tion of XFS’s capabilities. We are continuing to mea-
sure and improve the performance of XFS as develop-
ment of the file system proceeds.

7.1. I/O Throughput Test Results
Figures 2 and 3 contain the results of some I/O
throughput tests run on a raw volume, XFS, and EFS.
The results come from a test which measures the rate
at which we can write a previously empty file (create),
read it back (read), and overwrite the existing file
(write). The number of drives over which the underly-
ing volume is striped ranges from 3 to 57 in the test.
The test system is an 8 CPU Challenge with 512
megabytes of memory. The test is run with three disks
per SCSI channel, and each disk is capable of reading
data sequentially at approximately 7 MB/sec and writ-
ing data sequentially at approximately 5.5 MB/ sec.
All tests are run on newly created file systems in order
to measure the optimal performance of the file sys-
tems. All tests using EFS and XFS are using direct I/
O and large I/O requests, and the tests using multiple
threads are using the IRIX asynchronous I/O library
with the given number of threads. Measurements for
multiple, asynchronous threads with EFS are not
given, because the performance of EFS with multiple
threads is the same or worse as with one thread due to
its single threaded (per file) I/O path. The test files
are approximately 30 megabytes per disk in the vol-
ume in size, and for the raw volume tests we write the
same amount of data to the volume itself. The stripe
unit for the volumes is 84 kilobytes for the single
threaded cases and 256 kilobytes for the multi-
threaded cases. We hav e found these stripe units to
provide the best performance for each of the cases in
our experimentation.

We can draw sev eral conclusions from this data. One
is that XFS is capable of reading a file at nearly the
full speed of the underlying volume. We manage to
stay within 5-10% of the raw volume performance in
all disk configurations when using an equivalent num-
ber of asynchronous I/O threads. Another interesting
result is the parity of the create and write results for
XFS versus the large disparity of the results for EFS.
We believe that this demonstrates the efficiency of the
XFS space allocator. Finally, the benefits of parallel
file access are clearly demonstrated in these results.
At the high end this makes a 55 MB/sec difference in
the XFS read results. For writing and creating files it
makes a 125 MB/sec difference. This is entirely
because the parallel cases are capable of pipelining
the drives with requests to keep them constantly busy



0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40 45 50 55 60 65

∆

∆

×

×

Disks

M
B

p
e
r

s
e
c

read Raw 4 threads
read XFS 4 threads

∆ read XFS 1 thread
× read EFS 1 thread

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45 50 55 60 65

∆

∆

×

×

•

•

+

+

Disks

M
B

p
e
r

s
e
c

write Raw 4 threads
create XFS 4 threads

∆ write XFS 4 threads
× write XFS 1 thread

• create XFS 1 thread
write EFS 1 thread

+ create EFS 1 thread

Figure 2. Read Throughput. Figure 3. Write/Create Throughput.

whereas the single threaded cases are not.

7.2. Database Sort Benchmark Results
Using XFS, Silicon Graphics recently achieved record
breaking performance on the Datamation sort
[Anon85] and Indy MinuteSort [Nyberg94] bench-
marks. The Datamation sort benchmark measures how
fast the system can sort 100 megabytes of 100 byte
records. The MinuteSort benchmark measures how
much data the system can sort in one minute. This
includes start-up, reading the data in from disk, sort-
ing it in memory, and writing the sorted data back out
to disk. On a 12 CPU 200 Mhz Challenge system with
2.25 gigabytes of memory and a striped volume of 96
disk drives, we performed the Datamation sort in 3.52
seconds and sorted 1.6 gigabytes of data in 56 seconds
for the MinuteSort. The previous records of 7 seconds
and 1.08 gigabytes of data were achieved on a DEC
Alpha system running VMS.

Achieving this level of results requires high memory
bandwidth, high file system and I/O bandwidth, scal-
able multiprocessing, and a sophisticated multipro-
cessing sort package. The key contribution of XFS to
these results is the ability to create and read files at
170 MB/sec. This actually moved the bottleneck in
the system from the file system to the allocation of
zeroed pages for the sort processes.

7.3. LADDIS Benchmark Results
The results of the SPEC SFS (a.k.a. LADDIS) bench-
mark using XFS are encouraging as well. On a 12
CPU 250 Mhz Challenge XL with 1 gigabyte of mem-
ory, 4 FDDI networks, 16 scsi channels, and 121
disks, we achieved a maximum throughput of 8806
SPECnfs operations per second. While XFS plays
only a part in achieving such outstanding perfor-
mance, these results exceed our previous results using
the EFS file system. On a slightly less powerful
machine using EFS, we originally reported a result of
7023 SPECnfs operations per second. We estimate
that the difference in hardware accounts for approxi-
mately 800 of the operations, leaving XFS approxi-
mately 1000 operations per second ahead of EFS. The
difference is that EFS achieves 65 operations per sec-
ond per disk, while XFS achieves 73 operations per
disk. While this 12% increase might not seem like
much, the LADDIS workload is dominated by small,
synchronous write performance. This is often very
difficult to improve without better disk hardware. We
believe that the improvement with XFS is the result of
the high performance directory structures, better file
allocations, and synchronous metadata update batch-
ing of the transaction log provided by XFS.



7.4. Directory Lookups in Large Directo-
ries
Figure 4 contains the results for a test measuring the
performance of random lookups in directories of vari-
ous sizes for EFS and XFS. The results included are
the average of several iterations of the test. The
machine used for the test is a 4 CPU machine with
128 megabytes of memory. Each file system was cre-
ated on a single, 2 gigabyte disk with nothing else on
it. To make sure that we are measuring the perfor-
mance of the file system directory structures, the test
is run with the directory name lookup cache turned
off. Also, the entries in the directories are all links to
just a few real files. There are 20,000 links per real
file. The test performs lookups using the stat(2) sys-
tem call, so making most of the entries links to just a
few files eliminates the size of the inode cache from
the variability of the test.

Directory EFS XFS
entries

100 5,970 8,972

500 2,833 6,600

1,000 1,596 7,089

10,000 169 6,716

30,000 43 6,522

50,000 27 6,497

70,000 - 5,661

90,000 - 5,497

150,000 - 177

250,000 - 102

350,000 - 90

450,000 - 79

1,000,000 - 66

Figure 4. Lookup Operations Per Second

It is clear from this test that lookups in medium to
large directories are much more efficient using XFS.
EFS uses a linear directory format similar to that used
by BSD FFS. It degrades severely between 1,000 and
10,000 entries, at which point the test is entirely CPU
bound scanning the cached file blocks for the entries
being looked up. For XFS, the test is entirely CPU
bound, but still very fast, until the size of the directory
overflows the number of blocks that can be cached in
memory. While there is a large amount of memory in
the machine, only a limited portion of it can be used
to cache directory blocks due to limitations of the
IRIX metadata block cache. At the point where we
overflow the cache, the interior nodes of the directory

B+ tree are still cached, but most leaf nodes in the tree
need to be read in from disk when they are accessed.
This reduces the performance of the test to the perfor-
mance of directory block sized I/O operations to the
single underlying disk drive. The reason the perfor-
mance continues to degrade as the directory size
increases is most likely that the effectiveness of the
leaf block caching continues to decrease with the
increase in directory size.

8. Conclusion
The main idea behind the design of XFS is very sim-
ple: think big. This idea brings forth the needs for
large file systems, large files, large numbers of files,
large directories, and large I/O that are addressed in
the design and implementation of XFS. We believe
that by satisfying these needs, XFS will satisfy the
needs of the next generation of applications and sys-
tems so that we will not be back to where we are
today in just a few years.

The mechanisms in XFS for satisfying the require-
ments of big systems also make it a high performance
general purpose file system. The pervasive use of B+
trees throughout the file system reduces many of the
algorithms in the file system from linear to logarith-
mic. The use of asynchronous transaction logging
eliminates many of the metadata update performance
problems in previous file systems. Also, the use of
delayed allocation improves the performance of all
file allocations, especially those of small files. XFS is
designed to perform well on both the desktop and the
server, and it is this focus on scalability that distin-
guishes XFS from the rest of the file system crowd.

9. Acknowledgments
We would like to thank John Ousterhout, Bob Gray,
and Ray Chen for their help in reviewing and improv-
ing this paper; Chuck Bullis, Ray Chen, Tin Le, James
Leong, Jim Orosz, Tom Phelan, and Supriya Wickre-
matillake, the other members of the XFS/XLV team,
for helping to make XFS and XLV real, commercial
products; and Larry McVoy for his magic troff incan-
tations that made this paper presentable.

10. References
[Anon85] Anonymous, "A Measure of Transaction
Processing Power," Datamation, Vol. 31 No. 7,
112-118.

[Baker91] Baker, M., Hartman, J., Kupfer, M.,
Shirriff, K., Ousterhout, J., "Measurements of a



Distributed File System," Proceedings of the 13th
Symposium on Operating System Principles, Pacific
Grove, CA, October 1991, 192-212.

[Chutani92] Chutani, S., Anderson, O., et. al., "The
Episode File System," Proceedings of the 1992 Winter
Usenix, San Francisco, CA, 1992, 43-60.

[Comer79] Comer, D., "The Ubiquitous B-Tree,"
Computing Surveys, Vol. 11, No. 2, June 1979
121-137.

[Dimino94] Dimino, L., Mediouni, R., Rengarajan, T.,
Rubino, M., Spiro, P., "Performance of DEC Rdb Ver-
sion 6.0 on AXP Systems," Digital Technical Journal,
Vol. 6, No. 1, Winter 1994 23-35.

[Ganger94] Ganger, G., Patt, Y., "Metadata Update
Performance in File Systems," Proceedings of the
First Usenix Symposium on Operating System Design
and Implementation, Monterey, CA, November, 1994,
49-60.

[Hagmann87] Hagmann, R., "Reimplementing the
Cedar File System Using Logging and Group Com-
mit," Proceedings of the 10th Symposium on Operat-
ing System Principles, November, 1987.

[Hisgen93] Hisgen, A., Birrell, A., Jerian, C., Mann,
T., Swart, G., "New-Value Logging in the Echo Repli-
cated File System," Research Report 104, Systems
Research Center, Digital Equipment Corporation,
1993.

[Hitz94] Hitz, D., Lau, J., Malcolm, M., "File System
Design for an NFS File Server Appliance," Proceed-
ings of the 1994 Winter Usenix, San Francisco, CA,
1994, 235-246.

[Kleiman86] Kleiman, S., "Vnodes: an Architecture
for Multiple File System types in Sun Unix," Proceed-
ings of the 1986 Summer Usenix, Summer 1986.

[McKusick84] McKusick, M., Joy, W., Leffler, S.,
Fabry, R. "A Fast File System for UNIX," ACM
Transactions on Computer Systems Vol. 2, No. 3,
August 1984, 181-197.

[McVoy90] McVoy, L., Kleiman, S., "Extent-like Per-
formance from a UNIX File System," Proceedings of
the 1991 Winter Usenix, Dallas, Texas, June 1991,
33-43.

[Nyberg94] Nyberg, C., Barclay, T., Cvetanovic, Z.,
Gray, J., Lomet, D., "AlphaSort: A RISC Machine
Sort," Proceedings of the 1994 SIGMOD International
Conference on Management of Data, Minneapolis,
1994.

[Ousterhout85] Ousterhout, J., Da Costa, H., Harri-
son, D., Kunze, J., Kupfer, M., Thompson, J., "A
Trace-Driven Analysis of the UNIX 4.2 BSD File

System," Proceedings of the 10th Symposium on
Operating System Principles, Orcas Island, WA,
December 1985, 15-24.

[Ousterhout90] Ousterhout, J. "Why Aren’t Operating
Systems Getting Faster As Fast as Hardware?" Pro-
ceedings of the 1990 Summer Usenix, Anaheim, CA,
June, 1990, 247-256.

[Rosenblum92] Rosenblum, M., Ousterhout, J., "The
Design and Implementation of a Log-Structured File
System," ACM Transactions on Computer Systems
Vol 10, No. 1, February 1992, 26-52.

[Sandberg85] Sandberg, R., et al., "Design and Imple-
mentation of the Sun Network File System," Proceed-
ings of the 1985 Summer Usenix, June, 1985,
119-130.

[Seltzer95] Seltzer, M., Smith, K., Balakrishnan, H.,
Chang, J., McMains, S., Padmanabhan, V., "File Sys-
tem Logging Versus Clustering: A Performance Com-
parison," Proceedings of the 1995 Usenix Technical
Conference, January 1995, 249-264.

[SGI92] IRIX Advanced Site and Server Administra-
tion Guide, Silicon Graphics, Inc., chapter 8, 241-288

[Veritas95] Veritas Software, http://www.veritas.com

Adam Sweeney, Doug Doucette, Wei Hu, Curtis
Anderson, Michael Nishimoto, and Geoff Peck are
all members of the Server Technology group at Sili-
con Graphics. Adam went to Stanford, Doug to NYU
and Berkeley, Wei to MIT, Curtis to Cal Poly, Michael
to Berkeley and Stanford, and Geoff to Harvard and
Berkeley. None of them holds a Ph.D. All together
they hav e worked at somewhere around 27 compa-
nies, on projects including secure operating systems,
distributed operating systems, fault tolerant systems,
and plain old Unix systems. None of them intends to
make a career out of building file systems, but they all
enjoyed building one.


