Final exam

• Monday, May 13 – Don’t miss it!
 - Open Book, Open Note
 - Exam covers full semester
 - Bring copies of the papers

• Final grade in class determined by higher of:
 - Average of midterm and final, Score on the final exam

• Time for questions:
 - Lecture will end early for review/questions
 - Office hours after class today
 - Question session Wednesday 4–5PM
 - Extra office hours Thursday 5–6PM
 - By appointment
Papers NOT on the exam

The following topics & papers will not be on the exam:

- Lecture 3 (forward-secure signature schemes)
- Spencer – Flask/SElinux
- Wagner – Detection of Buffer Overrun Vulnerabilities
- Necula – Proof-carrying code
- Castro – Byzantine fault tolerance
SSH overview

• Widely-used secure remote login program

• MACs/encrypts all data sent over the network
 - Version 2 of protocol basically gets this right
 - Open to man in the middle attack on first server access

• Often sends password at start of session
 - Gets sent encrypted in a single TCP packet

• Assuming crypto secure (& no MiM), how to attack?
Packet size

- Transmitted packets rounded to multiple of 8 bytes
 - Version 1 even had exact packet-size in the clear

- Can tell if user’s password is less than 7 chars
 - Password sent in one packet of initial exchange

- Why do we care?
 - Might tell you which account to try to crack
Inter-keystroke timings

- Each character typed causes a packet to be sent
 - Typical inter-character times 10–300 msec
 - Typical network round-trip time 10 of msec
 - Can get very accurate timing information by eavesdropping

- What can you learn from this?
 - Some character sequences harder to type than others
 - E.g., v–b is much slower to type than v–o
 - In general, characters with different hands faster
 - Two characters typed with same finger are much slower
 - Digits, special chars also slower

- Idea: Use timing to learn about passwords
Character latency

Latency (milliseconds)

Ratio of character pairs

- Two letter keys, alternating hands
- A letter and a number, alternating hands
- Two letters, same hand, different fingers
- Two letters, same finger
- A letter and a number, same hand
How to know password is being typed

- **Traffic signature**
 - E.g., echo turned off when password typed

- **Multi-user attack**
 - E.g., run ps on machine to see when victim runs pgp

- **Nested ssh attack**
 - See remote host open SSH connection to another host
Example: su command

- “Password:” prompt – 28 char packet
- Echo turned off for password, no return packets
Modeling keystroke timings

- Assume Gaussian-like distribution of timings
 - For each key pair q, mean time μ_q, stdev σ_q
 - Prob. of timing y \[\Pr[y|q] = \frac{1}{\sqrt{2\pi\sigma_q}} e^{-\frac{(y-\mu_q)^2}{2\sigma_q^2}} \]
 - See figure 5 for example distributions
 - Significant but far from complete overlap between key pairs

- Model keystrokes as HMM
 - Each key pair is a state, timing an observation
 - AI techniques allow you to get n best choices
Results

- **Experiment:** Assign users random passwords
 - Picked from a reduced set of characters
 - Users practice typing the password before experiments

- **Train on users typing individual key pairs**

- **Ignore pause in the middle of passwords**

- **Output most likely password**

- **Bottom line:** $50 \times$ reduction in brute-force cracking
 - Half the time password shows up in top 1% output
How to work around the problem

- **Send dummy packets when in echo mode**
 - Foils traffic signature detection of passwords

- **Adding random delays to packets?**
 - Latencies in 100s of msec, so need big random delays
 - Can still get info by averaging many sessions
 - Delay might get seriously annoying

- **Constant bit-rate traffic**
 - Practicel for *one session* over a modem
Discussion

• How convincing is evaluation?
 - Random passwords with reduced character sets

• How serious is this vulnerability?
 - Would this matter in a system like TAOS?

• What else could this technique be applied to?

• Other possible solutions to the problem?
Why cryptosystems fail
Review

- Cryptography and Protocols
- Key management
- Information flow
- Secure operating systems
- Software Checking
- Safety
- Intrusion detection and tolerance
- Network security
- Anonymity and privacy
- System failures