Final exam

- Monday, May 13 Don't miss it!
 - Open Book, Open Note
 - Exam covers full semester
 - Bring copies of the papers
- Final grade in class determined by higher of:
 - Average of midterm and final, Score on the final exam

• Time for questions:

- Lecture will end early for review/questions
- Office hours after class today
- Question session Wednesday 4–5PM
- Extra office hours Thursday 5–6PM
- By appointment

Papers **NOT** on the exam

- The following topics & papers will not be on the exam:
 - Lecture 3 (forward-secure signature schemes)
 - Spencer Flask/SElinux
 - Wagner Detection of Buffer Overrun Vulnerabilities
 - Necula Proof-carrying code
 - Castro Byzantine fault tolerance

SSH overview

- Widely-used secure remote login program
- MACs/encrypts all data sent over the network
 - Version 2 of protocol basically gets this right
 - Open to man in the middle attack on first server access
- Often sends password at start of session
 - Gets sent encrypted in a single TCP packet
- Assuming crypto secure (& no MiM), how to attack?

Packet size

- Transmitted packets rounded to multiple of 8 bytes
 - Version 1 even had exact packet-size in the clear

• Can tell if user's password is less than 7 chars

- Password sent in one packet of initial exchange
- Why do we care?
 - Might tell you which account to try to crack

Inter-keystroke timings

• Each character typed causes a packet to be sent

- Typical inter-character times 10–300 msec
- Typical network round-trip time 10 of msec
- Can get very accurate timing information by eavesdropping

• What can you learn from this?

- Some character sequences harder to type than others
- E.g., v–b is much slower to type than v–o
- In general, characters with different hands faster
- Two characters typed with same finger are much slower
- Digits, special chars also slower
- Idea: Use timing to learn about passwords

Character latency

Latency (milliseconds)

How to know password is being typed

- Traffic signature
 - E.g., echo turned off when password typed
- Multi-user attack
 - E.g., run ps on machine to see when victim runs pgp
- Nested ssh attack
 - See remote host open SSH connection to another host

Example: su command

- "Password:" prompt 28 char packet
- Echo turned off for password, no return packets

Modeling keystroke timings

- Assume Gaussian-like distribution of timings
 - For each key pair q, mean time μ_q , stdev σ_q

- Prob. of timing
$$y \Pr[y|q] = \frac{1}{\sqrt{2\pi}\sigma_q} e^{-\frac{(y-\mu_q)^2}{2\sigma_q^2}}$$

- See figure 5 for example distributions
- Significant but far from complete overlap between key pairs
- Model keystrokes as HMM
 - Each key pair is a state, timing an observation
 - AI techniques allow you to get n best choices

Results

- Experiment: Assign users random passwords
 - Picked from a reduced set of characters
 - Users practice typing the password before experiments
- Train on users typing individual key pairs
- Ignore pause in the middle of passwords
- Output most likely password
- Bottom line: 50× reduction in brute-force cracking
 - Half the time password shows up in top 1% output

How to work around the problem

- Send dummy packets when in echo mode
 - Foils traffic signature detection of passwords
- Adding random delays to packets?
 - Latencies in 100s of msec, so need big random delays
 - Can still get info by averaging many sessions
 - Delay might get seriously annoying
- Constant bit-rate traffic
 - Practicel for *one session* over a modem

Discussion

- How convincing is evaluation?
 - Random passwords with reduced character sets
- How serious is this vulnerability?
 - Would this matter in a system like TAOS?
- What else could this technique be applied to?
- Other possible solutions to the problem?

Why cryptosystems fail

Review

- Cryptography and Protocols
- Key management
- Information flow
- Secure operating systems
- Software Checking
- Safety
- Intrusion detection and tolerance
- Network security
- Anonymity and privacy
- System failures