Why Cryptosystems Fail

Ross Anderson
University Computer Laboratory
Pembroke Street, Cambridge CB2 3QG
Email: rja14@cl.cam.ac.uk

Abstract

Designers of cryptographic systems are at a disadvantage to most other engineers, in that information on how their systems fail is hard to get: their major users have traditionally been government agencies, which are very secretive about their mistakes.

In this article, we present the results of a survey of the failure modes of retail banking systems, which constitute the next largest application of cryptography. It turns out that the threat model commonly used by cryptosystem designers was wrong: most frauds were not caused by cryptanalysis or other technical attacks, but by implementation errors and management failures. This suggests that a paradigm shift is overdue in computer security; we look at some of the alternatives, and see some signs that this shift may be getting under way.

1 Introduction

Cryptography, the science of code and cipher systems, is used by governments, banks and other organisations to keep information secure. It is a complex subject, and its national security overtones may invest it with a certain amount of glamour, but we should never forget that information security is at heart an engineering problem. The hardware and software products which are designed to solve it should in principle be judged in the same way as any other products: by their cost and effectiveness.

However, the practice of cryptography differs from, say, that of aeronautical engineering in a rather striking way: there is almost no public feedback about how cryptographic systems fail.

When an aircraft crashes, it is front page news. Teams of investigators rush to the scene, and the subsequent enquiries are conducted by experts from organisations with a wide range of interests - the carrier, the insurer, the manufacturer, the airline pilots' union, and the local aviation authority. Their findings are examined by journalists and politicians, discussed in pilots' messes, and passed on by flying instructors.

In short, the flying community has a strong and institutionalised learning mechanism. This is perhaps the main reason why, despite the inherent hazards of flying in large aircraft, which are maintained and piloted by fallible human beings, at hundreds of miles an hour through congested airspace, in bad weather and at night, the risk of being killed on an air journey is only about one in a million.

In the crypto community, on the other hand, there is no such learning mechanism. The history of the subject ([K1], [W1]) shows the same mistakes being made over and over again; in particular, poor management of codebooks and cipher machine procedures enabled many communication networks to be broken. Kahn relates, for example [K1, p 484], that Norway's rapid fall in the second world war was largely due to the fact that the British Royal Navy's codes had been solved by the German Beobachtungsdiensst - using exactly the same techniques that the Royal Navy's own 'Room 40' had used against Germany in the previous war.

Since world war two, a curtain of silence has descended on government use of cryptography. This is not surprising, given not just the cold war, but also the reluctance of bureaucrats (in whatever organisation) to admit their failures. But it does put the cryptosystem designer at a severe disadvantage compared with engineers working in other disciplines; the post-war years are precisely the period in which modern cryptographic systems have been developed and brought into use. It is as if accident reports were only published for piston-engined aircraft, and the causes of all jet aircraft crashes were kept a state secret.

2 Automatic Teller Machines

To discover out how modern cryptosystems are vulnerable in practice, we have to study their use elsewhere. After government, the next biggest application is in banking, and evolved to protect automatic teller machines (ATMs) from fraud.
In some countries (including the USA), the banks have to carry the risks associated with new technology. Following a legal precedent, in which a bank customer’s word that she had not made a withdrawal was found to outweigh the banks’ experts’ word that she must have done [JC], the US Federal Reserve passed regulations which require banks to refund all disputed transactions unless they can prove fraud by the customer [E]. This has led to some minor abuse - misrepresentations by customers are estimated to cost the average US bank about $15,000 a year [W2] - but it has helped promote the development of security technologies such as cryptology and video.

In Britain, the regulators and courts have not yet been so demanding, and despite a parliamentary commission of enquiry which found that the PIN system was insecure [J1], bankers simply deny that their systems are ever at fault. Customers who complain about debits on their accounts for which they were not responsible - so-called ‘phantom withdrawals’ - are told that they are lying, or mistaken, or that they must have been defrauded by their friends or relatives.

The most visible result in the UK has been a string of court cases, both civil and criminal. The pattern which emerges leads us to suspect that there may have been a number of miscarriages of justice over the years.

- A teenage girl in Ashton under Lyne was convicted in 1985 of stealing £40 from her father. She pleaded guilty on the advice of her lawyers that she had no defence, and then disappeared; it later turned out that there had never been a theft, but merely a clerical error by the bank [MBW]
- A Sheffield police sergeant was charged with theft in November 1988 and suspended for almost a year after a phantom withdrawal took place on a card he had confiscated from a suspect. He was lucky in that his colleagues tracked down the lady who had made the transaction after the disputed one; her eyewitness testimony cleared him
- Charges of theft against an elderly lady in Plymouth were dropped after our enquiries showed that the bank’s computer security systems were a shambles
- In East Anglia alone, we are currently advising lawyers in two cases where people are awaiting trial for alleged thefts, and where the circumstances give reason to believe that ‘phantom withdrawals’ were actually to blame.

Finally, in 1992, a large class action got underway in the High Court in London [MB], in which hundreds of plaintiffs seek to recover damages from various banks and building societies. We were retained by the plaintiffs to provide expert advice, and accordingly conducted some research during 1992 into the actual and possible failure modes of automatic teller machine systems. This involved interviewing former bank employees and criminals, analysing statements from plaintiffs and other victims of ATM fraud, and searching the literature. We were also able to draw on experience gained during the mid-80’s on designing cryptographic equipment for the financial sector, and advising clients overseas on its use.

We shall now examine some of the ways in which ATM systems have actually been defrauded. We will then compare them with how the designers thought their products might in theory be vulnerable, and see what lessons can be drawn. Some material has had to be held back for legal reasons, and in particular we do not identify all the banks whose mistakes we discuss. This information should be provided by witnesses at trial, and its absence here should have no effect on the points we wish to make.

3 How ATM Fraud Takes Place

We will start with some simple examples which indicate the variety of frauds that can be carried out without any great technical sophistication, and the bank operating procedures which let them happen. For the time being, we may consider that the magnetic strip on the customer’s card contains only his account number, and that his personal identification number (PIN) is derived by encrypting this account number and taking four digits from the result. Thus the ATM must be able to perform this encryption operation, or to check the PIN in some other way (such as by an online enquiry).

3.1 Some simple examples

1. Many frauds are carried out with some inside knowledge or access, and ATM fraud turns out to be no exception. Banks in the English speaking world dismiss about one percent of their staff every year for disciplinary reasons, and many of these sackings are for petty thefts in which ATMs can easily be involved.

A bank with 50,000 staff, which issued cards and PDNs through the branches rather than by post, might expect about two incidents per business day of staff stealing cards and PDNs.

- In a recent case, a housewife from Hastings, England, had money stolen from her account by a bank clerk who issued an extra card for it. The bank’s systems not only failed to prevent this, but also had the feature that whenever a cardholder got a statement from an ATM, the items on it would not subsequently appear on the full statements sent to the account address. This enabled the clerk to see to it that she did not get any statement showing the thefts he had made from her account.

This was one of the reasons he managed to make 43 withdrawals of £200 each; the other was that when she did at last complain, she was not believed. In fact she was subjected to harassment by the bank, and the thief was only discovered because he suffered an attack of conscience and owned up [RM].

- Technical staff also steal clients’ money, knowing that complaints will probably be ignored. At one bank in Scotland, a maintenance engineer fitted an ATM with a handheld computer, which recorded customers’ PDNs and account numbers. He then made up counterfeit cards and looted their accounts [C1] [C2]. Again, customers who complained were stonewalled; and the bank was

\[
\text{[JC]} \quad \text{[J1]} \quad \text{[MBW]} \quad \text{[MB]} \quad \text{[C1]} \quad \text{[C2]}
\]
publicly criticised for this by one of Scotland’s top law officers.

- One bank issues tellers with cards with which they can withdraw money from branch ATMs and debit any customer account. This may be convenient when the teller station cash runs out, but could lead the staff into temptation.
- One bank had a well managed system, in which the information systems, electronic banking and internal audit departments cooperated to enforce tight dual control over unsigned cards and PINs in the branches. This kept annual theft losses down, until one day a protegé of the deputy managing director sent a circular to all branches announcing that to cut costs, a number of dual control procedures were being abolished, including that on cards and PINs. This was done without consultation, and without taking any steps to actually save money by reducing staff. Losses increased tenfold; but managers in the affected departments were unwilling to risk their careers by making a fuss. This seems to be a typical example of how computer security breaks down in real organisations.

Most thefts by staff show up as phantom withdrawals at ATMs in the victim’s neighbourhood. English banks maintain that a computer security problem would result in a random distribution of transactions round the country, and as most disputed withdrawals happen near the customer’s home or place of work, these must be due to cardholder negligence [BB]. Thus the pattern of complaints which arises from thefts by their own staff only tends to reinforce the banks’ complacency about their systems.

2. Outsiders have also enjoyed some success at attacking ATM systems.

- In a recent case at Winchester Crown Court in England [RSH], two men were convicted of a simple but effective scam. They would stand in ATM queues, observe customers’ PINs, pick up the discarded ATM tickets, copy the account numbers from the tickets to blank cards, and use these to loot the customers’ accounts.
 This trick had been used (and reported) several years previously at a bank in New York. There the culprit was an ATM technician, who had been fired, and who managed to steal over $80,000 before the bank saturated the area with security men and caught him in the act.
 These attacks worked because the banks printed the full account number on the ATM ticket, and because there was no cryptographic redundancy on the magnetic strip. One might have thought that the New York lesson would have been learned, but no: in England, the bank which had been the main victim in the Winchester case only stopped printing the full account number in mid 1992, after the author replicated the fraud on television to warn the public of the risk. Another bank continued printing it into 1993, and was pilloried by journalists who managed to forge a card and use it [L1].

- Another technical attack relies on the fact that most ATM networks do not encrypt or authenticate the authorisation response to the ATM. This means that an attacker can record a ‘pay’ response from the bank to the machine, and then keep on replaying it until the machine is empty. This technique, known as ‘jackpotting’, is not limited to outsiders - it appears to have been used in 1987 by a bank’s operations staff, who used network control devices to jackpot ATMs where accomplices were waiting.

- Another bank’s systems had the feature that when a telephone card was entered at an ATM, it believed that the previous card had been inserted again. Crooks stood in line, observed customers’ PINs, and helped themselves. This shows how even the most obscure programming error can lead to serious problems.

- Postal interception is reckoned to account for 30% of all UK payment card losses [A1], but most banks’ postal control procedures are dismal. For example, in February 1992 the author asked for an increased card limit: the bank sent not one, but two, cards and PINs through the post. These cards arrived only a few days after intruders had got hold of our apartment block’s mail and torn it up looking for valuables.
 It turned out that this bank did not have the systems to deliver a card by registered post, or to send it to a branch for collection. Surely they should have noticed that many of their Cambridge customers live in colleges, student residences and apartment buildings which have no secure postal deliveries; and that most of the new students open bank accounts at the start of the academic year in October, when large numbers of cards and PIN mailers are left lying around on staircases and in pigeonholes.

- Test transactions have been another source of trouble. There was a feature on one make of ATM which would output ten banknotes when a fourteen digit sequence was entered at the keyboard.
 One bank printed this sequence in its branch manual, and three years later there was a sudden spate of losses. These went on until all the banks using the machine put in a software patch to disable the transaction.

- The fastest growing modus operandi is to use false terminals to collect customer card and PIN data. Attacks of this kind were first reported from the USA in 1988; there, crooks built a vending machine which would accept any card and PIN, and dispense a packet of cigarettes. They put their invention in a shopping mall, and harvested PINs and magnetic strip data by modem. A more recent instance of this in Connecticut got substantial press publicity [J2], and the trick has spread to other countries too: in 1992, criminals set up a market stall in High Wycombe, England, and customers who wished to pay for goods by credit card were asked to swipe the card and enter the PIN at a terminal which was in fact hooked up to a PC. At the time of writing, British banks had still not warned their customers of this threat.
3. The point of using a four-digit PIN is that someone who finds or steals another person’s ATM card has a chance of only one in ten thousand of guessing the PIN, and if only three attempts are allowed, then the likelihood of a stolen card being misused should be less than one in 3,000. However, some banks have managed to reduce the diversity of a four-digit PIN to much less than 10,000. For example:

- They may have a scheme which enables PINs to be checked by offline ATMs and point-of-sale devices without these devices having a full encryption capability. For example, customers of one bank get a credit card PIN with digit one plus digit four equal to digit two plus digit three, and a debit card PIN with one plus three equals two plus four. This means that crooks could use stolen cards in offline devices by entering a PIN such as 4455.
- In early 1992, another bank sent its cardholders a letter warning them of the dangers of writing their PIN on their card, and suggested instead that they conceal the PIN in the following way and write it down on a distinctive piece of squared cardboard, which was designed to be kept alongside the ATM card in a wallet or purse.

Suppose your PIN is 2256. Choose a four-letter word, say ‘blue’. Write these four letters down in the second, second, fifth and sixth columns of the card respectively:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
</tbody>
</table>

Now fill up the empty boxes with random letters. Easy, isn’t it? Of course, there may be only about two dozen four-letter words which can be made up using a given grid of random letters, so a thief’s chance of being able to use a stolen card has just increased from 1 in 3,333 to 1 in 8.

- One small institution issued the same PIN to all its customers, as a result of a simple programming error. In yet another, a programmer arranged things so that only three different PINs were issued, with a view to forging cards by the thousand. In neither case was the problem detected until some considerable time had passed: as the live PIN mailers were subjected to strict handling precautions, no member of staff ever got hold of more than his own personal account mailer.

4. Some banks do not derive the PIN from the account number by encryption, but rather chose random PINs (or let the customers choose them) and then encrypt them for storage. Quite apart from the risk that customers may choose PINs which are easy to guess, this has a number of technical pitfalls.

- Some banks hold the encrypted PINs on a file. This means that a programmer might observe that the encrypted version of his own PIN is (say) 132AD64098CA4331, and search the database for all other accounts with the same PIN.
- One large UK bank even wrote the encrypted PIN to the card strip. It took the criminal fraternity fifteen years to figure out that you could change the account number on your own card’s magnetic strip to that of your target, and then use it with your own PIN to loot his account.

In fact, the Winchester pair used this technique as well, and one of them wrote a document about it which appears to have circulated in the UK prison system [5]; and there are currently two other men awaiting trial for conspiring to defraud this bank by forging cards.

For this reason, VISA recommends that banks should combine the customer’s account number with the PIN before encryption [VSM]. Not all of them do.

5. Despite all these horrors, Britain is by no means the country worst affected by card forgery. That dubious honour goes to Italy [L2], where losses amount to almost 0.5% of ATM turnover. Banks there are basically suffering from two problems:

- The first is a plague of bogus ATMs - devices which look like real ATMs, and may even be real ATMs, but which are programmed to capture customers’ card and PIN data. As we saw above, this is nothing new and should have been expected.
- The second is that Italy’s ATMs are generally off-line. This means that anyone can open an account, get a card and PIN, make several dozen copies of the card, and get accomplices to draw cash from a number of different ATMs at the same time. This is also nothing new; it was a favourite modus operandi in Britain in the early 1980’s [W3].

3.2 More complex attacks

The frauds which we have described so far have all been due to fairly simple errors of implementation and operation. Security researchers have tended to consider such blunders uninteresting, and have therefore concentrated on attacks which exploit more subtle technical weaknesses. Banking systems have a number of these weaknesses too.

Although high-tech attacks on banking systems are rare, they are of interest from the public policy point of view, as government initiatives such as the EC’s Information Technology Security Evaluation Criteria (ITSEC) aim to develop a pool of evaluated products which have been certified free of known technical loopholes.

The basic assumptions behind this program are that implementation and operation will be essentially error-free, and that attackers will possess the technical skills which are available in a government signals security agency. It would therefore seem to be more relevant to military than civilian systems, although we will have more to say on this later.

In order to understand how these sophisticated attacks might work, we must look at banking security systems in a little more detail.
3.2.1 How ATM encryption works

Most ATMs operate using some variant of a system developed by IBM, which is documented in [MM]. This uses a secret key, called the 'PIN key', to derive the PIN from the account number, by means of a published algorithm known as the Data Encryption Standard, or DES. The result of this operation is called the 'natural PIN'; an offset can be added to it in order to give the PIN which the customer must enter. The offset has no real cryptographic function; it just enables customers to choose their own PIN. Here is an example of the process:

Account number:	8807012345691715
PIN key:	FEFEFEFEFEFEFEFEFEF
Result of DES:	A2CE126C69AE622D
Result decimalised:	0224126269042823
Natural PIN:	0224
Offset:	6565
Customer PIN:	6789

It is clear that the security of the system depends on keeping the PIN key absolutely secret. The usual strategy is to supply a ‘terminal key’ to each ATM in the form of two printed components, which are carried to the branch by two separate officials, input at the ATM keyboard, and combined to form the key. The PIN key, encrypted under this terminal key, is then sent to the ATM by the bank’s central computer.

If the bank joins a network, so that customers of other banks can use its ATMs, then the picture becomes more complex still. ‘Foreign’ PINs must be encrypted at the ATM using a ‘working’ key it shares with its own bank, where they are decrypted and immediately re-encrypted using another working key shared with the card issuing bank.

These working keys in turn have to be protected, and the usual arrangement is that a bank will share a ‘zone key’ with other banks or with a network switch, and use this to encrypt fresh working keys which are set up each morning. It may also send a fresh working key every day to each of its ATMs, by encrypting it under the ATM’s terminal key.

A much fuller description of banking security systems can be found in books such as [DP] and [MM], and in equipment manuals such as [VSM] and [NSM]. All we really need to know is that a bank has a number of keys which it must keep secret. The most important of these is of course the PIN key, as anyone who gets hold of this can forge a card for any customer’s account; but other keys (such as terminal keys, zone keys and working keys) could also be used, together with a wiretap, to find out customer PINs in large numbers.

Keeping keys secret is only part of the problem. They must also be available for use at all times by authorised processes. The PIN key is needed all the time to verify transactions, as are the current working keys; the terminal keys and zone keys are less critical, but are still used once a day to set up new working keys.

The original IBM encryption products, such as PCF and the 3848, did not solve the problem: they only did the encryption step, and left the other manipulations to a mainframe computer program, which each bank had to write anew for itself. Thus the security depended on the skill and integrity of each bank’s system development and maintenance staff.

The standard approach nowadays is to use a device called a security module. This is basically a PC in a safe, and it is programmed to manage all the bank’s keys and PINs in such a way that the mainframe programmers only ever see a key or PIN in encrypted form. Banks which belong to the VISA and Mastercard ATM networks are supposed to use security modules, in order to prevent any bank customer’s PIN becoming known to a programmer working for another bank (the Mastercard security requirements are quoted in [MM]; for VISA see [VSM]).

3.2.2 Problems with encryption products

In practice, there are a number of problems with encryption products, whether the old 3848s or the security modules now recommended by banking organisations. No full list of these problems, whether actual or potential, appears to have been published anywhere, but they include at least the following which have come to our notice:

1. Although VISA and Mastercard have about 10,000 member banks in the USA and at least 1,000 of these do their own processing, enquiries to security module salesmen reveal that only 300 of these processing centres had actually bought and installed these devices by late 1990. The first problem is thus that the hardware version of the product does not get bought at all, either because it is felt to be too expensive, or because it seems to be too difficult and time-consuming to install, or because it was not supplied by IBM (whose own security module product, the 4753, only became available in 1990). Where a bank has no security modules, the PIN encryption functions will typically be performed in software, with a number of undesirable consequences.

 - The first, and obvious, problem with software PIN encryption is that the PIN key can be found without too much effort by system programmers. In IBM’s product, PCF, the manual even tells how to do this. Once armed with the PIN key, programmers can easily forge cards; and even if the bank installs security modules later, the PIN key is so useful for debugging the systems which support ATM networking that knowledge of it is likely to persist among the programming staff for years afterward.

 - Programmers at one bank did not even go to the trouble of setting up master keys for its encryption software. They just directed the key pointers to an area of low memory which is always zero at system startup. The effect of this was that the live and test systems could use the same cryptographic key dataset, and the bank’s technicians found that they could work out customer PINs on their test equipment. Some of them used to charge the local underworld to calculate PINs on
stolen cards; when the bank’s security manager found that this was going on, he was killed in a road accident (of which the local police conveniently lost the records). The bank has not bothered to send out new cards to its customers.

2. The ‘buy-IBM-or-else’ policy of many banks has back-fired in more subtle ways. One bank had a policy that only IBM 3178 terminals could be purchased, but the VISA security modules they used could not talk to these devices (they needed DEC VT 100s instead). When the bank wished to establish a zone key with VISA using their security module, they found they had no terminal which would drive it. A contractor obligingly lent them a laptop PC, together with software which emulated a VT100. With this the various internal auditors, senior managers and other bank dignitaries duly created the required zone keys and posted them off to VISA.

However, none of them realised that most PC terminal emulation software packages can be set to log all the transactions passing through, and this is precisely what the contractor did. He captured the clear zone key as it was created, and later used it to decrypt the bank’s PIN key. Fortunately for them (and VISA), he did this only for fun and did not plunder their network (or so he claims).

3. Not all security products are equally good, and very few banks have the expertise to tell the good ones from the mediocre.

- The security module’s software may have trapdoors left for the convenience of the vendor’s engineers. We only found this out because one bank had no proper ATM test environment; when it decided to join a network, the vendor’s systems engineer could not get the gateway working, and, out of frustration, he used one of these tricks to extract the PIN key from the system; in the hope that this would help him find the problem. The existence of such trapdoors makes it impossible to devise effective control procedures over security modules, and we have so far been lucky that none of these engineers have tried to get into the card forgery business (or been forced to cooperate with organised crime).

- Some brands of security module make particular attacks easier. Working keys may, for example, be generated by encrypting a time-of-day clock and thus have only 20 bits of diversity rather than the expected 56. Thus, according to probability theory, it is likely that once about 1,000 keys have been generated, there will be two of them which are the same. This makes possible a number of subtle attacks in which the enemy manipulates the bank’s data communications so that transactions generated by one terminal seem to be coming from another.

- A security module’s basic purpose is to prevent programmers, and staff with access to the computer room, from getting hold of the bank’s cryptographic keys. However, the ‘secure’ enclosure in which the module’s electronics is packaged can often be penetrated by cutting or drilling. The author has even helped a bank to do this, when it lost the physical key for its security modules.

- A common make of security module implements the tamper-protection by means of wires which lead to the switches. It would be trivial for a maintenance engineer to cut these, and then next time he visited that bank he would be able to extract clear keys.

- Security modules have their own master keys for internal use, and these keys have to backed up somewhere. The backup is often in an easily readable form, such as PROM chips, and these may need to be read from time to time, such as when transferring control over a set of zone and terminal keys from one make of security module to another. In such cases, the bank is completely at the mercy of the experts carrying out the operation.

- ATM design is also at issue here. Some older makes put the encryption in the wrong place - in the controller rather than in the dispenser itself. The controller was intended to sit next to the dispenser inside a branch, but many ATMs are no longer anywhere near a bank building. One UK university had a machine on campus which sent clear PINs and account data down a phone line to a controller in its mother branch, which is several miles away in town. Anyone who borrowed a datascope and used it on this line could have forged cards by the thousand.

4. Even where one of the better products is purchased, there are many ways in which a poor implementation or sloppy operating procedures can leave the bank exposed.

- Most security modules return a whole range of response codes to incoming transactions. A number of these, such as ‘key parity error’ [VSM] give advance warning that a programmer is experimenting with a live module. However, few banks bother to write the device driver software needed to intercept and act on these warnings.

- We know of cases where a bank subcontracted all or part of its ATM system to a ‘facilities management’ firm, and gave this firm its PIN key. There have also been cases where PIN keys have been shared between two or more banks. Even if all bank staff could be trusted, outside firms may not share the banks’ security culture: their staff are not always vetted, are not tied down for life with cheap mortgages, and are more likely to have the combination of youth, low pay, curiosity and recklessness which can lead to a novel fraud being conceived and carried out.

- Key management is usually poor. We have experience of a maintenance engineer being given both of the PROMs in which the security module master keys are stored. Although dual control procedures existed in theory, the staff had turned over since the PROMs were last used, and so no one had any idea what to do. The engineer could not only have forged cards; he could have walked off with the PROMs and shut down all the bank’s ATM operations.

- At branch level, too, key management is a problem. As we have seen, the theory is that two
bankers type in one key component each, and these are combined to give a terminal master key; the PIN key, encrypted under this terminal master key, is then sent to the ATM during the first service transaction after maintenance.

If the maintenance engineer can get hold of both the key components, he can decrypt the PIN key and forge cards. In practice, the branch managers who have custody of the keys are quite happy to give them to him, as they don’t like standing around while the machine is serviced. Furthermore, entering a terminal key component means using a keyboard, which many older managers consider to be beneath their dignity.

- We have accounts of keys being kept in open correspondence files, rather than being locked up. This applies not just to ATM keys, but also to keys for interbank systems such as SWIFT, which handles transactions worth billions. It might be sensible to use initialisation keys, such as terminal keys and zone keys, once only and then destroy them.
- Underlying many of these control failures is poor design psychology. Bank branches (and computer centres) have to cut corners to get the day’s work done, and only those control procedures whose purpose is evident are likely to be strictly observed. For example, sharing the branch safe keys between the manager and the accountant is well understood; it protects both of them from having their families taken hostage. Cryptographic keys are often not packaged in as user-friendly a way, and are thus not likely to be managed as well. Devices which actually look like keys (along the lines of military crypto ignition keys) may be part of the answer here.
- We could write at great length about improving operational procedures (this is not a threat!), but if the object of the exercise is to prevent any cryptographic key from falling into the hands of someone who is technically able to abuse it, then this should be stated as an explicit objective in the manuals and training courses. ‘Security by obscurity’ often does more harm than good.

5. Cryptanalysis may be one of the less likely threats to banking systems, but it cannot be completely ruled out.

- Some banks (including large and famous ones) are still using home-grown encryption algorithms of a pre-DES vintage. One switching network merely ‘scrambled’ data blocks by adding a constant to them; this went unprotested for five years, despite the network having over forty member banks - all of whose insurance assessors, auditors and security consultants presumably read through the system specification.
- In one case, the two defendants tried to entice a university student into helping them break a bank’s proprietary algorithm. This student was studying at a maths department where teaching and research in cryptography takes place, so the skills and the reference books were indeed available. Fortunately for the bank, the student went to the police and turned them in.
- Even where a ‘respectable’ algorithm is used, it may be implemented with weak parameters. For example, banks have implemented RSA with key sizes between 100 and 400 bits, despite the fact that they key needs to be at least 500 bits to give any real margin of security.
- Even with the right parameters, an algorithm can easily be implemented in the wrong way. We saw above how writing the PIN to the card track is useless, unless the encryption is salted with the account number or otherwise tied to the individual card; there are many other subtle errors which can be made in designing cryptographic protocols, and the study of them is a whole discipline of itself [BAN]. In fact, there is open controversy about the design of a new banking encryption standard, ISO 11166, which is already in use by some 2,000 banks worldwide [R].
- It is also possible to find a DES key by brute force, by trying all the possible encryption keys until you find the one which the target bank uses. The protocols used in international networks to encrypt working keys under zone keys make it easy to attack a zone key in this way; and once this has been solved, all the PINs sent or received by that bank on the network can be decrypted. A recent study by researchers at a Canadian bank [GO] concluded that this kind of attack would now cost about £30,000 worth of specialist computer time per zone key. It follows that it is well within the resources of organised crime, and could even be carried out by a reasonably well heeded individual.

If, as seems likely, the necessary specialist computers have been built by the intelligence agencies of a number of countries, including countries which are now in a state of chaos, then there is also the risk that the custodians of this hardware could misuse it for private gain.

3.2.3 The consequences for bankers

The original goal of ATM crypto security was that no systematic fraud should be possible without the collusion of at least two bank staff [NSM]. Most banks do not seem to have achieved this goal, and the reasons have usually been implementation blunders, ramshackle administration, or both.

The technical threats described in section 3.2.2 above are the ones which most exercised the cryptographic equipment industry, and which their products were designed to prevent. However, only two of the cases in that section actually resulted in losses, and both of those can just as easily be classed as implementation failures.

The main technical lessons for bankers are that competent consultants should have been hired, and much greater emphasis should have been placed on quality control. This is urgent for its own sake: for in addition to fraud, errors also cause a significant number of disputed ATM transactions.

All systems of any size suffer from program bugs and operational blunders: banking systems are certainly no exception, as anyone who has worked in the industry will be aware.
Branch accounting systems tend to be very large and complex, with many interlocking modules which have evolved over decades. Inevitably, some transactions go astray: debits may get duplicated or posted to the wrong account.

This will not be news to financial controllers of large companies, who employ staff to reconcile their bank accounts. When a stray debit appears, they demand to see a voucher for it, and get a refund from the bank when this cannot be produced. However, the ATM customer with a complaint has no such recourse; most bankers outside the USA just say that their systems are infallible.

This policy carries with it a number of legal and administrative risks. Firstly, there is the possibility that it might amount to an offence, such as conspiracy to defraud; secondly, it places an unmeetable burden of proof on the customer, which is why the US courts struck it down [JC], and courts elsewhere may follow their lead; thirdly, there is a moral hazard, in that staff are encouraged to steal by the knowledge that they are unlikely to be caught; and fourthly, there is an intelligence failure, as with no central records of customer complaints it is not possible to monitor fraud patterns properly.

The business impact of ATM losses is therefore rather hard to quantify. In the UK, the Economic Secretary to the Treasury (the minister responsible for bank regulation) claimed in June 1992 that errors affected at most two ATM transactions out of the three million which take place every day [B]; but under the pressure of the current litigation, this figure has been revised, firstly to 1 in 250,000, then 1 in 100,000, and lately to 1 in 34,000 [M1].

As customers who complain are still chased away by branch staff, and since a lot of people will just fail to notice one-off debits, our best guess is that the real figure is about 1 in 10,000. Thus, if an average customer uses an ATM once a week for 50 years, we would expect that about one in four customers will experience an ATM problem at some time in their lives.

Bankers are thus throwing away a lot of goodwill, and their failure to face up to the problem may undermine confidence in the payment system and contribute to unpopularity, public pressure and ultimately legislation. While they consider their response to this, they are not only under fire in the press and the courts, but are also saddled with systems which they built from components which were not understood, and whose administrative support requirements have almost never been adequately articulated. This is hardly the environment in which a clear headed and sensible strategy is likely to emerge.

3.3 The implications for equipment vendors

Equipment vendors will argue that real security expertise is only to be found in universities, government departments, one or two specialist consultancy firms, and in their design labs. Because of this skill shortage, only huge projects will have a capable security expert on hand during the whole of the development and implementation process. Some projects may get a short consultancy input, but the majority will have no specialised security effort at all. The only way in which the experts’ knowhow can be brought to market is therefore in the form of products, such as hardware devices, software packages and training courses.

If this argument is accepted, then our research implies that vendors are currently selling the wrong products, and governments are encouraging this by certifying these products under schemes like ITSEC.

As we have seen, the suppliers’ main failure is that they overestimate their customers’ level of cryptologic and security design sophistication.

IBM’s security products, such as the 3848 and the newer 4753, are a good case in point: they provide a fairly raw encryption capability, and leave the application designer to worry about protocols and to integrate the cryptographic facilities with application and system software.

This may enable IBM to claim that a 4753 will do any cryptographic function that is required, that it can handle both military and civilian security requirements and that it can support a wide range of security architectures [JDKLM]; but the hidden cost of this flexibility is that almost all their customers lack the skills to do a proper job, and end up with systems which have bugs.

A second problem is that those security functions which have to be implemented at the application level end up being neglected. For example, security modules provide a warning message if a decrypted key has the wrong parity, which would let the bank know that someone is experimenting with the system; but there is usually no mainframe software to relay this warning to anyone who can act on it.

The third reason why equipment designers should be on guard is that the threat environment is not constant, or even smoothly changing. In many countries, organised crime ignored ATMs for many years, and losses remained low; once they took an interest, the effect was dramatic [BAB]. In fact, we would not be too surprised if the Mafia were to build a keysearch machine to attack the zone keys used in ATM networks. This may well not happen, but banks and their suppliers should work out how to react if it does.

A fourth problem is that sloppy quality control can make the whole exercise pointless. A supplier of equipment whose purpose is essentially legal rather than military may at any time be the subject of an order for disclosure or discovery, and have his design notes, source code and test data seized for examination by hostile expert witnesses. If they find flaws, and the case is then lost, the supplier could face ruinous claims for damages from his client. This may be a more hostile threat environment than that faced by any military supplier, but the risk does not seem to be appreciated by the industry.

In any case, it appears that implementing secure computer systems using the available encryption products is beyond most organisations’ capabilities, as indeed is maintaining and managing these systems once they have been installed. Tackling this problem will require:
• a system level approach to designing and evaluating security. This is the important question, which we will discuss in the next section
• a certification process which takes account of the human environment in which the system will operate. This is the urgent question.

The urgency comes from the fact that many companies and government departments will continue to buy whatever products have been recommended by the appropriate authority, and then, because they lack the skill to implement and manage the security features, they will use them to build systems with holes.

This outcome is a failure of the certification process. One would not think highly of an inspector who certified the Boeing 747 or the Sukhoi Su-26 for use as a basic trainer, as these aircraft take a fair amount of skill to fly. The aviation community understands this, and formalises it through a hierarchy of licences - from the private pilot’s licence for beginners, through various commercial grades, to the airline licence which is a legal requirement for the captain of any scheduled passenger flight.

In the computer security community, however, this has not happened yet to any great extent. There are some qualifications (such as Certified Information Systems Auditor) which are starting to gain recognition, especially in the USA, but most computer security managers and staff cannot be assumed to have had any formal training in the subject.

There are basically three courses of action open to equipment vendors:

• to design products which can be integrated into systems, and thereafter maintained and managed, by computer staff with a realistic level of expertise

• to train and certify the client personnel who will implement the product into a system, and to provide enough continuing support to ensure that it gets maintained and managed adequately

• to supply their own trained and bonded personnel to implement, maintain and manage the system.

The ideal solution may be some combination of these. For example, a vendor might perform the implementation with its own staff; train the customer’s staff to manage the system thereafter; and design the product so that the only maintenance possible is the replacement of complete units. However, vendors and their customers should be aware that both the second and third of the above options carry a significant risk that the security achieved will deteriorate over time under normal budgetary pressures.

Whatever the details, we would strongly urge that information security products should not be certified under schemes like ITSEC unless the manufacturer can show that both the system factors and the human factors have been properly considered. Certification must cover not just the hardware and software design, but also installation, training, maintenance, documentation and all the support that may be required by the applications and environment in which the product is licensed to be used.

4 The Wider Implications

As we have seen, security equipment designers and government evaluators have both concentrated on technical weaknesses, such as poor encryption algorithms and operating systems which could be vulnerable to trojan horse attacks. Banking systems do indeed have their share of such loopholes, but they do not seem to have contributed in any significant way to the crime figures.

The attacks which actually happened were made possible because the banks did not use the available products properly; due to lack of expertise, they made basic errors in system design, application programming and administration.

In short, the threat model was completely wrong. How could this have happened?

4.1 Why the threat model was wrong

During the 1980’s, there was an industry wide consensus on the threat model, which was reinforced at conferences and in the literature. Designers concentrated on what could possibly happen rather than on what was likely to happen, and assumed that criminals would have the expertise, and use the techniques, of a government signals agency. More seriously, they assumed that implementers at customer sites would have either the expertise to design and build secure systems using the components they sold, or the common sense to call in competent consultants to help. This was just not the case.

So why were both the threat and the customers’ abilities so badly misjudged?

The first error may be largely due to an uncritical acceptance of the conventional military wisdom of the 1970’s. When ATMs were developed and a need for cryptographic expertise became apparent, companies imported this expertise from the government sector [C3]. The military model stressed secrecy, so secrecy of the PIN was made the cornerstone of the ATM system: technical efforts were directed towards ensuring it, and business and legal strategies were predicated on its being achieved. It may also be relevant that the early systems had only limited networking, and so the security design was established well before ATM networks acquired their present size and complexity.

Nowadays, however, it is clear that ATM security involves a number of goals, including controlling internal fraud, preventing external fraud, and arbitrating disputes fairly, even when the customer’s home bank and the ATM raising the debit are in different countries. This was just not understood in the 1970’s; and the need for fair arbitration in particular seems to have been completely ignored.

The second error was probably due to fairly straightforward human factors. Many organisations have no computer security team at all, and those that do have a hard time finding it a home within the administrative structure. The internal audit department, for example, will resist being given
any line management tasks, while the programming staff dis-like anyone whose rôle seems to be making their job more difficult.

Security teams thus tend to be ‘reorganised’ regularly, leading to a loss of continuity; a recent study shows, for example, that the average tenure of computer security managers at US government agencies is only seven months [H]. In the rare cases where a security department does manage to thrive, it usually has difficulties attracting and keeping good engineers, as they get bored once the initial development tasks have been completed.

These problems are not unknown to security equipment vendors, but they are more likely to flatter the customer and close the sale than to tell him that he needs help.

This leaves the company’s managers as the only group with the motive to insist on good security. However, telling good security from bad is notoriously difficult, and many companies would admit that technical competence (of any kind) is hard to instil in managers, who fear that becoming specialised will sidetrack their careers.

Corporate politics can have an even worse effect, as we saw above: even where technical staff are aware of a security problem, they often keep quiet for fear of causing a powerful colleague to lose face.

Finally we come to the ‘consultants’; most banks buy their consultancy services from a small number of well known firms, and value an ‘air of certainty and quality’ over technical credentials. Many of these firms pretend to expertise which they do not possess, and cryptography is a field in which it is virtually impossible for an outsider to tell an expert from a charlatan. The author has seen a report on the security of a national ATM network switch, where the inspector (from an eminent firm of chartered accountants) completely failed to understand what encryption was, and under the heading of communications security remarked that the junction box was well enough locked up to keep vagrants out!

4.2 Confirmation of our analysis

It has recently become clear (despite the fog of official secrecy) that the military sector has suffered exactly the same kind of experiences that we described above. The most dramatic confirmation came at a workshop held in Cambridge in April 93 [M2], where a senior NSA scientist, having heard a talk by the author on some of these results, said that:

- the vast majority of security failures occur at the level of implementation detail
- the NSA is not cleverer than the civilian security community, just better informed of the threats. In particular, there are ‘platoons’ of people whose career speciality is studying and assessing threats of the kind discussed here
- the threat profiles developed by the NSA for its own use are classified

This was encouraging, as it shows that our work is both accurate and important. However, with hindsight, it could have been predicted. Kahn, for example, attributes the Russian disasters of World War 1 to the fact that their soldiers found the more sophisticated army cipher systems too hard to use, and reverted to using simple systems which the Germans could solve without great difficulty [K1].

More recently, Price’s survey of US Department of Defence organisations has found that poor implementation is the main security problem there [P]: although a number of systems use ‘trusted components’, there are few, if any, operational systems which employ their features effectively. Indeed, it appears from his research that the availability of these components has had a negative effect, by fostering complacency: instead of working out a system’s security requirements in a methodical way, designers just choose what they think is the appropriate security class of component and then regurgitate the description of this class as the security specification of the overall system.

The need for more emphasis on quality control is now gaining gradual acceptance in the military sector; the US Air Force, for example, is implementing the Japanese concept of ‘total quality management’ in its information security systems [SSWDC]. However, there is still a huge vested interest in the old way of doing things; many millions have been invested in TCSEC and ITSEC compliant products, and this investment is continuing. A more pragmatic approach, based on realistic appraisal of threats and of organisational and other human factors, will take a long time to become approved policy and universal practice.

Nonetheless both our work, and its military confirmation, indicate that a change in how we do cryptography and computer security is needed, and there are a number of signs that this change is starting to get under way.

5 A New Security Paradigm?

As more people become aware of the shortcomings of traditional approaches to computer security, the need for new paradigms gets raised from time to time. In fact, there are now workshops on the topic [NSP], and an increasing number of journal papers make some kind of reference to it.

It is clear from our work that, to be effective, this change must bring about a change of focus. Instead of worrying about what might possibly go wrong, we need to make a systematic study of what is likely to; and it seems that the core security business will shift from building and selling ‘evaluated’ products to an engineering discipline concerned with quality control processes within the client organisation.

When a paradigm shift occurs [K2], it is quite common for a research model to be imported from some other discipline in order to give structure to the newly emerging results. For example, Newton dressed up his dramatic results on mechanics in the clothing of Euclidean geometry, which gave them instant intellectual respectability; and although geometry was quickly superseded by calculus, it was a useful midwife at the birth of the new science. It also had a lasting influence in its emphasis on mathematical elegance and proof.
So one way for us to proceed would be to look around for alternative models which we might usefully import into the security domain. Here, it would seem that the relationship between secure systems and safety critical systems will be very important.

5.1 A new metaphor

Safety critical systems have been the subject of intensive study, and the field is in many ways more mature than computer security. There is also an interesting technical duality, in that while secure systems must do at most X, critical systems must do at least X; and while many secure systems must have the property that processes write up and read down, critical systems are the opposite in that they write down and read up. We might therefore expect that many of the concepts would go across, and again it is the US Air Force which has discovered this to be the case [JAPJ]. The relationship between security and safety has also been investigated by other researchers [BMD].

There is no room here for a treatise on software engineering for safety critical systems, of which there are a number of introductory articles available [C4]. We will mention only four very basic points [M3]:

1. The specification should list all possible failure modes of the system. This should include every substantially new accident or incident which has ever been reported and which is relevant to the equipment being specified.

2. The specification should make clear what strategy has been adopted to prevent each of these failure modes, or at least make them acceptably unlikely.

3. The specification should then explain in detail how each of these failure management strategies is implemented, including the consequences when each single component, subroutine or subassembly of the system itself fails. This explanation must be assessed by independent experts, and it must cover not just technical design factors, but training and operational issues too. If the procedure when an engine fails is to fly on with the other engine, then what skills does a pilot need to do this, and what are the procedures whereby these skills are acquired, kept current and tested?

4. The certification program must test whether the equipment can in fact be operated by people with the level of skill and experience assumed in the specification. It must also include a monitoring program whereby all incidents are reported to both the equipment manufacturer and the certification body.

These points tie in exactly with our findings (and with the NSA’s stated experience). However, even a cursory comparison with the ITSEC programme shows that this has a long way to go. As we mentioned in the introduction, no-one seems so far to have attempted even the first stage of the safety engineering process for commercial cryptographic systems.

As for the other three stages, it is clear that ITSEC (and TCSEC) will have to change radically. Component-oriented security standards and architectures tend to ignore the two most important factors, which are the system aspect and the human element; in particular, they fail to ensure that the skills and performance required of various kinds of staff are included, together with the hardware and software, in the certification loop.

5.2 The competing philosophies

Within the field of critical systems, there are a number of competing approaches. The first is epitomised by railway signalling systems, and seeks either to provide multiple redundant interlocks or to base the safety features on the integrity of a kernel of hardware and software which can be subjected to formal verification [CW].

The second is the aviation paradigm which we introduced at the beginning of this article; here the quality engineering process is based on constant top level feedback and incremental improvement. This feedback also occurs at lower levels, with various distinct subsystems (pilot training, maintenance, airworthiness certification, traffic control, navigational aids...) interacting in fairly well understood ways with each other.

Of these two models, the first is more reductionist and the second more holistic. They are not mutually exclusive (formal verification of avionics is not a bad thing, unless people then start to trust it too much); the main difference is one of system philosophy.

The most basic aspect of this is that in signalling systems, the system is in control; if the train driver falls asleep, or goes through a red light, the train will stop automatically. His task has been progressively deskilled until his main function is to see that the train stops precisely at the platform (and in some modern railways, even this task is performed automatically, with the result that driverless trains are beginning to enter service).

In civil aviation, on the other hand, the pilot remains firmly in command, and progress has made his job ever more complex and demanding. It was recently revealed, for example, that Boeing 747 autopilots have for 22 years been subject to erratic failures, which can result in the plane starting to roll.

Boeing’s response was blunt: autopilots ‘are designed to assist and supplement the pilot’s capabilities and not replace them’, the company said [CR]. ‘This means our airplanes are designed so pilots are the final control authority and it means that a well trained crew is the first line of safety.’

5.3 The computer security implications

Both the railway and airline models find reflections in current security practice and research. The former model is dominant, due to the TCSEC/ITSEC emphasis on kernelisation and formal methods. In addition to the conventional multilevel secure evaluated products, kernelisation has been used at the application layer as well [A2] [C5].
6 Conclusions

Designers of cryptographic systems have suffered from a lack of information about how their products fail in practice, as opposed to how they might fail in theory. This lack of feedback has led to a false threat model being accepted. Designers focussed on what could possibly go wrong, rather than on what was likely to; and many of their products are so complex and tricky to use that they are rarely used properly.

As a result, most security failures are due to implementation and management errors. One specific consequence has been a spate of ATM fraud, which has not just caused financial losses, but has also caused at least one miscarriage of justice and has eroded confidence in the UK banking system. There has also been a military cost; the details remain classified, but its existence has at last been admitted.

Our work also shows that component-level certification, as embodied in both the ITSEC and TCSEC programs, is unlikely to achieve its stated goals. This, too, has been admitted indirectly by the military (at least in the USA); and we would recommend that the next versions of these standards take much more account of the environments in which the components are to be used, and especially the system and human factors.

Most interesting of all, however, is the lesson that the bulk of computer security research and development activity is expended on activities which are of marginal relevance to real needs. A paradigm shift is underway, and a number of recent threads point towards a fusion of security with software engineering, or at the very least to an influx of software engineering ideas.

Our work also raises some very basic questions about goals, and about how the psychology of a design interacts with organisational structure. Should we aim to automate the security process, or enable it to be managed? Do we control or facilitate? Should we aim for monolithic systems, or devise strategies to cope with diversity? Either way, the tools and the concepts are becoming available. At least we should be aware that we have the choice.

Acknowledgement: I owe a significant debt to Karen Sparck Jones, who went through the manuscript of this paper and ruthlessly struck out all the jargon. Without her help, it would have been readable only by specialists.

References

[A1] D Austin, “Marking the Cards”, in Banking Technology, Dec 91/Jan 92, pp 18 - 21

[B] M Buckler MP, letter to plaintiff’s solicitor, 8 June 1992

[CR] Boeing News Digest, quoted in usenet newsgroup ‘comp.risks’ 14 no 5 (29 April 1993)

[JCre] Dorothy Judd v Citibank, 435 NYS, 2d series, pp 210 - 212, 107 Misc.2d 526

[MB] McConville & others v Barclays Bank & others, High Court of Justice Queen’s Bench Division 1992 ORB no.812

[MBW] McConville & others v Barclays Bank & others et, affidavit by D Whalley

[NSP] New Security Paradigms Workshop, 2-5 August 1993, proceedings to be published by the ACM.

[RM] R v Moon, Hastings Crown Court, Feb 92

[S] A Stone, “ATM cards & fraud”, manuscript 1993

