
IP header

F

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

hdr lenvers TOS Total Length

Identification Fragment offsetDM

TTL Protocol hdr checksum

Source IP address

Destination IP address

Options Padding

F0



IP header details

• Routing is based on destination address

• TTL (time to live) decremented at each hop (avoids
loops)

• Fragmentation used for large packets
- Fragmented in network if links crossed with smaller MTU

- MF bit means more fragments for this IP packet

- DF bit says “don’t fragment” (returns error to sender)

• Almost always want to avoid fragmentation
- When fragment is lost, whole packet must be retransmitted

• Following IP header is “payload” data
- Typically beginning with TCP or UDP header



TCP header

padding

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

source port destination port

sequence number

acknowledgment number

reserved
U
R

data

G

A P R S F
C
K

S
H

S
T

Y
N

I
N

Windowdata
offset

checksum urgent pointer

options



TCP fields

• Ports

• Seq no. – segment position in byte stream

• Ack no. – seq no. sender expects to receive next

• Data offset – # of 4-byte header & option words

• Window – willing to receive (flow control)

• Checksum

• Urgent pointer



TCP Flags

• URG – urgent data present

• ACK – ack no. valid (all but first segment)

• PSH – push data up to application immediately

• RST – reset connection

• SYN – “synchronize” establishes connection

• FIN – close connection



A TCP Connection (no data)

orchard.48150 > essex.discard:

S 1871560457:1871560457(0) win 16384

essex.discard > orchard.48150:

S 3249357518:3249357518(0) ack 1871560458 win 17376

orchard.48150 > essex.discard: . ack 1 win 17376

orchard.48150 > essex.discard: F 1:1(0) ack 1 win 17376

essex.discard > orchard.48150: . ack 2 win 17376

essex.discard > orchard.48150: F 1:1(0) ack 2 win 17376

orchard.48150 > essex.discard: . ack 2 win 17375



Connection establishment

• Three-way handshake:
- C → S: SYN, seq SC

- S → C: SYN, seq SS , ack SC + 1

- C → S: ack SS + 1

• If no program listening: server sends RST

• If server backlog exceeded: ignore SYN

• If no SYN-ACK received: retry, timeout



Connection termination

• FIN bit says no more data to send
- Caused by close or shutdown on sending end

- Both sides must send FIN to close a connection

• Typical close:
- A → B: FIN, seq SA, ack SB

- B → A: ack SA + 1

- B → A: FIN, seq SB , ack SA + 1

- A → B: ack SB + 1

• Can also have simultaneous close

• After last message, can A and B forget about
closed socket?



TIME WAIT

• Problems with closed socket
- What if final ack is lost in the network?

- What if the same port pair is immediately reused for a new
connection? (Old packets might still be floating around.)

• Solution: “active” closer goes into TIME WAIT
- Active close is sending FIN before receiving one

- After receiving ACK and FIN, keep socket around for 2MSL
(twice the “maximum segment lifetime”)

• Can pose problems with servers
- OS has too many sockets in TIME WAIT, slows things down

- Hack: Can send RST and delete socket, set SO LINGER
socket option to time 0 (useful for benchmark programs)



Sending data
• Data sent in MSS-sized segments

- Chosen to avoid fragmentation (e.g., 1460 on ethernet LAN)

- Write of 8K might use 6 segments—PSH set on last one

- PSH avoids unnecessary context switches on receiver

• Sender’s OS can delay sends to get full segments
- Nagle algorithm: Only one unacknowledged short segment

- TCP NODELAY option avoids this behavior

• Segments may arrive out of order
- Sequence number used to reassemble in order

• Window achieves flow control
- If window 0 and sender’s buffer full, write will block or

return EAGAIN



A TCP connection (3 byte echo)

orchard.38497 > essex.echo:

S 1968414760:1968414760(0) win 16384

essex.echo > orchard.38497:

S 3349542637:3349542637(0) ack 1968414761 win 17376

orchard.38497 > essex.echo: . ack 1 win 17376

orchard.38497 > essex.echo: P 1:4(3) ack 1 win 17376

essex.echo > orchard.38497: . ack 4 win 17376

essex.echo > orchard.38497: P 1:4(3) ack 4 win 17376

orchard.38497 > essex.echo: . ack 4 win 17376

orchard.38497 > essex.echo: F 4:4(0) ack 4 win 17376

essex.echo > orchard.38497: . ack 5 win 17376

essex.echo > orchard.38497: F 4:4(0) ack 5 win 17376

orchard.38497 > essex.echo: . ack 5 win 17375



Delayed ACKs

• Goal: Piggy-back ACKs on data
- Echo server just echoes, why send separate ack first?

- Delay ACKs for 200 msec in case application sends data

- If more data received, immediately ACK second segment

- Note: Never delay duplicate ACKs (if segment out of order)

• Warning: Can interact badly with Nagle
- “My login has 200 msec delays”

- Set TCP NODELAY

- In libasync library, call tcp nodelay (fd);



Retransmission

• TCP dynamically estimates round trip time

• If segment goes unacknowledged, must retransmit

• Use exponential backoff (in case loss from
congestion)

• After ∼10 minutes, give up and reset connection

• Problem: Don’t necessarily want to halt everything
for one lost packet



Congestion avoidance
• Transmit at just the right rate to avoid congestion

- Slowly increase transmission rate to find maximum

- One lost packet means too fast, cut rate

- Use additive increase, multiplicative decrease

• Sender-maintained congestion window limits rate
- Maximum amount of outstanding data:

min(congestion-window, flow-control-window)

• Cut rate in half after 3 duplicate ACKs
- Fewer duplicates may just have resulted from reordering

- Fast retransmit: resend only lost packet

• If timeout, cut cong. window back to 1 segment
- Slow start – exponentially increase to ss thresh



Other details

• Persist timer
- Sender can block because of 0-sized receive window

- Receiver may open window, but ACK message lost

- Sender keeps probing (sending one byte beyond window)

• Path MTU discovery (optional)
- Dynamically discover appropriate MSS

- Set don’t fragment bit in IP, and binary search on known
sizes


