IP header

0 1 2 3
01234567390123456789012345678901
vers |hdr len TOS Total Length
Identification 0 %1}7/[Fragment offset
TTL Protocol hdr checksum

Source IP address

Destination IP address

Options Padding

IP header details

e Routing is based on destination address

e TTL (time to live) decremented at each hop (avoids
loops)

e Fragmentation used for large packets
- Fragmented in network if links crossed with smaller MTU
- MF bit means more fragments for this IP packet

- DF bit says “don’t fragment” (returns error to sender)

e Almost always want to avoid fragmentation

- When fragment is lost, whole packet must be retransmitted

e Following IP header is “payload” data
- Typically beginning with TCP or UDP header

TCP header

0 1 2 3
01234567890123456739012345678901

source port destination port

sequence number

acknowledgment number

data UA|PR|S|F .
offset | reserved RICIS|S|Y|I Window
G K[H|TNN
checksum urgent pointer
options padding

data

TCP fields

e Ports

e Seq no. — segment position in byte stream

e Ack no. — seq no. sender expects to receive next
e Data offset — # of 4-byte header & option words
e Window - willing to receive (flow control)

e Checksum

e Urgent pointer

TCP Flags

e URG - urgent data present

e ACK - ack no. valid (all but first segment)

e PSH - push data up to application immediately
e RST - reset connection

e SYN - “synchronize” establishes connection

e FIN - close connection

A TCP Connection (no data)

orchard.48150 > essex.discard:

S 1871560457:1871560457(0) win 16384
essex.discard > orchard.48150:

S 3249357518:3249357518(0) ack 1871560458 win 17376
orchard.48150 > essex.discard: . ack 1 win 17376
orchard.48150 > essex.discard: F 1:1(0) ack 1 win 17376
essex.discard orchard.48150: . ack 2 win 17376
orchard.48150: F 1:1(0) ack 2 win 17376

essex.discard: . ack 2 win 17375

essex.discard
orchard.48150

Connection establishment

e Three-way handshake:
- C'— S:SYN, seq S¢
- S — (C: SYN, seq Sg, ack S¢ + 1
-(C — Srack Sg+1

e If no program listening: server sends RST
o If server backlog exceeded: ignore SYN
o If no SYN-ACK received: retry, timeout

Connection termination

e FIN bit says no more data to send
- Caused by close or shutdown on sending end

- Both sides must send FIN to close a connection

e Typical close:

A — B: FIN, seq Sa, ack Sp

B — A:ack S4+1

B — A: FIN, seq Sp,ack 54 +1
- A— B:ackSg+1

e Can also have simultaneous close

o After last message, can A and B forget about
closed socket?

TIME WAIT

e Problems with closed socket
- What if final ack is lost in the network?

- What if the same port pair is immediately reused for a new
connection? (Old packets might still be floating around.)

e Solution: “active” closer goes into TIME_WAIT
- Active close is sending FIN before receiving one

- After receiving ACK and FIN, keep socket around for 2MSL
(twice the “maximum segment lifetime”)

e Can pose problems with servers
- OS has too many sockets in TIME_WALIT, slows things down

- Hack: Can send RST and delete socket, set SO_LINGER
socket option to time 0 (useful for benchmark programs)

Sending data

e Data sent in MSS-sized segments
- Chosen to avoid fragmentation (e.g., 1460 on ethernet LAN)
- Write of 8K might use 6 segments—PSH set on last one

- PSH avoids unnecessary context switches on receiver

e Sender’s OS can delay sends to get full segments

- Nagle algorithm: Only one unacknowledged short segment
- TCP_NODELAY option avoids this behavior

e Segments may arrive out of order

- Sequence number used to reassemble in order

e Window achieves flow control

- If window 0 and sender’s buffer full, write will block or
return EAGAIN

A TCP connection (3 byte echo)

orchard.38497 > essex.echo:

S 1968414760:1968414760(0) win 16384
essex.echo > orchard.38497:

S 3349542637:3349542637(0) ack 1968414761 win 17376
orchard.38497 > essex.echo: . ack 1 win 17376
orchard.38497 > essex.echo: P 1:4(3) ack 1 win 17376
essex.echo > orchard.38497: . ack 4 win 17376
essex.echo > orchard.38497: P 1:4(3) ack 4 win 17376
orchard.38497 > essex.echo: . ack 4 win 17376
orchard.38497 > essex.echo: F 4:4(0) ack 4 win 17376
essex.echo > orchard.38497: . ack 5 win 17376
essex.echo > orchard.38497: F 4:4(0) ack 5 win 17376
orchard.38497 > essex.echo: . ack 5 win 17375

Delayed ACKs

e Goal: Piggy-back ACKs on data

Echo server just echoes, why send separate ack first?

Delay ACKs for 200 msec in case application sends data

If more data received, immediately ACK second segment

Note: Never delay duplicate ACKs (if segment out of order)

e Warning: Can interact badly with Nagle

- “My login has 200 msec delays”
- Set TCP_.NODELAY
- In 1ibasync library, call tcp nodelay (£fd);

Retransmission

e TCP dynamically estimates round trip time
o If segment goes unacknowledged, must retransmit

e Use exponential backoff (in case loss from
congestion)

o After ~10 minutes, give up and reset connection

e Problem: Don’t necessarily want to halt everything
for one lost packet

Congestion avoidance

e Transmit at just the right rate to avoid congestion
- Slowly increase transmission rate to find maximum
- One lost packet means too fast, cut rate

- Use additive increase, multiplicative decrease

e Sender-maintained congestion window limits rate

- Maximum amount of outstanding data:
min(congestion-window, flow-control-window)

e Cut rate in half after 3 duplicate ACKs

- Fewer duplicates may just have resulted from reordering

- Fast retransmit: resend only lost packet

o If timeout, cut cong. window back to 1 segment

- Slow start — exponentially increase to ss thresh

Other details

e Persist timer
- Sender can block because of 0-sized receive window
- Receiver may open window, but ACK message lost

- Sender keeps probing (sending one byte beyond window)

e Path MTU discovery (optional)
- Dynamically discover appropriate MSS

- Set don’t fragment bit in IP, and binary search on known
sizes

