Internet Peering
Review: Routing

- Internet has a loose hierarchy of domains
 - Hosts now local router
 - Local routers know site routers
 - Site routers know core routers
 - Core routers know everything
- Organized by Autonomous System (AS)
- Two-level route propagation
 - Interior gateway protocol (each AS uses own)
 - Exterior gateway protocol (Internet-wide)
Types of ASes

- Local traffic – packets with src or dst in local AS
- Transit traffic – passes through an AS

- Stub AS
 - Connects to only a single other AS

- Multihomed AS
 - Connects to multiple ASes
 - Carries no transit traffic

- Transit AS
 - Connects to multiple ASes and carries transit traffic
How do ASs establish routing?

- Purchase transit services from provider
 - Small ISP receives access to all of transit providers routes, thus has view of entire Internet
 - Simple from customer perspective
 - Often good service due to customer relationship
 - Can become expensive ($100Ks / month)
How do ASs establish routing?

- Establish peering relationships
 - ISPs reciprocally provide access to each others’ customers (announce routes)
 - Peering is not transitive
Three-steps to peering

- Identification of Potential Peers
- Peering Negotiation
- Implementation Discussions
Why peer?

- Lower transit costs
 - Equivalent peering transport is ~10x cheaper
- Lower Latency
- Usage-based traffic billing
 - Lower latency, lower packet loss
 → Handle more traffic from customers
due to TCP congestion control, hence more $
Why not peer?

- Traffic asymmetry and investment
- May be potential for transit sales
- Peering consumes resources
- Don’t help business competitors
- Peers have not Service Level Agreement to guarantee problems get repaired

- Paid peering model emerging if traffic asymmetry reaches ratio (4:1)
With whom to peer?

- Calculate quantities of traffic involved
- Business arrangements / peering policies
- Migration path from transit to peering
 - Access internet via transit from global provider
 - Pursue peering arrangements on public switches
 - Migrate high-traffic public peering to private interconnections (e.g., fiber)
- Attempt to negotiate peering with former transit provider, although difficult
IPv6
IPv6

- Motivation: running out of IP addresses
 - Subnetting and “classless” routing have helped
 - But still hard to achieve 100% address utilization
- Other goals:
 - Header format simplification, reduce common-case processing costs
 - Improved support for extensions and options
 - Flow labeling capability for flows that request special handling, such as QoS or real-time service
 - Authentication, data integrity, data confidentiality
Packet headers

IPv4
32-bit address space

IPv6
128-bit address space
Address Allocation

- Internet organizing as autonomous systems (AS), seek to provide ways to hierarchically aggregate routing information

- Nontransit AS as subscriber (think NYU)

- Transit AS as provider (think UUNET, AT&T)

- Goal is to aggregate routing information to reduce the burden on intradomain routers
 - AT&T needs to know about UUNET, not about NYU
Address Allocation

- Flexible address assignment like CIDR (Classless Inter-Domain Routing for IPv4)

- Before CIDR:
 - 126 Class A (/8), 16,777,214 hosts each
 - Plus 65,000 Class B (/16), 65,534 hosts
 - Plus 2 million+ Class C (/24), 254 hosts

- After CIDR:
 - /15 512 Class C 131,072 hosts
 - /14 1,024 Class C 262,144 hosts
 - /13 2,048 Class C 524,288 hosts
IPv6 address format

3 m n o p 125-m-n-o-p
010 RegistryID ProviderID SubscriberID SubnetID InterfaceID

- Assign sizes of “m” based on size of provider
 - Short m allows more subdivisions
- Could aggregate at geographical boundaries
 - Europe assigned one RegistryID, it handles sub-allocation to European providers
- What if subscriber has more than one provider?
 - 2 providers could share joint prefix

47CD:1234:4422:AC02:0022:1234:A456:0124
Autoconfiguration

- IPv6 supports stateless autoconfiguration
- Two-part problem
 - Obtain interface ID that is unique on link
 - Use Ethernet 48-bit address
 :1234:A456:0124
 - Obtain correct address prefix for that subnet
 - Find prefix from subnet’s router

47CD:1234:4422:AC02:0022:1234:A456:0124
IPv4 to IPv6 Transition

- Deployment must be incrementally
 - IPv4 speak to IPv4 or IPv6
 - IPv6 speak to IPv6 over IPv4 network

- Aggregated Global Unicast Addresses (prefix 001) are like classless addresses

- Two mechanisms for transition
IPv4 to IPv6 Transition: Dual-Stack

- Nodes runs both protocols and use Version field
- IPv4 and IPv6 addresses may be unrelated
- If IPv6 client connects to IPv4 server, server needs IPv4 packet, but client could use IPv4-mapped IPv6 address
 - 2 leading bytes of 1’s, 32-bit address, pad with 0’s
 - ::FFFF:128.96.33.81
IPv4 to IPv6 Transition: Tunneling

- Encapsulate IPv6 as payload of IPv4 pkt
 - Handle TTL correctly (IPv6 sees as single hop)
 - Handle fragmentation carefully
 - Handle IPv4 ICMP msgs and pass back error to IPv6 initiator
Network Address Translation:
A Stop-Gap Mechanism
Network Address Translation

- Ad-hoc way to conserve IP address space currently used while IPv6 not deployed
- Key idea:
 - All hosts do not need globally-unique addresses
 - Hosts could be assigned private, locally-unique addresses, i.e., within NYU (10.*, 192.168.*)
 - If wish to communicate to globally, NAT box translates from private address to global address
- Static NAT, Dynamic NAT
- Overloading (using ports), Overlapping
Network Address Translation

Figure 6: NAT with Port Address Translation (PAT) of global addressing
No global addressability, uniqueness

- Protocols often carry IP address in messages (e.g., active FTP, RTSP), must be specially handled
- Some apps/servers use IP address as identifier: rlogin/rsh, Kerberos, IPsec, ONC RPC/NFS.
- Almost any distributed or "cluster computing" system (e.g., PVM, MPI) use IP as routing id
- Cannot associate state with IP addresses alone
- Peer-to-peer systems
Other problems with NATs

- Persistence of host-to-address binding
 - NATs and application sessions are not aware of one another
- Some applications assume same address, same host (e.g., load balancing)
- Deployment of new apps (e.g., peer-to-peer)
- Reliability, Scalability
- Private address spaces may conflict, esp. coupled with virtual private networks (VPNs)