Ossification of the Internet

e The Internet evolved as an experimental
packet-switched network

e Today, many aspects appear to be “set in stone”
- Witness difficulty in getting IP multicast deployed
- Major obstacles to deployment of IPv6

e Yet many reasons to extend the Internet
- E.g., BGP doesn’t even try to find optimal routes
- Want extensions to routing—multicast, anycast, ...

- Might want greater availability than on Internet

e But can only change end nodes, not routers



Solution: Overlays

e Use Internet to form “virtual links”

e Build your own network on top of Internet
- E.g., RON project greatly increases availability



Tunnels

IHdr IHdr IHdr

OHdr IHdr - OHdr | IHdr

e Use tunnels to form virtual links

- Encapsulate your network packets in IP datagrams

e Examples:
- IPv6-in-IPv4 packets
- Mbone overlays

- End-system multicast

e How to select links?



® ©® 6 & @& &

&

50

R2ﬂ

@

Overlay choice

e Consider topology (a)

@ G

- Naive solution is iterated unicast from
source (b)—suboptimal

®

- Optimal requires router support (c)

- Best overlay would be (d)

e How to select links?
- Use standard routing protocol (DVMRP)

- Want something close to underlying
Internet topology

- But must estimate link costs by
measurement

®@ © ® ©



Triangle inequality

e Want to use links that will improve performance

e Triangle equality holds often, but not always

- Le., Latencies (a — b) £ (a — ¢) + (¢ — a)



Example overlay construction

e View overlay as a mesh embedded in Internet

- Standard routing protocol selects routes in overlay

e Add edges whenever a node joins

- Join means adding edges to one or more existing nodes

o Add edges after failure, or to improve optimality

- ¢ periodically probes random node j

- Add link ¢ < j if sufficiently utility: Z <

A latency w. i < j)

latency without

e Remove based on Cost

- max (# routes w. ¢ — j as first hop,#w. 7 — 1)



Peer-to-peer networks

e Aims to use the bandwidth and storage of the
many hosts

- Sum of access line speeds and disk space

e But to use this collection of machines effectively
requires coordination on a massive scale

- Key challenge: who has the content you are looking for?

e Moreover, the hosts are very flaky
- Behind slow links
- Often connected only a few minutes

- So system must be very robust



Napster

e Centralized search engine:

All hosts with songs register them with central site

Users do keyword search on site to find desired song

Site then lists the hosts that have the song

User then downloads content

e What makes this work?
- Central site only has to handle searches: little bandwidth

- Vast collection of hosts can supply huge aggregate
bandwidth

- System is self-scaling: more users means more resources



What happened to Napster?

e Fastest growing Internet application ever

- P2P traffic became, and remains, one of the biggest sources
of traffic on the Internet!

e But legal issues shut site down

e Centralized system was vulnerable to legal attacks,
and system couldn’t function without central site

- Central point of failure

¢ What can one do without a central site?

- That’s the hard question in peer-to-peer



Gnutella

e An example of an unstructured, decentralized P2P
system

e Context:
- Many hosts join a system
- Each offers to share its own content

- In return, each can make queries for others content

e Goal:

- Enable users to find desired content on other

- Replaces centralized Napster DB with decentralized search



Gnutella approach

OOQ

O O

O O

O
QO

e Step one: form an overlay network

- Each host, when it joins, “connects” to several Gnutella
members

- An “overlay” link is merely the fact that the nodes know
each other’s IP address, and thus can send each other
packets



Gnutella searches

e Step two: search with flood queries

e Each query is flooded within some scope
- Queries are typically keyword searches
- TTL is used to limit scope of flood

- Flooding means you don’t need any routing infrastructure
beyond links

e All responses to queries are forwarded back along
path query came from
- Nodes remember queries they have seen

- Avoids duplicating queries, offers some privacy



Gnutella performance

e Tradeoff: Accuracy vs. cost of queries
- if TTL is small, then searches won’t find desired content

- if TTL is large, network will get overloaded

e Supernode optimization:
- Normal nodes attach to supernodes, who search for them

- Only flood among well-connected supernodes

e Random-walk instead of flooding optimization:

- Provides correct TTL automatically

e Proactive replication

- Replicate content that is frequently queried, to make it
easier to find



“Unstructured Overlay”

e Gnutella is unstructured in two senses:
- Links between nodes are essentially random

- The content of each node is random (at least from the
perspective of Gnutella)

e Implications:
- Can’t route on Gnutella

- Wouldn’t know where to route even if we could



Structured overlays

e Most Gnutella downloads are for
widely-replicated content

- Le.g, Gnutella is good at finding the “hay”

- But how would you find “needles”?

e Need structured overlays
- Say you know name of object
- And only one copy of object in the system

- Can you index object such than anyone can find it?

e Want to lookup up name — value mapping
- Sounds like a hash table



