
Ossification of the Internet

• The Internet evolved as an experimental
packet-switched network

• Today, many aspects appear to be “set in stone”
- Witness difficulty in getting IP multicast deployed

- Major obstacles to deployment of IPv6

• Yet many reasons to extend the Internet
- E.g., BGP doesn’t even try to find optimal routes

- Want extensions to routing—multicast, anycast, . . .

- Might want greater availability than on Internet

• But can only change end nodes, not routers



Solution: Overlays

• Use Internet to form “virtual links”

• Build your own network on top of Internet
- E.g., RON project greatly increases availability



Tunnels

A B C

IHdr ...

IHdrOHdr ... IHdrOHdr ...

IHdr ... IHdr ...

• Use tunnels to form virtual links
- Encapsulate your network packets in IP datagrams

• Examples:
- IPv6-in-IPv4 packets

- Mbone overlays

- End-system multicast

• How to select links?



A

B

C

D

R1 R2

R1 R2

R1 R2

R1 R2

A

B

C

D

A

B

C

D

A

B

C

D

50

5

5

5

5

(a)

(b)

(c)

(d)

Overlay choice

• Consider topology (a)
- Naive solution is iterated unicast from

source (b)—suboptimal

- Optimal requires router support (c)

- Best overlay would be (d)

• How to select links?
- Use standard routing protocol (DVMRP)

- Want something close to underlying
Internet topology

- But must estimate link costs by
measurement



Triangle inequality

10

125

70

• Want to use links that will improve performance

• Triangle equality holds often, but not always
- I.e., Latencies (a → b) 6≤ (a → c) + (c → a)



Example overlay construction

• View overlay as a mesh embedded in Internet
- Standard routing protocol selects routes in overlay

• Add edges whenever a node joins
- Join means adding edges to one or more existing nodes

• Add edges after failure, or to improve optimality
- i periodically probes random node j

- Add link i ↔ j if sufficiently utility:
∑

m6=i

(

∆ latency w. i ↔ j

latency without

)

• Remove based on Cost
- max (# routes w. i → j as first hop, # w. j → i)



Peer-to-peer networks

• Aims to use the bandwidth and storage of the
many hosts

- Sum of access line speeds and disk space

• But to use this collection of machines effectively
requires coordination on a massive scale

- Key challenge: who has the content you are looking for?

• Moreover, the hosts are very flaky
- Behind slow links

- Often connected only a few minutes

- So system must be very robust



Napster

• Centralized search engine:
- All hosts with songs register them with central site

- Users do keyword search on site to find desired song

- Site then lists the hosts that have the song

- User then downloads content

• What makes this work?
- Central site only has to handle searches: little bandwidth

- Vast collection of hosts can supply huge aggregate
bandwidth

- System is self-scaling: more users means more resources



What happened to Napster?

• Fastest growing Internet application ever
- P2P traffic became, and remains, one of the biggest sources

of traffic on the Internet!

• But legal issues shut site down

• Centralized system was vulnerable to legal attacks,
and system couldn’t function without central site

- Central point of failure

• What can one do without a central site?
- That’s the hard question in peer-to-peer



Gnutella

• An example of an unstructured, decentralized P2P
system

• Context:
- Many hosts join a system

- Each offers to share its own content

- In return, each can make queries for others content

• Goal:
- Enable users to find desired content on other

- Replaces centralized Napster DB with decentralized search



Gnutella approach

• Step one: form an overlay network
- Each host, when it joins, “connects” to several Gnutella

members

- An “overlay” link is merely the fact that the nodes know
each other’s IP address, and thus can send each other
packets



Gnutella searches

• Step two: search with flood queries

• Each query is flooded within some scope
- Queries are typically keyword searches

- TTL is used to limit scope of flood

- Flooding means you don’t need any routing infrastructure
beyond links

• All responses to queries are forwarded back along
path query came from

- Nodes remember queries they have seen

- Avoids duplicating queries, offers some privacy



Gnutella performance

• Tradeoff: Accuracy vs. cost of queries
- if TTL is small, then searches won’t find desired content

- if TTL is large, network will get overloaded

• Supernode optimization:
- Normal nodes attach to supernodes, who search for them

- Only flood among well-connected supernodes

• Random-walk instead of flooding optimization:
- Provides correct TTL automatically

• Proactive replication
- Replicate content that is frequently queried, to make it

easier to find



“Unstructured Overlay”

• Gnutella is unstructured in two senses:
- Links between nodes are essentially random

- The content of each node is random (at least from the
perspective of Gnutella)

• Implications:
- Can’t route on Gnutella

- Wouldn’t know where to route even if we could



Structured overlays

• Most Gnutella downloads are for
widely-replicated content

- I.e.g, Gnutella is good at finding the “hay”

- But how would you find “needles”?

• Need structured overlays
- Say you know name of object

- And only one copy of object in the system

- Can you index object such than anyone can find it?

• Want to lookup up name → value mapping
- Sounds like a hash table


