Final exam

• **Monday, May 10** – **Don’t miss it!**
 - Open Book, Open Note
 - Exam covers full semester
 - Bring copies of the papers

• **If you can’t make exam, speak to me now**
 - If there is demand, will schedule something 2 hrs. earlier
End of semester schedule

• Lab 2A due tonight, 2B due next Tuesday

• Sections:
 - Antonio will answer review questions in this week's sections
 - No lecture next Tuesday
 - I will have review sections next Wednesday, Thursday

• My office hours schedule:
 - Wednesday April 27, 4:30-5:30pm
 - No office hours Monday, May 2
 - Thursday May 5, 5-6pm
 - Friday May 6, 4-5pm
 - Monday May 9, 4:30-5:30pm
SSH overview

• Widely-used secure remote login program

• MACs/encrypts all data sent over the network
 - Version 2 of protocol basically gets this right
 - Open to man in the middle attack on first server access

• Often sends password at start of session
 - Gets sent encrypted in a single TCP packet

• Assuming crypto secure (& no MiM), how to attack?
Packet size

- Transmitted packets rounded to multiple of 8 bytes
 - Version 1 even had exact packet-size in the clear

- Can tell if user’s password is less than 7 chars
 - Password sent in one packet of initial exchange

- Why do we care?
 - Might tell you which account to try to crack
Inter-keystroke timings

- Each character typed causes a packet to be sent
 - Typical inter-character times 10–300 msec
 - Typical network round-trip time 10 of msec
 - Can get very accurate timing information by eavesdropping

- What can you learn from this?
 - Some character sequences harder to type than others
 - E.g., v–b is much slower to type than v–o
 - In general, characters with different hands faster
 - Two characters typed with same finger are much slower
 - Digits, special chars also slower

- Idea: Use timing to learn about passwords
Character latency

Latency (milliseconds)

Ratio of character pairs

- Yellow: Two letter keys, alternating hands
- Red: A letter and a number, alternating hands
- Green: Two letters, same hand, different fingers
- Blue: Two letters, same finger
- Black: A letter and a number, same hand

Latency (milliseconds):
- < 100
- 100–150
- 150–200
- 200–250
- 250–300
- > 300
How to know password is being typed

- **Traffic signature**
 - E.g., echo turned off when password typed

- **Multi-user attack**
 - E.g., run `ps` on machine to see when victim runs `pgp`

- **Nested ssh attack**
 - See remote host open SSH connection to another host
Example: su command

- “Password:” prompt – 28 char packet
- Echo turned off for password, no return packets
Modeling keystroke timings

- **Assume Gaussian-like distribution of timings**
 - For each key pair q, mean time μ_q, stdev σ_q
 - Prob. of timing y \(\Pr[y|q] = \frac{1}{\sqrt{2\pi\sigma_q}} e^{-\frac{(y-\mu_q)^2}{2\sigma_q^2}} \)
 - Significant but far from complete overlap between key pairs

- **Model keystrokes as HMM**
 - Each key pair is a state, timing an observation
 - AI techniques allow you to get n best choices
Latency vs. probability of key pairs
Results

• Experiment: Assign users random passwords
 - Picked from a reduced set of characters
 - Users practice typing the password before experiments

• Train on users typing individual key pairs

• Ignore pause in the middle of passwords

• Output most likely password

• Bottom line: $50 \times$ reduction in brute-force cracking
 - Half the time password shows up in top 1% output
How to work around the problem

• Send dummy packets when in echo mode
 - Foils traffic signature detection of passwords

• Adding random delays to packets?
 - Latencies in 100s of msec, so need big random delays
 - Can still get info by averaging many sessions
 - Delay might get seriously annoying

• Constant bit-rate traffic
 - Practical for one session over a modem
Discussion

• How serious is this vulnerability?
 - Would this matter in a system like TAOS?

• What else could this technique be applied to?

• Other possible solutions to the problem?
Related attacks

• Timing attacks on crypto
 - Can infer information about private keys by time to decrypt

• RSA solution: “blinding”
 - Pub key $\langle n, e \rangle$, priv key $\langle n, d \rangle$, want to compute $c^d \mod n$
 - Chose random r, compute $b = (r^{-1})^e \mod n$
 - Compute $(bm)^d r \mod n$

• Other similar attacks
 - Power consumption
 - Fault-based attacks (on tamper-proof hardware)
Review

- Why chosen ciphertext security matters
- Prudent Engineering Practice
- Client Authentication on the Web
- Kerberos
- Terra
- Inferring errors in systems code
- Address space randomization
Review 2

- Software fault isolation
- Security Architectures for Java
- Byzantine fault tolerance
- Listen and Whisper
- Dynamic Taint Analysis
- Crowds
- Electronic Voting