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Motivation

Scenario – Want to test a new application on a hundred nodes

Workstation

Workstation

Workstation

Workstation

WorkstationWorkstation

Workstation Workstation

WorkstationWorkstation

Problem – Need to push software to all nodes and collect results
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Current Approaches

Distribute from a central server

Client

Client

Client

Network A Network B

Server

rsync, unison, scp

– Server’s network uplink saturates
I Operation takes a long time to finish

– Wastes bandwidth along bottleneck links
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Current Approaches

File distribution mechanisms

BitTorrent, Bullet

+ Scales by offloading burden on server

– Client downloads from half-way across the world
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Inherent Problems with Copying Files

Users have to decide a priori what to ship

I Ship too much – Waste bandwidth, takes long time

I Ship too little – Hassle to work in a poor environment

Idle environments consume disk space

I Users are loath to cleanup ⇒ Redistribution

I Need low cost solution for refetching files

Manual management of software versions

Illusion of having development environment
Programs fetched transparently on demand
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Networked File Systems

+ Know how to deploy these systems

+ Know how to administer such systems

+ Simple accountability mechanisms

Eg: NFS, AFS, SFS etc.
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Problem: Scalability
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Very slow ≈ 775s
Much better !!! ≈ 88s (9x better)
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Peer-to-Peer Filesystems

P2P Filesystems (Pond, Ivy)

+ Scalability

– Non-standard administrative models

– New filesystem semantics

– Haven’t been widely deployed yet

Goal – Best of Both Worlds

I Convenience of central servers

I Scalability of peer-to-peer
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Let’s Design this New Filesystem

ServerClient

Vanilla SFS

I Central server model
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Scalability – Client-side Caching

ServerClient
Cache

Large client cache à la AFS

I Scales by avoiding redundant data transfers

I Leases to ensure NFS-style cache consistency

I With multiple clients, must address bandwidth concerns
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Scalability – Cooperative Caching

ServerClient

Client
Client

Client

Client
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Scalability – Cooperative Caching

Clients fetch data from each other and offload burden from server

ServerClient

Client
Client

Client

Client

I Shark clients maintain a distributed index
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Scalability – Cooperative Caching

Clients fetch data from each other and offload burden from server

Server

Client
Client

Client

Client

Client

I Shark clients maintain a distributed index

I Fetch a file from multiple other clients in parallel
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Scalability – Cooperative Caching

Clients fetch data from each other and offload burden from server

Server

Client
Client

Client

Client

Client

I Shark clients maintain a distributed index

I Fetch a file from multiple other clients in parallel
I LBFS-style Chunks – Variable-sized blocks
I Chunks are better – Exploit commonalities across files
I Chunks preserved across file versions, concatenations
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Scalability – Cooperative Caching

Clients fetch data from each other and offload burden from server

Server

Client
Client

Client

Client

Client

I Shark clients maintain a distributed index

I Fetch a file from multiple other clients in parallel

I Locality-awareness – Preferentially fetch chunks from nearby
clients
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Cross-filesystem Sharing

Global cooperative cache regardless of origin servers

Client

Client
Client

Client

Client
Client

Client
Client

Client

Client

Server Server
A B

I Two groups of clients accessing servers A and B

I Client groups share a large amount of software

I Such clients automatically form a global cache
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Cross-filesystem Sharing

Global cooperative cache regardless of origin servers

Client

Client
Client

Client

Client
Client

Client
Client

Client

Client

Server Server
A B

I Two groups of clients accessing servers A and B

I Client groups share a large amount of software

I Such clients automatically form a global cache
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Application

Linux distribution with LiveCDs

Sharkcd

Sharkcd

Sharkcd

Sharkcd

Knoppix

Knoppix
  Mirror

Knoppix

Knoppix

Slax

Slax

Slax

I LiveCD – Run an entire OS without using hard disk

I But all your programs must fit on a CD-ROM

I Download dynamically from server but scalability problems

I Knoppix and Slax users form global cache – Relieve servers
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Cooperative Caching – Roadmap

Client Client

Client

Server

Client

Client

Fetch Metadata

I Fetch metadata from the server
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Cooperative Caching – Roadmap

Client Client

Client

Server

Client

Client

Lookup Clients

I Fetch metadata from the server

I Look up clients caching needed chunks in overlay
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Cooperative Caching – Roadmap

Client Client

Client

Server

Client

Client

Download Chunks

I Fetch metadata from the server

I Look up clients caching needed chunks in overlay

I Connect to multiple clients and download chunks in parallel
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Cooperative Caching – Roadmap

Client Client

Client

Server

Client

Client

Download Chunks

I Fetch metadata from the server

I Look up clients caching needed chunks in overlay

I Connect to multiple clients and download chunks in parallel

I Check integrity of fetched chunks

Clients are mutually distrustful
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File Metadata

Client Server
Metadata:

(fh,offset,count)
GET_TOKEN

Chunk tokens
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File Metadata

Client Server
Metadata:

(fh,offset,count)
GET_TOKEN

Chunk tokens

I Possession of token implies server permissions to read
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File Metadata

Client Server
Metadata:

(fh,offset,count)
GET_TOKEN

Chunk tokens

I Possession of token implies server permissions to read

I Tokens are a shared secret between authorized clients
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File Metadata

Client Server
Metadata:

(fh,offset,count)
GET_TOKEN

Chunk tokens

I Possession of token implies server permissions to read

I Tokens are a shared secret between authorized clients

Given a chunk B...

I Chunk token TB = H(B)

I H is a collision resistant hash function
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File Metadata

Client Server
Metadata:

(fh,offset,count)
GET_TOKEN

Chunk tokens

I Possession of token implies server permissions to read

I Tokens are a shared secret between authorized clients

I Tokens can be used to check integrity of fetched data

Given a chunk B...

I Chunk token TB = H(B)

I H is a collision resistant hash function
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Discovering Clients Caching Chunks

Client Client

Client

Server

Client

Client

Discover Clients

I For every chunk B, there’s indexing key IB
I IB used to index clients caching B

I Cannot set IB = TB, as TB is a secret
I IB = MAC (TB, “Indexing Key”)
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Locality Awareness

Client

Client

Client

Client

Network A Network B

I Overlay organized as clusters based on latency

I Indexing infrastructure preferentially returns sources in same
cluster as the client

I Hence, chunks usually transferred from nearby clients

Siddhartha Annapureddy Shark



Final Steps

Download Chunk

I Security issues discussed later

Register as a source

I Client now becomes a source for the downloaded chunk

I Client registers in distributed index – PUT(IB, Addr)

Chunk Reconciliation

I Reuse connection to download more chunks

I Exchange mutually needed chunks w/o indexing overhead
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Security Issues – Client Authentication

Client Client

Client

Server

Client

Client

Traditional
Authentication

I Traditionally, server authenticated read requests using uids
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Security Issues – Client Authentication

Client Client

Client

Server

Client

Client

Traditional
Authentication        From Token

Authenticator Derived

I Traditionally, server authenticated read requests using uids

I Challenge – How does a client know when to send chunks?

I Chunk token allows client to identify authorized clients
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Security Issues – Client Communication

I Client should be able to check integrity of downloaded chunk

I Client should not send chunks to other unauthorized clients

I An eavesdropper shouldn’t be able to obtain chunk contents
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Security Protocol

Client

Receiver

Client

Source
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Security Protocol

Client

Receiver

Client

Source

RC

RP

I RC, RP – Random nonces to ensure freshness
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Security Protocol

Client

Receiver

Client

Source

RC

RP

IB, AuthC

EK(B)

I RC, RP – Random nonces to ensure freshness

I AuthC – Authenticator to prove receiver has token
I AuthC = MAC (TB, “Auth C”, C,P,RC,RP)
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Security Protocol

Client

Receiver

Client

Source

RC

RP

IB, AuthC

EK(B)

I RC, RP – Random nonces to ensure freshness

I AuthC – Authenticator to prove receiver has token
I AuthC = MAC (TB, “Auth C”, C,P,RC,RP)

I K – Key to encrypt chunk contents
I K = MAC (TB, “Encryption”, C,P,RC,RP)
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Security Properties

Client

Receiver

Client

Source

RC

RP

IB, AuthC

EK(B)

Client can check integrity of downloaded chunk

I Client checks H(Downloaded chunk)
?
= TB

Source should not send chunks to unauthorized clients

I Malicious clients cannot send correct AuthC

Eavesdropper shouldn’t get chunk contents

I All communication encrypted with K
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Security Properties

Client

Receiver

Client

Source

RC

RP

IB, AuthC

EK(B)

Privacy limitations for world-readable files

I Eavesdropper can track lookups of clients

I Eavesdropper hashes data, finds what exactly client downloads

For private files, solution described in paper

I Sacrifices cross-FS sharing for better privacy

Forward Secrecy not guaranteed
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Implementation

Sharksd

  Server
NFS  V3

Application

Syscall

 Sharkcd

Corald

NFS V3
    Client

Application

Syscall

 Sharkcd

Corald

NFS V3
Client

Server

Client Client

I sharkcd – Incorporates source-receiver client functionality
I sharksd – Incorporates chunking mechanisms
I corald – A node in the indexing infrastructure
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Evaluation

I How does Shark compare with SFS? With NFS?

I How scalable is the server?

I How fair is Shark across clients?

I Which order is better? Random or Sequential

I What are the benefits of set reconciliation?
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Emulab – 100 Nodes on LAN
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I Shark – 88s
I SFS – 775s (≈ 9x better), NFS – 350s (≈ 4x better)
I SFS less fair because of TCP backoffs
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PlanetLab – 185 Nodes
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I Shark ≈ 7 min – 95th Percentile

I SFS ≈ 39 min – 95th Percentile (5x better)

I NFS – Triggered kernel panics in server
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Data pushed by Server

SFS Shark
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I Shark vs SFS – 23 copies vs 185 copies (8x better)
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Data served by Clients
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PlanetLab hosts
Shark, 40MB

I Maximum contribution ≈ 3.5 copies

I Median contribution ≈ 1.5 copies

I Minimum contribution ≈ 0.75 copies
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Fetching Chunks – Order Matters

I In what order should we fetch chunks of a file?

I Natural choices – Random or Sequential

Intuitively, when many clients start simultaneously

I Random
I All clients fetch independent chunks
I More chunks become available in the cooperative cache

I Sequential
I Better disk I/O scheduling on the server
I Client that downloads most chunks alone adds to cache
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Emulab – 100 Nodes on LAN
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I Random – 133s
I Sequential – 203s
I Random Wins !!! – 35% better
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Emulab – 100 Nodes on LAN
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I Random + Reconciliation – 88s
I Random – 133s
I Reconciliation crucial – 34% improvement
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Conclusions

I Networked filesystems offer a convenient interface

I Current networked filesystems like NFS are not scalable
I Forces users to resort to inconvenient tools like rsync

I Shark offers a filesystem that scales to hundreds of clients
I Locality-aware cooperative cache
I Supports cross-FS sharing enabling novel applications
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Questions

http://www.scs.cs.nyu.edu/shark
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