
Shark: Scaling File Servers via Cooperative

Caching

Siddhartha Annapureddy Michael J. Freedman David Mazières

New York University

Networked Systems Design and Implementation, 2005

Siddhartha Annapureddy Shark

Motivation

Scenario – Want to test a new application on a hundred nodes

Workstation

Workstation

Workstation

Workstation

WorkstationWorkstation

Workstation Workstation

WorkstationWorkstation

Problem – Need to push software to all nodes and collect results

Siddhartha Annapureddy Shark

Current Approaches

Distribute from a central server

Client

Client

Client

Network A Network B

Server

rsync, unison, scp

– Server’s network uplink saturates
I Operation takes a long time to finish

– Wastes bandwidth along bottleneck links

Siddhartha Annapureddy Shark

Current Approaches

File distribution mechanisms

BitTorrent, Bullet

+ Scales by offloading burden on server

– Client downloads from half-way across the world

Siddhartha Annapureddy Shark

Inherent Problems with Copying Files

Users have to decide a priori what to ship

I Ship too much – Waste bandwidth, takes long time

I Ship too little – Hassle to work in a poor environment

Idle environments consume disk space

I Users are loath to cleanup ⇒ Redistribution

I Need low cost solution for refetching files

Manual management of software versions

Illusion of having development environment
Programs fetched transparently on demand

Siddhartha Annapureddy Shark

Networked File Systems

+ Know how to deploy these systems

+ Know how to administer such systems

+ Simple accountability mechanisms

Eg: NFS, AFS, SFS etc.

Siddhartha Annapureddy Shark

Problem: Scalability

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100

T
im

e
to

 fi
ni

sh
 R

ea
d

(s
ec

)

Unique nodes

40 MB read
SFS

Very slow ≈ 775s

Siddhartha Annapureddy Shark

Problem: Scalability

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100

T
im

e
to

 fi
ni

sh
 R

ea
d

(s
ec

)

Unique nodes

40 MB read
SFS
Shark

Very slow ≈ 775s
Much better !!! ≈ 88s (9x better)

Siddhartha Annapureddy Shark

Peer-to-Peer Filesystems

P2P Filesystems (Pond, Ivy)

+ Scalability

– Non-standard administrative models

– New filesystem semantics

– Haven’t been widely deployed yet

Goal – Best of Both Worlds

I Convenience of central servers

I Scalability of peer-to-peer

Siddhartha Annapureddy Shark

Let’s Design this New Filesystem

ServerClient

Vanilla SFS

I Central server model

Siddhartha Annapureddy Shark

Scalability – Client-side Caching

ServerClient
Cache

Large client cache à la AFS

I Scales by avoiding redundant data transfers

I Leases to ensure NFS-style cache consistency

I With multiple clients, must address bandwidth concerns

Siddhartha Annapureddy Shark

Scalability – Cooperative Caching

ServerClient

Client
Client

Client

Client

Siddhartha Annapureddy Shark

Scalability – Cooperative Caching

Clients fetch data from each other and offload burden from server

ServerClient

Client
Client

Client

Client

I Shark clients maintain a distributed index

Siddhartha Annapureddy Shark

Scalability – Cooperative Caching

Clients fetch data from each other and offload burden from server

Server

Client
Client

Client

Client

Client

I Shark clients maintain a distributed index

I Fetch a file from multiple other clients in parallel

Siddhartha Annapureddy Shark

Scalability – Cooperative Caching

Clients fetch data from each other and offload burden from server

Server

Client
Client

Client

Client

Client

I Shark clients maintain a distributed index

I Fetch a file from multiple other clients in parallel
I LBFS-style Chunks – Variable-sized blocks
I Chunks are better – Exploit commonalities across files
I Chunks preserved across file versions, concatenations

Siddhartha Annapureddy Shark

Scalability – Cooperative Caching

Clients fetch data from each other and offload burden from server

Server

Client
Client

Client

Client

Client

I Shark clients maintain a distributed index

I Fetch a file from multiple other clients in parallel

I Locality-awareness – Preferentially fetch chunks from nearby
clients

Siddhartha Annapureddy Shark

Cross-filesystem Sharing

Global cooperative cache regardless of origin servers

Client

Client
Client

Client

Client
Client

Client
Client

Client

Client

Server Server
A B

I Two groups of clients accessing servers A and B

I Client groups share a large amount of software

I Such clients automatically form a global cache

Siddhartha Annapureddy Shark

Cross-filesystem Sharing

Global cooperative cache regardless of origin servers

Client

Client
Client

Client

Client
Client

Client
Client

Client

Client

Server Server
A B

I Two groups of clients accessing servers A and B

I Client groups share a large amount of software

I Such clients automatically form a global cache

Siddhartha Annapureddy Shark

Application

Linux distribution with LiveCDs

Sharkcd

Sharkcd

Sharkcd

Sharkcd

Knoppix

Knoppix
 Mirror

Knoppix

Knoppix

Slax

Slax

Slax

I LiveCD – Run an entire OS without using hard disk

I But all your programs must fit on a CD-ROM

I Download dynamically from server but scalability problems

I Knoppix and Slax users form global cache – Relieve servers

Siddhartha Annapureddy Shark

Cooperative Caching – Roadmap

Client Client

Client

Server

Client

Client

Fetch Metadata

I Fetch metadata from the server

Siddhartha Annapureddy Shark

Cooperative Caching – Roadmap

Client Client

Client

Server

Client

Client

Lookup Clients

I Fetch metadata from the server

I Look up clients caching needed chunks in overlay

Siddhartha Annapureddy Shark

Cooperative Caching – Roadmap

Client Client

Client

Server

Client

Client

Download Chunks

I Fetch metadata from the server

I Look up clients caching needed chunks in overlay

I Connect to multiple clients and download chunks in parallel

Siddhartha Annapureddy Shark

Cooperative Caching – Roadmap

Client Client

Client

Server

Client

Client

Download Chunks

I Fetch metadata from the server

I Look up clients caching needed chunks in overlay

I Connect to multiple clients and download chunks in parallel

I Check integrity of fetched chunks

Clients are mutually distrustful

Siddhartha Annapureddy Shark

File Metadata

Client Server
Metadata:

(fh,offset,count)
GET_TOKEN

Chunk tokens

Siddhartha Annapureddy Shark

File Metadata

Client Server
Metadata:

(fh,offset,count)
GET_TOKEN

Chunk tokens

I Possession of token implies server permissions to read

Siddhartha Annapureddy Shark

File Metadata

Client Server
Metadata:

(fh,offset,count)
GET_TOKEN

Chunk tokens

I Possession of token implies server permissions to read

I Tokens are a shared secret between authorized clients

Siddhartha Annapureddy Shark

File Metadata

Client Server
Metadata:

(fh,offset,count)
GET_TOKEN

Chunk tokens

I Possession of token implies server permissions to read

I Tokens are a shared secret between authorized clients

Given a chunk B...

I Chunk token TB = H(B)

I H is a collision resistant hash function

Siddhartha Annapureddy Shark

File Metadata

Client Server
Metadata:

(fh,offset,count)
GET_TOKEN

Chunk tokens

I Possession of token implies server permissions to read

I Tokens are a shared secret between authorized clients

I Tokens can be used to check integrity of fetched data

Given a chunk B...

I Chunk token TB = H(B)

I H is a collision resistant hash function

Siddhartha Annapureddy Shark

Discovering Clients Caching Chunks

Client Client

Client

Server

Client

Client

Discover Clients

I For every chunk B, there’s indexing key IB
I IB used to index clients caching B

I Cannot set IB = TB, as TB is a secret
I IB = MAC (TB, “Indexing Key”)

Siddhartha Annapureddy Shark

Locality Awareness

Client

Client

Client

Client

Network A Network B

I Overlay organized as clusters based on latency

I Indexing infrastructure preferentially returns sources in same
cluster as the client

I Hence, chunks usually transferred from nearby clients

Siddhartha Annapureddy Shark

Final Steps

Download Chunk

I Security issues discussed later

Register as a source

I Client now becomes a source for the downloaded chunk

I Client registers in distributed index – PUT(IB, Addr)

Chunk Reconciliation

I Reuse connection to download more chunks

I Exchange mutually needed chunks w/o indexing overhead

Siddhartha Annapureddy Shark

Security Issues – Client Authentication

Client Client

Client

Server

Client

Client

Traditional
Authentication

I Traditionally, server authenticated read requests using uids

Siddhartha Annapureddy Shark

Security Issues – Client Authentication

Client Client

Client

Server

Client

Client

Traditional
Authentication From Token

Authenticator Derived

I Traditionally, server authenticated read requests using uids

I Challenge – How does a client know when to send chunks?

I Chunk token allows client to identify authorized clients

Siddhartha Annapureddy Shark

Security Issues – Client Communication

I Client should be able to check integrity of downloaded chunk

I Client should not send chunks to other unauthorized clients

I An eavesdropper shouldn’t be able to obtain chunk contents

Siddhartha Annapureddy Shark

Security Protocol

Client

Receiver

Client

Source

Siddhartha Annapureddy Shark

Security Protocol

Client

Receiver

Client

Source

RC

RP

I RC, RP – Random nonces to ensure freshness

Siddhartha Annapureddy Shark

Security Protocol

Client

Receiver

Client

Source

RC

RP

IB, AuthC

EK(B)

I RC, RP – Random nonces to ensure freshness

I AuthC – Authenticator to prove receiver has token
I AuthC = MAC (TB, “Auth C”, C,P,RC,RP)

Siddhartha Annapureddy Shark

Security Protocol

Client

Receiver

Client

Source

RC

RP

IB, AuthC

EK(B)

I RC, RP – Random nonces to ensure freshness

I AuthC – Authenticator to prove receiver has token
I AuthC = MAC (TB, “Auth C”, C,P,RC,RP)

I K – Key to encrypt chunk contents
I K = MAC (TB, “Encryption”, C,P,RC,RP)

Siddhartha Annapureddy Shark

Security Properties

Client

Receiver

Client

Source

RC

RP

IB, AuthC

EK(B)

Client can check integrity of downloaded chunk

I Client checks H(Downloaded chunk)
?
= TB

Source should not send chunks to unauthorized clients

I Malicious clients cannot send correct AuthC

Eavesdropper shouldn’t get chunk contents

I All communication encrypted with K

Siddhartha Annapureddy Shark

Security Properties

Client

Receiver

Client

Source

RC

RP

IB, AuthC

EK(B)

Privacy limitations for world-readable files

I Eavesdropper can track lookups of clients

I Eavesdropper hashes data, finds what exactly client downloads

For private files, solution described in paper

I Sacrifices cross-FS sharing for better privacy

Forward Secrecy not guaranteed

Siddhartha Annapureddy Shark

Implementation

Sharksd

 Server
NFS V3

Application

Syscall

 Sharkcd

Corald

NFS V3
 Client

Application

Syscall

 Sharkcd

Corald

NFS V3
Client

Server

Client Client

I sharkcd – Incorporates source-receiver client functionality
I sharksd – Incorporates chunking mechanisms
I corald – A node in the indexing infrastructure

Siddhartha Annapureddy Shark

Evaluation

I How does Shark compare with SFS? With NFS?

I How scalable is the server?

I How fair is Shark across clients?

I Which order is better? Random or Sequential

I What are the benefits of set reconciliation?

Siddhartha Annapureddy Shark

Emulab – 100 Nodes on LAN

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

P
er

ce
nt

ag
e

co
m

pl
et

ed
 w

ith
in

 ti
m

e

Time since initialization (sec)

40 MB read
Shark, rand, negotiation
NFS
SFS

I Shark – 88s
I SFS – 775s (≈ 9x better), NFS – 350s (≈ 4x better)
I SFS less fair because of TCP backoffs

Siddhartha Annapureddy Shark

PlanetLab – 185 Nodes

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

P
er

ce
nt

ag
e

co
m

pl
et

ed
 w

ith
in

 ti
m

e

Time since initialization (sec)

40 MB read
Shark
SFS

I Shark ≈ 7 min – 95th Percentile

I SFS ≈ 39 min – 95th Percentile (5x better)

I NFS – Triggered kernel panics in server

Siddhartha Annapureddy Shark

Data pushed by Server

SFS Shark
0.0

0.5

1.0

N
or

m
al

iz
ed

 b
an

dw
id

th

7400

954

I Shark vs SFS – 23 copies vs 185 copies (8x better)

Siddhartha Annapureddy Shark

Data served by Clients

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90B
an

dw
id

th
 tr

an
sm

itt
ed

 (
M

B
)

Unique Shark proxies

PlanetLab hosts
Shark, 40MB

I Maximum contribution ≈ 3.5 copies

I Median contribution ≈ 1.5 copies

I Minimum contribution ≈ 0.75 copies

Siddhartha Annapureddy Shark

Fetching Chunks – Order Matters

I In what order should we fetch chunks of a file?

I Natural choices – Random or Sequential

Intuitively, when many clients start simultaneously

I Random
I All clients fetch independent chunks
I More chunks become available in the cooperative cache

I Sequential
I Better disk I/O scheduling on the server
I Client that downloads most chunks alone adds to cache

Siddhartha Annapureddy Shark

Emulab – 100 Nodes on LAN

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

P
er

ce
nt

ag
e

co
m

pl
et

ed
 w

ith
in

 ti
m

e

Time since initialization (sec)

40 MB read
Shark, rand
Shark, seq

I Random – 133s
I Sequential – 203s
I Random Wins !!! – 35% better

Siddhartha Annapureddy Shark

Emulab – 100 Nodes on LAN

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

P
er

ce
nt

ag
e

co
m

pl
et

ed
 w

ith
in

 ti
m

e

Time since initialization (sec)

40 MB read
Shark, rand
Shark, rand, negotiation

I Random + Reconciliation – 88s
I Random – 133s
I Reconciliation crucial – 34% improvement

Siddhartha Annapureddy Shark

Conclusions

I Networked filesystems offer a convenient interface

I Current networked filesystems like NFS are not scalable
I Forces users to resort to inconvenient tools like rsync

I Shark offers a filesystem that scales to hundreds of clients
I Locality-aware cooperative cache
I Supports cross-FS sharing enabling novel applications

Siddhartha Annapureddy Shark

Questions

http://www.scs.cs.nyu.edu/shark

Siddhartha Annapureddy Shark

