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Oh ye web apps…



Recipe for disaster

      

 if ((err = SSLHashSHA1.upda 
  goto fail; 
 if ((err = SSLHashSHA1.upda 
  goto fail; 
  goto fail; 
 if ((err = SSLHashSHA1.fina 
  goto fail; 
    

2. Programming models follow the 
principle of most privilege  
➠ ad-hoc security mechanisms

3. Developers write buggy code

1. Apps handle sensitive user data



Example: ghost.org

• Production blog app’s data model:

id authors pub? title body
0 alice FALSE … …

1 bob, claire TRUE … …

user password email name
alice 0dea48ff … A. Alyokhina

bob 15a8ccd8f … B. Digital
claire v3991e5 … C. Hopper

Blog posts: Users:

➤ Sensitive data: unpublished posts, passwords, emails

• App functionality: 

➤ List all posts, show post, show user profile, …
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App services Storage

• By default, handlers are most privileged 

➤ Unrestricted access to storage, fs, net, child process, … 

• Developers retrofit security on top
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Problem with existing approach

• Missing single security check ➠ vulnerability 

➤ E.g., ghost.org exposed passwords and drafts 

• Checks don’t always extend to third-party libs 

➤ Libraries may expose vulnerabilities 

• Damage due to vulnerabilities can be grave 

➤ All code runs with same privilege 

➤ E.g., st library didn’t handle “..” correctly ➠ leaked files
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• Minimize trusted computing base (TCB)  
 
 
 

➤ Make security robust to bugs in most code 

• Challenge: perennial goal in computer security 

➤ Can we actually do this?

Change how developers build apps

TCB TCB

➠libk.js libn.js tcb.js rh1.js libk.js libn.jsrh1.js rh2.js



Can we do this for Node.js?



JavaScript is well-suited  
for executing untrusted code

Turns out…

…if you just look at it just right



Node.js apps at a high level

• Code runs in (V8) contexts 

➤ Global object + execution stack 

• Language (EcmaScript) doesn’t 
have built-in IO 

• Embedder (Node.js) attaches props 
to global object to provide IO 

➤ E.g., fs, http, net, process, etc.

OS process

V8 ctxArray

Math

eval

…

fs

http

app  
code



• Expose V8 contexts as isolation primitives 

➤ New context has separate heap: no access to fs, etc. 

• Execute untrusted code in new contexts 

➤ E.g., run different request handlers in isolation  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Looking at it just right

ctx1main ctx2



• By default, code has minimal privileges 

➤ Can’t do anything except execute “pure” JavaScript 

• Problem: real code needs to perform IO 

➤ Fresh contexts do not have access to Node.js APIs 

• Solution: expose message passing primitives 

➤ Untrusted context can send and receive messages to 
and from main/parent context 

➤ To perform IO: ask parent context to do it

Providing useful APIs to ctxs
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Virtualization w/ message passing

• Function calls ➠ messages to parent context 

➤ Parent can perform checks before (and after) calling 
actual function 

➤ E.g., implementing synchronous file read:  
 
 
 
 

ctx1.js 
fs.readFileSync = function (fname, opts) { 
 return _espectro.RPC(‘fs:readFileSync’)(fname, opts); 
} 
// ...

main.js 
var ctx1 = new Ctx(‘ctx1.js’); 
ctx1.onrpc(‘fs:readFileSync’, function (fname, opts) { 
  if (!(fname in _allowed)) throw ‘denied!’; 
  var res = fs.readFileSync(fname, opts) 
  return res; 
});



• In untrusted contexts: core libraries using  
message passing 

• In main context: hooks library used to register 
pre/post hooks for each function call 

➤ High-level policies implemented atop hooks  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Different architectures

• App / context 
 

• Controller / context  
 

• Request / context
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Least privileged ghost.org
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• By default, handlers are least privileged 

➤ Restricted access to storage, fs, net, etc. according to 
current user and app functionality  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App services Storage

• By default, handlers are least privileged 

➤ Restricted access to storage, fs, net, etc. according to 
current user and app functionality  

Only read post if curr user is author or post is published.

Only read/write rows where current user is owner.



Consequence of design

• Policy can be declarative specified in main context 

• Policy extends to third-party libraries 

➤ Policy applies to request handler and any library it uses 

• DAC policies can limit damage due to bugs 

➤ Fine-grained/user request limits attack surface 

• MAC policies can prevent damage due to bugs 

➤ MAC enforces policy even once code has acces to data



Beyond access control

• Virtualization layer can be used for: 

➤ Transparently encrypting/decrypting files 

➤ Caching files, DB queries, responses, etc. 

➤ Rewriting HTML to add CSRF tokens 

➤ MACing cookies 

➤ Setting custom headers (e.g., CSP, SRI, etc.) 

➤ …



Conclusions

• Today: writing insecure code is the default 

➤ Building least-privileged apps is notoriously difficult 

• App-level virtualization can be used to protect 
app from itself and third-party code 

➤ Policy must allow functionality for it to be available 

➤ Can build least privileged apps more easily



Thanks!  
Availability: this summer from gitstar.com 

Follow up: @deiandelmars


