
Building Least Privileged Web
Applications with Node.js

Deian Stefan

Joint work with Devon Rifkin, Annie Liu, Christian Garcia Almenar

Oh ye web apps…

Recipe for disaster

 if ((err = SSLHashSHA1.upda
 goto fail;
 if ((err = SSLHashSHA1.upda
 goto fail;
 goto fail;
 if ((err = SSLHashSHA1.fina
 goto fail;

2. Programming models follow the 
principle of most privilege  
➠ ad-hoc security mechanisms

3. Developers write buggy code

1. Apps handle sensitive user data

Example: ghost.org

• Production blog app’s data model:

id authors pub? title body
0 alice FALSE … …

1 bob, claire TRUE … …

user password email name
alice 0dea48ff … A. Alyokhina

bob 15a8ccd8f … B. Digital
claire v3991e5 … C. Hopper

Blog posts: Users:

➤ Sensitive data: unpublished posts, passwords, emails

• App functionality:

➤ List all posts, show post, show user profile, …

Example: ghost.org

• Production blog app’s data model:

id authors pub? title body
0 alice FALSE … …

1 bob, claire TRUE … …

user password email name
alice 0dea48ff … A. Alyokhina

bob 15a8ccd8f … B. Digital
claire v3991e5 … C. Hopper

Blog posts: Users:

➤ Sensitive data: unpublished posts, passwords, emails

• App functionality:

➤ List all posts, show post, show user profile, …

Example: ghost.org

• Production blog app’s data model:

id authors pub? title body
0 alice FALSE … …

1 bob, claire TRUE … …

user password email name
alice 0dea48ff … A. Alyokhina

bob 15a8ccd8f … B. Digital
claire v3991e5 … C. Hopper

Blog posts: Users:

➤ Sensitive data: unpublished posts, passwords, emails

• App functionality:

➤ List all posts, show post, show user profile, …

App architecture

list all posts

show post

update profile

…

di
sp

at
ch

er
App services Storage

• By default, handlers are most privileged

➤ Unrestricted access to storage, fs, net, child process, …

• Developers retrofit security on top

App architecture

list all posts

show post

update profile

…

di
sp

at
ch

er
App services Storage

• By default, handlers are most privileged

➤ Unrestricted access to storage, fs, net, child process, …

• Developers retrofit security on top

App architecture

list all posts

show post

update profile

…

di
sp

at
ch

er
App services Storage

• By default, handlers are most privileged

➤ Unrestricted access to storage, fs, net, child process, …

• Developers retrofit security on top

Show post

App architecture

list all posts

show post

update profile

…

di
sp

at
ch

er
App services Storage

• By default, handlers are most privileged

➤ Unrestricted access to storage, fs, net, child process, …

• Developers retrofit security on top

Show post

Update profile

Problem with existing approach

• Missing single security check ➠ vulnerability

➤ E.g., ghost.org exposed passwords and drafts

• Checks don’t always extend to third-party libs

➤ Libraries may expose vulnerabilities

• Damage due to vulnerabilities can be grave

➤ All code runs with same privilege

➤ E.g., st library didn’t handle “..” correctly ➠ leaked files

Problem with existing approach

• Missing single security check ➠ vulnerability

➤ E.g., ghost.org exposed passwords and drafts

• Checks don’t always extend to third-party libs

➤ Libraries may expose vulnerabilities

• Damage due to vulnerabilities can be grave

➤ All code runs with same privilege

➤ E.g., st library didn’t handle “..” correctly ➠ leaked files

Problem with existing approach

• Missing single security check ➠ vulnerability

➤ E.g., ghost.org exposed passwords and drafts

• Checks don’t always extend to third-party libs

➤ Libraries may expose vulnerabilities

• Damage due to vulnerabilities can be grave

➤ All code runs with same privilege

➤ E.g., st library didn’t handle “..” correctly ➠ leaked files

• Minimize trusted computing base (TCB)  
 
 
 

➤ Make security robust to bugs in most code

• Challenge: perennial goal in computer security

➤ Can we actually do this?

Change how developers build apps

TCB TCB

➠libk.js libn.js tcb.js rh1.js libk.js libn.jsrh1.js rh2.js

Can we do this for Node.js?

JavaScript is well-suited  
for executing untrusted code

Turns out…

…if you just look at it just right

Node.js apps at a high level

• Code runs in (V8) contexts

➤ Global object + execution stack

• Language (EcmaScript) doesn’t
have built-in IO

• Embedder (Node.js) attaches props
to global object to provide IO

➤ E.g., fs, http, net, process, etc.

OS process

V8 ctxArray

Math

eval

…

fs

http

app  
code

• Expose V8 contexts as isolation primitives

➤ New context has separate heap: no access to fs, etc.

• Execute untrusted code in new contexts

➤ E.g., run different request handlers in isolation  
 
 
 
Array

Math

eval

…

fs

http

main  
app  
code

Array

Math

eval
…

show 
post

Array

Math

eval

…

update  
profile

…

Looking at it just right

ctx1main ctx2

• By default, code has minimal privileges

➤ Can’t do anything except execute “pure” JavaScript

• Problem: real code needs to perform IO

➤ Fresh contexts do not have access to Node.js APIs

• Solution: expose message passing primitives

➤ Untrusted context can send and receive messages to
and from main/parent context

➤ To perform IO: ask parent context to do it

Providing useful APIs to ctxs

• By default, code has minimal privileges

➤ Can’t do anything except execute “pure” JavaScript

• Problem: real code needs to perform IO

➤ Fresh contexts do not have access to Node.js APIs

• Solution: expose message passing primitives

➤ Untrusted context can send and receive messages to
and from main/parent context

➤ To perform IO: ask parent context to do it

Providing useful APIs to ctxs

Virtualization w/ message passing

• Function calls ➠ messages to parent context

➤ Parent can perform checks before (and after) calling
actual function

➤ E.g., implementing synchronous file read:  
 
 
 
 

ctx1.js
fs.readFileSync = function (fname, opts) {
 return _espectro.RPC(‘fs:readFileSync’)(fname, opts);
}
// ...

main.js
var ctx1 = new Ctx(‘ctx1.js’);
ctx1.onrpc(‘fs:readFileSync’, function (fname, opts) {
 if (!(fname in _allowed)) throw ‘denied!’;
 var res = fs.readFileSync(fname, opts)
 return res;
});

• In untrusted contexts: core libraries using
message passing

• In main context: hooks library used to register
pre/post hooks for each function call

➤ High-level policies implemented atop hooks  
 
  Array

Math

eval

…

fs

net

Virtualized Node.js libraries

Array

Math

eval

…

fs

net

ctx1fs

…
ctx1

policy

Different architectures

• App / context 
 

• Controller / context  
 

• Request / context

fs

net

show
post

fs

net

update
profile

policy 2

policy 1

…

di
sp

at
ch

er …

fs

net

apppolicy

…

fs

net

show
post

fs

net

show
post

policy 1b

policy 1a

…

di
sp

at
ch

er …

Different architectures

• App / context 
 

• Controller / context  
 

• Request / context

fs

net

show
post

fs

net

update
profile

policy 2

policy 1

…

di
sp

at
ch

er …

fs

net

apppolicy

…

fs

net

show
post

fs

net

show
post

policy 1b

policy 1a

…

di
sp

at
ch

er …

Different architectures

• App / context 
 

• Controller / context  
 

• Request / context

fs

net

show
post

fs

net

update
profile

policy 2

policy 1

…

di
sp

at
ch

er …

fs

net

apppolicy

…

fs

net

show
post

fs

net

show
post

policy 1b

policy 1a

…

di
sp

at
ch

er …

Least privileged ghost.org

list all posts

show post

update profile

…

di
sp

at
ch

er
App services Storage

• By default, handlers are least privileged

➤ Restricted access to storage, fs, net, etc. according to
current user and app functionality  

Least privileged ghost.org

list all posts

show post

update profile

…

di
sp

at
ch

er
App services Storage

• By default, handlers are least privileged

➤ Restricted access to storage, fs, net, etc. according to
current user and app functionality  

Only read post if curr user is author or post is published.

Least privileged ghost.org

list all posts

show post

update profile

…

di
sp

at
ch

er
App services Storage

• By default, handlers are least privileged

➤ Restricted access to storage, fs, net, etc. according to
current user and app functionality  

Only read post if curr user is author or post is published.

Only read/write rows where current user is owner.

Consequence of design

• Policy can be declarative specified in main context

• Policy extends to third-party libraries

➤ Policy applies to request handler and any library it uses

• DAC policies can limit damage due to bugs

➤ Fine-grained/user request limits attack surface

• MAC policies can prevent damage due to bugs

➤ MAC enforces policy even once code has acces to data

Beyond access control

• Virtualization layer can be used for:

➤ Transparently encrypting/decrypting files

➤ Caching files, DB queries, responses, etc.

➤ Rewriting HTML to add CSRF tokens

➤ MACing cookies

➤ Setting custom headers (e.g., CSP, SRI, etc.)

➤ …

Conclusions

• Today: writing insecure code is the default

➤ Building least-privileged apps is notoriously difficult

• App-level virtualization can be used to protect
app from itself and third-party code

➤ Policy must allow functionality for it to be available

➤ Can build least privileged apps more easily

Thanks!
Availability: this summer from gitstar.com

Follow up: @deiandelmars

