
C++20 idioms for parameter packs

David Mazières

June, 2022

Introduction
C++11 introduced variadic templates, which permit type-safe functions to accept a variable
number of arguments. They also permit template types such as std::tuple that can hold a
variable number of elements. The main language mechanism enabling variadic templates is
parameter packs, which hold an arbitrary number of values or types. Some things are easy
to do with parameter packs—for instance, passing the values they comprise to a function.
Other tasks are a bit trickier to accomplish, such as iterating over a parameter pack or
extracting specific elements. However, these things can generally be accomplished through
various idioms, some more unwieldy than others.

Between C++11 and C++20, the language gained several improvements to variadic templates.
Improvements to other features, such as concepts and lambdas, have also created new options
for manipulating parameter packs, thereby enabling new variadic template idioms. This post
lays out a grab-bag of techniques for using parameter packs in C++20. Ideally, cataloging
these tricks makes it easier for people to do what they need with variadic templates. My
interest in producing a clean C++20-focused exposition stems from a conjecture that variadic
templates are easier to learn to use without the baggage of how we used to do things in
C++17 and earlier. Moreover, even if a lot of the idioms are obvious at a high level, they
provide a good context in which to showcase some of the new features of C++20.

Overview of variadic templates
A variadic template is a template whose definition captures a parameter pack in its template
arguments or function arguments. A parameter pack is captured by introducing an identifier
prefixed by an ellipsis, as in ...X. Once captured, a parameter pack can later be used in a
pattern expanded by an ellipsis (generally, but not always, to the right of the pattern). Pack
expansion is conceptually equivalent to having one copy of the pattern for each element of
the parameter pack. Here’s a silly example of a program that prints “one two ”:

1 void
2 print_strings(std::convertible_to<std::string_view> auto&& ...s)
3 {

1

https://timsong-cpp.github.io/cppwp/n4868/temp.variadic
https://en.cppreference.com/w/cpp/utility/tuple
https://en.cppreference.com/w/cpp/language/parameter_pack

4 for (auto v : std::initializer_list<std::string_view>{ s... })
5 std::cout << v << " ";
6 std::cout << std::endl;
7 }
8

9 int
10 main()
11 {
12 print_strings("one", std::string{"two"});
13 }

The print_strings function takes an arbitrary number of arguments, all of which are
captured by the parameter pack ...s in line 2. In line 4, this parameter pack is expanded as
s... to specify the values from which to construct an initializer_list. We then iterate
over the initializer_list to print the strings.

As a reminder, the appearance of the placholder auto in the arguments of print_strings
makes print_strings an abbreviated function template, which introduces an implicit tem-
plate type parameter for each occurrence of the placeholder. The use of auto&& as opposed
to auto or auto& is known as a forwarding reference, which can accept both lvalue and
rvalue references (a confusing syntax since in most contexts postfix && matches only rvalue
references).1 We need the universality of a forwarding reference because "one" is an lvalue
(of type const char(&)[4]) while std::string{"two"} is a prvalue—the former cannot be
captured by rvalue reference and the latter cannot be captured by non-const lvalue reference.2
Finally, note that the type-constraint convertible_to restricts the types that match the
template argument; without this constraint, the program would still work, but invocations
of print_strings with incompatible types would create less intuitive error messages and,
worse, any overloads of the print_strings function would cause ambiguity errors.

Expanding parameter packs
A captured parameter pack must be used in a pattern that is expanded with an ellipsis (...).
A pattern is a set of tokens containing the identifiers of one or more parameter packs. When
a pattern contains more than one parameter pack, all packs must have the same length. This
length determines the number of times the pattern is conceptually replicated in the expansion,
once for each position in the expanded pack(s). Here’s a simple example:

1 void dummy(auto&&...) {}
2

3 template<std::same_as<char> ...C>
4 void
5 expand(C...c)

1The fact that auto&& produces forwarding references is not mentioned in the definition of forwarding
references, but follows from the fact that type deduction for auto follows the same rules as templates.

2See my previous blog post on value categories for an explanation of why string literals are lvalues and
what a prvalue is.

2

https://timsong-cpp.github.io/cppwp/n4861/dcl.fct#18
https://timsong-cpp.github.io/cppwp/n4861/temp.deduct.call#3
https://en.cppreference.com/w/cpp/language/constraints
https://en.cppreference.com/w/cpp/concepts/convertible_to
https://timsong-cpp.github.io/cppwp/n4861/dcl.type.auto.deduct#4
https://www.scs.stanford.edu/~dm/blog/decltype.html

6 {
7 std::tuple<C...> tpl(c...);
8

9 const char msg[] = { C(std::toupper(c))..., '\0' };
10 dummy(msg, c...);
11 }

In line 3, the function expand captures a template parameter pack C consisting of a sequence
of zero or more types, all of which must be char because of our use of the std::same_as
concept. In line 5, we capture a function parameter pack c consisting of a sequence of values
ci each of type Ci for the ith position in parameter pack C. (Of course, in this example every
Ci is char.) We then see several contexts in which these packs are expanded:

• In line 7, tuple<C...> expands the pack C in a template-argument-list, while tpl(c...)
expands c in an initializer-list (which, not to be confused with std::initializer_list,
is the term in the C++ grammar for comma-separated lists of expressions passed as
arguments to function calls and constructors).

• In line 9, we expand the pattern C(std::toupper(c)) in another initializer list. This is
an example of a pattern with two packs, C and c, both of which have the same length and
are expanded in lockstep. (std::toupper returns int rather than char, so its result
requires a cast, though we could equivalently have written char(std::toupper(c))...
in this case.)

• In line 10, we again expand c in an initializer list.

In most cases, an expanded pattern is conceptually equivalent to a number of copies of
the pattern equal to the size of the parameter pack. Unless otherwise noted, a pattern is
expanded by appending an ellipsis (...). It is illegal to use a captured parameter pack except
in a pattern expanded by an ellipsis. Here is the list of contexts in which a pattern can be
expanded:

• In initializer-lists (as shown above), including pack expansion in the arguments to a
function call. Conceptually, such a pack expansion is equivalent to a comma-separated
list of instances of the pattern.

• In base specifier lists, to specify one base class for each member of a type parameter
pack, e.g.:

template<typename ...Base>
struct MyStruct : Base... {

MyStruct();
};

• When initializing base classes in a mem-initializer list in a class constructor, the
pack expansion initializes a list of base classes based on a type parameter pack:

template<typename ...Base>
MyStruct<Base...>::MyStruct() : Base()... {}

3

https://en.cppreference.com/w/cpp/concepts/same_as
https://timsong-cpp.github.io/cppwp/n4868/dcl.init.general#nt:initializer-list
https://en.cppreference.com/w/cpp/string/byte/toupper
https://timsong-cpp.github.io/cppwp/n4868/temp.variadic#5

• In template argument lists as in std::tuple<C...>, the pack expands to the
equivalent of a comma-separated list of template arguments.

• In lambda capture lists, the pattern expansion is equivalent to a comma-separated
list of captures. E.g.,

void
f(auto...arg)
{

auto with_copy = [arg...]{
/* do something with arg... */

};
with_copy();

auto with_reference = [&arg...]{
/* do something with arg... */

};
with_reference();

}

• Inside function parameters and template parameters, a pack expansion behaves
like a comma separated list of patterns. An example in function parameters is the
expansion C in the definition of expand(C...c), above. An example in template
parameters is the expansion of T in Inner, here:

template<typename ...T> struct Outer {
template<T...V> struct Inner {
};

};

Note how in these these cases, the ellipsis plays double-duty, serving at once to expand
one parameter pack and capture another. The ... must always immediately precede
the identifier of the captured parameter pack. This means the ellipsis falls in the middle
of the pattern for arrays and function types, rather than at the end, but the pattern is
still expanded as usual. For example:

template<std::size_t ...N>
void process_strings(const char (&...s)[N]) { /* ... */ }
// conceptually like:
// process_strings(const char s1[N1], const char s2[N2], etc.)

template<typename ...T>
auto function_results(T (&...f)()) { return std::tuple(f()...); }
// conceptually like:
// function_results(T1(&f1)(), T2(&f2)(), etc.)

• In a using declaration, the pattern conceptually expands to a list of using declara-
tions.

4

template<typename ...Base>
struct MyStruct : Base... {

MyStruct();
using Base::f...;
// Conceptually equivalent to:
// using Base_1::f;
// using Base_2::f;
// ...

};

Obviously a using pattern is most useful when the method f of each base class in the
pack has a different type signature—otherwise invoking f would be ambiguous. See
multilambda for a great use of using patterns.

• In an alignment specifier, the argument must be a single parameter pack and
the ellipsis goes inside the alignas operator. The result is an alignment restriction
compatible with all the types (if the pack expands to types) or all the powers of
two (if the pack expands to integer powers of two). In the following example, the
type storage<int, void*> would be aligned to an address compatible with both
int and void*. (Note also the expansion sizeof(T)... inside braces to create a
std::initializer_list<std::size_t> argument for std::max.)

template<typename ...T>
struct alignas(T...) storage {

char contents[std::max({ sizeof(T)... })];
};

• The standard also allows for pack expansions inside attribute lists. However, this
feature does not apply to any standard attributes, and must be intended for compiler-
specific ones.

While a pack expansion mostly behaves like a series of copies of the pattern, it is okay
to have a pack of size zero even when the program wouldn’t otherwise be syntactically
well formed. For example, while f(x,) and struct MyStruct : {}; are not valid C++
syntax, f(x, pack...) and struct MyStruct : Base... {}; are okay even with empty
parameter packs for pack and Base.

A pattern may itself contain an expanded parameter pack, in which case there is no need for
the inner and outer packs to contain the same number of elements. The expansion of the
inner pack simply becomes part of the pattern around the outer pack. For example:

constexpr int
sum(std::convertible_to<int> auto ...il)
{

int r = 0;
for (int i : { int(il)... })

r += i;
return r;

5

https://timsong-cpp.github.io/cppwp/n4868/temp.variadic#5.8
https://timsong-cpp.github.io/cppwp/n4868/temp.variadic#example-6

}

template<int ...N>
struct Nested {

static constexpr int nested_sum(auto ...v) {
return sum(sum(N..., v)...);

}
};

static_assert(Nested<1>::nested_sum(100, 200) == 302);
// Equivalent to: sum(sum(1, 100),sum(1, 200)) == 302

It is worth noting that a pack expansion is not valid outside of the contexts listed above. In
particular, you cannot expand a free-floating expression (though see folds below), and you
cannot expand a case clause in a switch statement.

sizeof...(pack)

The sizeof... operator returns a std::size_t corresponding to the number of elements in
a parameter pack. While technically considered a pack expansion, it only ever returns a single
value. Unlike ordinary sizeof, the argument to sizeof... must always be parenthesized
and consist of a single identifier naming a parameter pack.

Folds
Another special form of pack expansion is folds, introduced in C++17. Above, we showed
a function sum that summed a set of integers. This function can be implemented far more
concisely with a fold:

constexpr int
sum(std::convertible_to<int> auto ...i)
{

return (0 + ... + i);
}

Folds are defined in terms of the grammar rule for a cast-expression, which is a C++
expression whose outer operators bind at least a tightly (i.e., have precedence at least as
high as) the C-style cast operator (Type) val. As an example, &p[5] is a cast-expression,
because the left-associative subscript ([]) operator binds more tightly than a cast, while the
right associative address-of operator (&) has the same precedence as a cast. By contrast, the
expression 3*i is not a cast-expression, because binary * has lower precedence than a cast.
Parenthesizing an expression with lower-precedence operators, such as (3*i), makes it into a
cast-expression.

There are four types of fold in C++. In these examples, let pat be a cast-expression
containing one more more unexpanded parameter packs (i.e., a pattern). Let e be a normal
cast-expression without any unexpanded parameter packs. Let p1, . . . , pn be the instances of

6

https://timsong-cpp.github.io/cppwp/n4868/expr.sizeof#4
https://timsong-cpp.github.io/cppwp/n4868/expr.unary#general-1
https://timsong-cpp.github.io/cppwp/n4868/temp.variadic#10
https://timsong-cpp.github.io/cppwp/n4868/expr.cast#nt:cast-expression
https://en.cppreference.com/w/cpp/language/operator_precedence

pat corresponding to each element captured by pat’s unexpanded parameter packs. Let ⊕
stand for any binary operator in the C++ grammar (.*, ->*, *, /, %, +, -, <<, >>, <=>, <,
<=, >, >=, ==, !=, &, ˆ, |, &&, ||, =, +=, -=, *=, /=, %=, <<=, >>=, &=, ˆ=, |=, or the comma
operator “,”).

A binary left fold has the form (e⊕...⊕pat) and is equivalent to (((e⊕p1)⊕p2)⊕ · · ·)⊕pn.

A unary left fold has the form (...⊕pat) and is equivalent to ((p1 ⊕ p2)⊕ · · ·)⊕pn.

A binary right fold has the form (pat⊕...⊕e) and is equivalent to p1⊕(p2⊕(· · · ⊕(pn⊕e))).

A unary right fold has the form (pat⊕...) and is equivalent to p1⊕(p2⊕(· · · ⊕ pn)).

Note that parentheses are always required around a fold, regardless of context.

When the parameter pack is empty (has size 0), a binary fold is equivalent to e. A unary
fold over an empty parameter pack is only permitted for 3 specific binary operators:

• If ⊕ is &&, then an empty unary fold is equivalent to true.
• If ⊕ is ||, then an empty unary fold is equivalent to false.
• If ⊕ is the comma operator ,, then an empty unary fold is equivalent to void().

For all other binary operators, a unary fold over an empty parameter pack results in an
ill-formed program.

Capturing parameter packs
While parameter packs can be expanded in a variety of places, they can only be captured in
a much more restricted set of contexts. There’s an appealing proposal for allowing parameter
packs in structured bindings, which would simplify a lot of idioms, but as of now there
are only three contexts in which you can introduce a new pack: template parameter packs,
function parameter packs, and init-capture packs. In all cases, the ellipsis must appear
immediately to the left of the identifier capturing the parameter pack (...X).

Template parameter packs

Template parameter packs consist of types, templates, and values within the angle brackets of
a template definition. Any normal template parameter can be turned into a pack by prefixing
the identifier with an ellipsis. For example:

template<typename ...T> struct S1{};
template<int ...I> struct S2{};
template<template<typename> typename ...Tmpls> struct S3{};

With two exceptions, a template parameter pack must generally be the last entry in the
template parameter list. The first exception is for function templates, where template
arguments can be inferred from the function arguments. So long as every template parameter
following a captured parameter pack can be inferred, it is okay for the pack not to be last.
The second exception is in template specializations, where captured packs may be used in
the specialization. For example:

7

https://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1061r0.html
https://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1061r0.html

// Illegal for pack not to be last
template<typename ...T1, typename ...T2> struct S{}; // error
S<int, int, bool> a; // If this were legal, what would T1 and T2 be?

// Okay to put ...Tmpls first because T inferred from function argument
template<template<typename...> typename ...Tmpls, typename T>
auto
ptr_tuple(const T &v)
{

// Exception-safe since C++17 (see P0145R3)
return std::tuple(Tmpls<T>(new T(v))...);

}
auto ones = ptr_tuple<std::shared_ptr, std::unique_ptr>(1);

using std::tuple;

template<typename T1, typename T2, typename T3>
struct is_tuple_cat : std::false_type {};

// Okay for ...T1 not to be last in specialization
template<typename ...T1, typename ...T2>
struct is_tuple_cat<tuple<T1...>, tuple<T2...>, tuple<T1..., T2...>>

: std::true_type {};

static_assert(is_tuple_cat<tuple<int>, tuple<char*>, tuple<int, char*>>{});
static_assert(!is_tuple_cat<tuple<int>, tuple<char*>, tuple<int, bool>>{});

A template parameter can also be an expansion of another parameter pack, as we saw in the
definition of Inner above.

Function parameter packs

Function parameter packs consist of values in the argument list of a function. We’ve seen
examples like c in expand(C...c) and i in sum(std::convertible_to<int> auto ...i).
There’s a big restriction that a function parameter pack must either itself be a pack expansion
(as in expand) or else contain the placeholder auto (as in sum). Otherwise, the program is
ill-formed. This is why all the examples make heavy use of std::convertible_to. The
C++ committee considered but rejected allowing homogeneous variadic function parameters,
which would have permitted the following simpler code:

template<> constexpr int
sum(int ...i) // illegal
{

return (0 + ... + i);

8

https://wg21.link/p1219r0
https://github.com/cplusplus/papers/issues/297

}

Why not allow the above code? The problem lies in the fact that, for compatibility with
really old C++, there are two ways of defining a C-style variadic function function:

int printf(const char *, ...); // better way, required by C
int printf(const char *...); // 1983 C++ way, before C had prototypes

If C++ allowed homogeneous variadic function parameters, there would be an ambiguity
between the older style of varargs definition above and a template function printf accepting
a homogeneous parameter pack of const char * values. The standard unfortunately requires
that the ambiguity be resolved in favor of the C-style varargs interpretation. The proposal
to fix this did require an extra template<> in front of our definition of sum, which avoided
the ambiguity. Moreover, if you give the parameter pack i a name, that also avoids any
ambiguity. But the proposal lost anyway, so you can’t do that.

Is there a workaround for the lack of homogeneous variadic function parameters? The
following two functions seem like reasonable substitutes for the illegal f(int ...i):

int f1(std::same_as<int> auto ...i);
int f2(std::convertible_to<int> auto ...i);

Unfortunately, it is important to realize that neither is quite equivalent. When a param-
eter type is declared int, unlike auto, it triggers integer conversion. A concept such as
same_as doesn’t change the type inferred by auto, it only restricts permissible types. Hence,
calling f1(0, sizeof(int)) won’t match the above function, because sizeof(int) is a
std::size_t, so the second argument type is inferred as std::size_t, which fails the
constraint test std::same_as<int>. The invocation f2(0, sizeof(int)) is okay, but its
arguments are of heterogeneous type, which means inside f2 writing code such as for (int
n : { i... }) won’t work.

A workaround for f2 is to use a cast in the pattern for expanding i, as in for (int n
: { int(i)... }). This solution is perfectly fine for int. Unfortunately, for types with
non-trivial constructors, such as std::string, f2 can lead to gratuitous copies. For example,
suppose that instead of taking int, we have a type Obj:

struct Obj { void use() { /* ... */ } /* ... */ };

void good() {}
void good(Obj o1) { o1.use(); }
void good(Obj o1, Obj o2) { o1.use(); o2.use(); }
// ...

void
bad(std::convertible_to<Obj> auto&& ...o)
{

// Unary fold over comma
(Obj{std::forward<decltype(o)>(o)}.use(), ...);

}

9

https://timsong-cpp.github.io/cppwp/n4868/dcl.fct#nt:parameter-declaration-clause
https://en.cppreference.com/w/cpp/language/variadic_arguments
https://timsong-cpp.github.io/cppwp/n4868/dcl.fct#22
https://en.cppreference.com/w/c/language/conversion#Integer_conversions

If you call good({}) or good(Obj{}), you will construct exactly one object of type Obj.
If you call bad({}), the program is ill-formed (the compiler doesn’t know what type {}
should be). If you call bad(Obj{}), then you will construct two objects of type Obj. First, a
temporary will be constructed to pass into bad. Next, the cast expression in the fold will
move-construct a second Obj object from the first. See the homogeneous function parameter
packs idiom for a way to work around this problem.

Init-capture packs

The simplest way to capture a parameter pack in a lambda expression is simply to expand it
into a conceptual list of values to capture, as seen above. Sometimes, however, you want to
capture variables with an explicit initializer. For example, if your function parameter pack
contains rvalue references, it may be more efficient to move-initialize the lambda’s captures
than to copy-initialize them. You can capture a parameter pack in the capture clause of
a lambda by prefixing an identifier with an ellipsis. In this case, the initializer must be a
pattern containing one or more packs (of the same length). Here’s an example that will avoid
copying any temporary strings passed in as arguments:

template<std::convertible_to<std::string> ...T>
auto
make_prefixer(T&& ...args)
{

using namespace std::string_literals;
return [...p=std::string(std::forward<T>(args))](std::string msg) {

// binary right fold over +
return ((p + ": "s + msg + "\n"s) + ... + ""s);

};
}

int
main()
{

auto p = make_prefixer("BEGIN", "END");
std::cout << p("message");
// prints:
// BEGIN: message
// END: message

}

Idioms
Below is a collection of idioms for working with parameter packs. I place all the code in this
blog post in the public domain, so feel free to cut and paste. To keep things concise, I’ve
omitted include files, but the system library features used in the examples come from the
following set of includes:

10

#include <algorithm>
#include <array>
#include <concepts>
#include <initializer_list>
#include <iostream>
#include <memory>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <variant>

Recursing over argument lists
The most basic variadic template idiom, probably already known to most people reading
this blog post, is to iterate over the argument list recursively, using function overloading to
differentiate the base case (no arguments) from the recursive case (one or more). A silly
example:

inline void
printall()
{
}

void
printall(const auto &first, const auto &...rest)
{

std::cout << first;
printall(rest...);

}

Of course, since C++17, many uses of recursion are better accomplished with folds:

void
printall2(const auto &...args)
{

// binary left fold
(std::cout << ... << args);

}

Recursing over template parameters
Another common technique is to recurse over template parameters. This can be done to
consume the elements of a parameter pack, produce elements of a parameter, or both. Here’s
a simple example in which we recursively produce the arguments of a parameter pack. The
goal is, at compile time, to produce a string corresponding to a number (so that you can

11

safely use the string even in global initializers). We recurse over the parameter N so long as it
is greater than 10, producing one digit at a time. Finally, when N is less than 10, we return a
char[] from inside the string_holder template.

template<char ...Cs>
struct string_holder {

static constexpr std::size_t len = sizeof...(Cs);
static constexpr char value[] = { Cs..., '\0' };
constexpr operator const char *() const { return value; }
constexpr operator std::string() const { return { value, len }; }

};

template<size_t N, char...Cs>
consteval auto
index_string()
{

if constexpr (N < 10)
return string_holder<N+'0', Cs...>{};

else
return index_string<N/10, (N%10)+'0', Cs...>();

}

// "10"
constinit const char *ten = index_string<10>();

If you want to consume and produce argument packs recursively, then you need to use some
kind of holder type so as to accommodate multiple parameter packs simultaneously. The
string_holder type above is an example of such a holder type. Suppose we want a function
add_commas that adds a comma between every three characters of a string starting from
the right. We can do this by consuming the argument pack of one string_holder while
producing the argument pack of another:

template<char ...Out>
consteval auto
add_commas(string_holder<>, string_holder<Out...> out)
{

return out;
}

template<char In0, char ...InRest, char ...Out>
consteval auto
add_commas(string_holder<In0, InRest...>, string_holder<Out...> = {})
{

if constexpr (sizeof...(InRest) % 3 == 0 && sizeof...(InRest) > 0)
return add_commas(string_holder<InRest...>{},

string_holder<Out..., In0, ','>{});

12

else
return add_commas(string_holder<InRest...>{},

string_holder<Out..., In0>{});
}

// "1,000,000"
constinit const char *million = add_commas(index_string<1'000'000>());

Comma fold
Often you want to do the same operation to every element in a parameter pack. While you
can accomplish this by recursing over the parameter pack, it can be simpler to use a fold
over the comma operator, which just sequences one expression after the other. To avoid
any strange behavior in cases where the program overloads operator,, you can cast the
expression to void. Here’s a simple example of a function that inserts an arbitrary number of
elements into a container supporting an insert method:

template<typename T, typename ...E>
void
multi_insert(T &t, E&&...e)
{

// unary right fold over comma
(void(t.insert(std::forward<E>(e))), ...);

}

int
main()
{

std::set<int> s;
multi_insert(s, 1, 4, 7, 10);
for (auto i : s)

std::cout << i << " ";
std::cout << std::endl;
// prints:
// 1 4 7 10

}

As always, remember that folds must be parenthesized, and that a bare expression cannot be
expanded as a pattern. Neither of the following alternate function bodies for multi_insert
would compile:

void(t.insert(std::forward<E>(e))), ...; // error: bad fold
t.insert(std::forward<E>(e))...; // error: bad expansion context

13

https://en.cppreference.com/w/cpp/language/operator_other#Built-in_comma_operator

Short-circuiting && and || folds
Sometimes you want to iterate over a parameter pack until some condition holds. Of course,
you can do this with recursion, simply ending the recursion when you hit the stop condition.
However, the recursive approach can be cumbersome and require you to define several
functions. As an alternative, you can fold over the logical && and || operators, which
short-circuit evaluation and stop doing anything the minute the condition is guaranteed to
be true or false. Here’s an example of a function that finds the index of the first item in a
tuple to satisfy some arbitrary predicate functor f:

template<typename T, typename F>
std::size_t
tuple_find(const T &t, F &&f)
{

return std::apply([&f](const auto &...e) {
std::size_t r = 0;
((std::forward<F>(f)(e) || (++r, false)) || ...);
return r;

}, t);
}

int
main()
{

std::tuple t(-2, -1, 0U, 1UL, 2ULL);
std::cout << tuple_find(t, [](auto i) {

return std::cmp_greater(i, -1);
}) << std::endl;
// prints:
// 2

}

Incidentally, while this has nothing to do with parameter packs, let me gratuitously plug
C++20’s safe integer comparison functions. Had our lambda predicate read return i > -1
instead of std::cmp_greater(i, -1), the program would have printed 5, because 0U > -1
is false.

Often the comma operator is handy to execute some action before testing the stop condition in
a fold over a logical operator. For another example of the technique, see this implementation
of operator<=> on a tuple-like type.

Using lambda expressions to capture packs
While parameter packs can be expanded in many contexts, you sometimes need to deconstruct
a template type to extract the parameter pack. This can be awkward because there are fewer
contexts in which to capture a pack. Worst-case scenario, this can be done by defining a
helper type or function, but this leads to a lot of code and exposes the private internals of your

14

https://en.cppreference.com/w/cpp/utility/intcmp
https://en.cppreference.com/w/c/language/conversion#Integer_conversions
https://en.cppreference.com/w/c/language/conversion#Integer_conversions
https://cor3ntin.github.io/posts/tuple/#-nothing-as-futuristic-as-a-spaceship
https://cor3ntin.github.io/posts/tuple/#-nothing-as-futuristic-as-a-spaceship

implementation. One way to keep things more self-contained is with a lambda expression.

Lambdas are particularly helpful in working with tuples. Combining a lambda with
std::apply lets you capture a parameter pack corresponding to the contents of a tuple.

auto
tuple_mult(auto scalar, auto tpl)
{

return apply([&scalar]<typename ...T>(T...t) {
return std::tuple(T(scalar * t)...);

}, tpl);
}

int
main()
{

auto t = std::tuple(1, 2U, 4.0);
t = tuple_mult(2, t);
std::cout << get<0>(t) << " "

<< get<1>(t) << " "
<< get<2>(t) << std::endl;

// prints:
// 2 4 8

}

Using lambdas to capture parameter packs is especially useful with std::integer_sequence<typename
T, T...>, a trivial type akin to string_holder above, but for holding an arbitrary integer
type T. Since std::size_t is often what you want, the alias std::index_sequence<T...> is
equivalent to std::integer_sequence<std::size_t, T...>. To create std::integer_sequence
types, you can use the type alias std::make_integer_sequence<T, N> (or the std::size_t-
specific std::make_index_sequence<N>) to make an integer sequence containing the numbers
from 0 through N-1.

Suppose you want to add two tuples, element by element. You could use two nested lambdas
to expand the two tuples in succession, but this would be a bit awkward. Instead, you can
use std::make_index_sequence to get the tuple indices, then use the indices in a pattern
that accesses the elements of both tuples element by element. Here is the code:

template<typename T>
auto
tuple_add(const T &a, const T&b)
{

return [&a, &b]<std::size_t ...I>(std::index_sequence<I...>) {
return std::tuple(get<I>(a) + get<I>(b)...);

}(std::make_index_sequence<std::tuple_size_v<T>>{});
}

15

https://en.cppreference.com/w/cpp/utility/tuple
https://en.cppreference.com/w/cpp/utility/integer_sequence
https://en.cppreference.com/w/cpp/utility/integer_sequence

int
main()
{

auto t = std::tuple(1, 2U, 4.0);
t = tuple_add(t, tuple_mult(10, t));
std::cout << get<0>(t) << " "

<< get<1>(t) << " "
<< get<2>(t) << std::endl;

// prints:
// 11 22 44

}

Once again, life is better in C++20 because a lambda expression can have explicit type
parameters, allowing us to capture the template parameter pack ...I from the inferred
std::index_sequence type of the function argument.

Using lambda expressions to capture packs in requires clauses
You can also use lambdas in requires clauses. Suppose you want to define a user-defined
literal _hex to create strings from a series of hexadecimal digits specifying bytes. For example,
the constant 0x48656c6c6f21_hex should be equivalent to std::string{"Hello!"}. The
C++ standard says such an operator must be defined as exactly template<char ...C>
operator""_hex(), where the template arguments are the characters of the literal. It might
be nice to strip the first two characters ('0' and 'x') from the literal with different template
parameters, but unfortunately C++ disallows alternate definitions such as template<char
Zero, char X, char ...C> operator""_hex().

Here’s one possible implementation, where we simply create an array from the template
arguments and iterate over the characters, skipping the first two:

constexpr int
hexdigit(char c)
{

if (c >= '0' && c <= '9')
return c - '0';

c |= 0x20; // convert upper- to lower-case
if (c >= 'a' && c <= 'f')

return c - ('a' - 10);
return -1; // invalid

}

template<char ...C>
requires (sizeof...(C)%2 == 0)
constexpr std::string
operator""_hex()
{

16

https://en.cppreference.com/w/cpp/language/user_literal
https://en.cppreference.com/w/cpp/language/user_literal
https://timsong-cpp.github.io/cppwp/n4868/over.literal#5

constexpr std::array digits{ C... };
std::string result{};
for (std::size_t i = 2; i < digits.size(); i += 2)

result += char(hexdigit(digits[i])<<4 | hexdigit(digits[i+1]));
return result;

}

int
main()
{

std::cout << 0x48656c6c6f21_hex << std::endl;
// prints:
// Hello!

}

Unfortunately, there are a few problems with this code. First, nothing requires the constant
to start with 0x. For example, you could type a decimal constant 1234_hex, and the result
would be nonsense (the first two digits skipped). We could also feed in a floating point number
such as 0xa98.76p0_hex, which is allowed by the language, and we would get nonsense. To
prevent this, we could maybe sprinkle some static_assert statements in the code, but: A)
We’d rather the operator""_hex function simply not match than return confusing errors
from within the function, or more confusingly still, a helper function, and B) We want all
except the second character (x) to be valid hex characters, so a simple && fold over all the
digits won’t do the right thing.

Of course, this could be handled by defining custom helper types and maybe a dedicated
concept, but a cleaner solution is just to unpack the parameter pack with a lambda right in
the requires clause:

template<char ...C>
requires (sizeof...(C)%2 == 0 &&

[](char zero, char x, auto ...rest) {
return zero == '0' && x == 'x' && ((hexdigit(rest) != -1) && ...);

}(C...))
constexpr std::string
operator""_hex()
{

constexpr std::array digits{ C... };
std::string result{};
for (std::size_t i = 2; i < digits.size(); i += 2)

result += char(hexdigit(digits[i])<<4 | hexdigit(digits[i+1]));
return result;

}

Note how we take advantage of the fact that, as of C++17, lambdas are implicitly constexpr
when possible. Note also that C++20 requires most string operations to be constexpr, in
which case the above function could be consteval rather than merely constexpr. Unfor-

17

tunately, as of this writing, constexpr strings aren’t supported by the standard libraries
available in common linux distributions.

By the way, here’s an alternative way of implementing this user-defined literal with
string_holder and std::make_index_sequence:

template<char ...C>
requires (sizeof...(C)%2 == 0 &&

[](char zero, char x, auto ...rest) {
return zero == '0' && x == 'x' && ((hexdigit(rest) != -1) && ...);

}(C...))
consteval auto
operator""_hex()
{

return []<std::size_t ...I>(std::index_sequence<I...>) {
constexpr std::array digits{ C... };
return string_holder<hexdigit(digits[2*I+2])<<4 |

hexdigit(digits[2*I+3])...>{};
}(std::make_index_sequence<sizeof...(C)/2-1>{});

}

Using decltype on lambda expressions
Sometimes you want to modify the types in a parameter pack in a context where it is
inconvenient to capture the parameter pack. For instance, suppose you want a way to take
a std::tuple type and generate another type corresponding to pointers to the types in
the tuple. The brute-force approach would be to introduce helper types to leverage partial
specialization, but the result is rather unwieldy:

// Clunky idiom with helper types
namespace detail {

template<typename T> struct tuple_ptr_helper;

template<typename ...T>
struct tuple_ptr_helper<std::tuple<T...>> {

using type = std::tuple<T*...>;
};

} // namespace detail

template<typename T> using tuple_ptrs =
typename detail::tuple_ptr_helper<T>::type;

static_assert(std::is_same_v<tuple_ptrs<std::tuple<int, char>>,
std::tuple<int*, char*>>);

18

Fortunately, C++20 lets us use lambdas in unevaluated contexts, which means that instead
of defining helper types, you can often use a lambda expression inside of decltype to
achieve what you want. In this case, we can produce an entirely self-contained definition of
tuple_ptrs as follows:

template<typename T> using tuple_ptrs =
decltype(std::apply([](auto ...t) { return std::tuple(&t...); },

std::declval<T>()));

Multilambda
Thus far, we’ve been writing generic lambdas in functions like tuple_add that use overloaded
syntax like the + operator to add numbers of different types. However, what if we want to
write different (non-generic) lambdas for different types? We can implement a new variadic
template type, multilambda, that constructs a function object comprising multiple lambdas
with different type signatures. Here’s the implementation:

template<typename ...L>
struct multilambda : L... {

using L::operator()...;
constexpr multilambda(L...lambda) : L(std::move(lambda))... {}

};

int
main()
{

using namespace std::string_literals;
std::tuple t (1, true, "hello"s, 3.0);
constexpr multilambda action {

[](int i) { std::cout << i << std::endl; },
[](double d) { std::cout << d << std::endl; },
[](bool b) { std::cout << (b ? "yes\n" : "no\n"); },
[](std::string s) { std::cout << s.size() << " bytes\n"; },

};
apply([action](auto ...v) {

(action(v), ...); // unary right fold
}, t);
// prints:
// 1
// yes
// 5 bytes
// 3

}

multilambda takes a bunch of lambda expressions or other callable objects as template
parameters and makes them base classes. Then, by expanding the pattern using

19

L::operator()...;, it brings all of the function call operators into scope, so that any of
them can be called so long as there is no ambiguity. The final thing to note is that we are
taking advantage of implicitly-generated class template deduction guides so as to construct a
multilambda without having to supply explicit template parameters.

Note that you can use decltype on multilambda to do things concisely that would previously
have required auxiliary structs for partial specialization. For example, here’s a concept that
checks whether a particular type is an instance of a particular template or a reference to an
instance of that template:

template<typename T, template<typename...> typename Tmpl>
concept is_template = decltype(multilambda{

[]<typename ...U>(const Tmpl<U...> &) { return std::true_type{}; },
[](const auto &) { return std::false_type{}; },

}(std::declval<T>()))::value;

static_assert(is_template<std::tuple<int, long>, std::tuple>);
static_assert(is_template<const std::tuple<int, long> &, std::tuple>);
static_assert(!is_template<std::tuple<int, long>, std::variant>);

There’s one small issue with multilambda, which is that the copy constructor might do a
little work to move lambdas into the structure. You can avoid this work by eliminating the
constructor and directly initializing all of the superclasses, using a deduction guide to specify
that the template types should be taken from the arguments:

template<typename ...Lambdas>
struct multilambda : Lambdas... {

using Lambdas::operator()...;
};
template<typename ...Lambdas>
multilambda(Lambdas...) -> multilambda<Lambdas...>;

Recursive types through inheritance
Sometimes you want to define a type that holds a variable number of arguments depending
on a parameter pack. std::tuple is a good example of such a type. A good way to do this
is through inheritance, using the derived class to hold one element, and the base class to
hold the remaining elements. Here’s an example of a “heterogeneous list” with head and tail
operations:

1 template<typename ...T> struct HList;
2

3 template<>
4 struct HList<> {
5 static constexpr std::size_t len = 0;
6 };
7

20

https://en.cppreference.com/w/cpp/language/class_template_argument_deduction
https://en.cppreference.com/w/cpp/language/constraints
https://en.cppreference.com/w/cpp/utility/tuple

8 template<typename T0, typename ...TRest>
9 struct HList<T0, TRest...> : HList<TRest...> {

10 using head_type = T0;
11 using tail_type = HList<TRest...>;
12

13 static constexpr std::size_t len = 1 + sizeof...(TRest);
14 [[no_unique_address]] head_type value_{};
15

16 constexpr HList() = default;
17 template<typename U0, typename ...URest>
18 constexpr HList(U0 &&u0, URest &&...urest)
19 : tail_type(std::forward<URest>(urest)...),
20 value_(std::forward<U0>(u0)) {}
21

22 head_type &head() & { return value_; }
23 const head_type &head() const& { return value_; }
24 head_type &&head() && { return value_; }
25

26 tail_type &tail() & { return *this; }
27 const tail_type &tail() const& { return *this; }
28 tail_type &&tail() && { return *this; }
29 };
30 // User-defined class template argument deduction guide:
31 template<typename ...T> HList(T...) -> HList<T...>;
32

33 template<std::size_t N> struct dummy{};
34 static_assert(sizeof(HList<dummy<0>, dummy<1>, dummy<2>>) == 1);
35 static_assert(sizeof(HList<dummy<0>, dummy<0>, dummy<0>>) == 3);

The basic idiom may already be familiar to the reader, but a few things are worth pointing
out for people less familiar with C++20 and C++17. First, note the use of the attribute
[[no_unique_address]] on line 14. Without this attribute, the size of HList<dummy<0>,
dummy<1>, dummy<2>> would be 3 bytes instead of 1 on line 34. Why? Because C++ requires
most objects (other than bit fields) to have a unique address. However, there’s long been an
exception called the empty base optimization (EBO). Roughly speaking, given the following
types:

struct Base {}; // empty

struct Derived : Base {
/* ... unspecified ... */

};

EBO states that Base need not increase the size of Derived so long as the first data member
in Derived doesn’t also start with Base. In other words, Base is allowed to share the same
address as any other object not of type Base. Before C++20, implementers of types such as

21

https://en.cppreference.com/w/cpp/language/attributes/no_unique_address
https://en.cppreference.com/w/cpp/language/ebo

std::tuple jumped through quite a few hoops to exploit EBO to reduce tuple sizes. Now,
however, we can use the [[no_unique_address]] attribute to apply the same logic as EBO
to any structure field, not just the base class.

Note that despite this otimization, HList<dummy<0>, dummy<0>, dummy<0>> still has size
3 bytes, as seen on line 35, because each instance of the same type dummy<0> still needs a
unique address. This makes a certain amount of sense. For example, the constructor of
dummy<0> might decide to enter the object’s address in some global hash table, so while
dummy<1> and dummy<0> would presumably have different hash tables, entering the same
address twice into dummy<0>’s hash table could lead to confusion.

Another detail worth noting is the use of a user-defined deduction guide on line 31. This
allows us to construct an HList without explicit template parameters, as in HList{1, 2,
3, "hello"}. The deduction guide is required because HList::HList takes arguments by
forwarding reference, yet we need to make sure to infer non-reference types for the template
parameters.

HList lets us explore another good example application of std::make_index_sequence, as
well as of our is_template concept above. Suppose we want to implement an apply function
analogous to std::apply. We can do this by implementing a get function, then capturing
an integer sequence of list indices to expand in apply:

template<std::size_t N, is_template<HList> HL>
requires (N <= std::remove_cvref_t<HL>::len)
inline decltype(auto)
drop(HL &&hl)
{

if constexpr (N)
return drop<N-1>(std::forward<HL>(hl).tail());

else
return std::forward<HL>(hl);

}

template<std::size_t N, is_template<HList> HL>
requires (N < std::remove_cvref_t<HL>::len)
inline decltype(auto)
get(HL &&hl)
{

return drop<N>(std::forward<HL>(hl)).head();
}

template<typename F, is_template<HList> HL>
decltype(auto)
apply(F &&f, HL &&hl)
{

[&f,&hl]<std::size_t ...I>(std::index_sequence<I...>) -> decltype(auto) {
return std::forward<F>(f)(get<I>(std::forward<HL>(hl))...);

22

https://cor3ntin.github.io/posts/tuple/
https://en.cppreference.com/w/cpp/language/attributes/no_unique_address
https://en.cppreference.com/w/cpp/language/class_template_argument_deduction
https://en.cppreference.com/w/cpp/utility/apply

}(std::make_index_sequence<std::remove_cvref_t<HL>::len>{});
}

Homogeneous function parameter packs
As previously mentioned, it is tricky to emulate a function taking a homogeneous variadic
parameter pack without introducing extra copies of the argument. Suppose you want to imple-
ment a function equivalent to the (illegal) good(Obj ...obj) that accepts a variable number
of arguments all of type Obj by value (meaning modification of the arguments in the function
does not affect the calling context). We can of course write good(std::convertible_to<Obj>
auto&& ...t), but now we will capture a heterogeneous set of arguments. Some of these
arguments may be values from which we need to construct an Obj, but others may already
be an Obj constructed specifically for this function, as when someone calls good(Obj{}). In
the latter case, we want to avoid constructing a second Obj from the one that was passed in
as an argument. On the other hand, if the user called good(obj) where obj is a variable
containing an existing Obj, then we must copy obj, since the call-by-value semantics we
want require that modifications of argument variables inside good do not affect the variables
passed in.

When a new temporary Obj has been constructed as a function call argument, the inferred
type of the argument will be the rvalue reference Obj&&. When an existing obj is being
passed in, the type will be the lvalue reference Obj& (or possibly const Obj&). The trick is
to define a function local_copy that will generate a new Obj in the later case, but return a
reference to an existing temporary Obj in the former case. Here is the code:

1 struct Obj { void use() { /* ... */ } /* ... */ };
2

3 template<typename Want, typename Have>
4 inline std::conditional_t<std::is_same_v<Want, Have>, Want &&, Want>
5 local_copy(Have &in)
6 {
7 return static_cast<Have&&>(in);
8 }
9

10 template<std::convertible_to<Obj> ...T>
11 void
12 good1(T&&...t)
13 {
14 // Unary fold over comma operator
15 (local_copy<Obj, T>(t).use(), ...);
16 }
17

18 // Another way to do it
19 template<std::convertible_to<Obj> ...T>
20 void
21 good2(T&&...t)

23

22 {
23 auto use = []<typename U>(U &&arg) {
24 decltype(auto) o = local_copy<Obj, U>(arg);
25 o.use();
26 };
27 (use(std::forward<T>(t)), ...);
28 }

To understand the implementation and use of local_copy, you need to know a bunch of
things about C++ value categories:

• When a function argument is a forwarding reference, as in template<typename T>
void f(T &&t), the type T will be an lvalue reference (e.g., Type&) if f was invoked
with an lvalue (e.g., some variable obj) and a non-reference (e.g., Type) if f was invoked
with an rvalue (e.g., Obj{}).

• When you take a reference type TR and add an rvalue reference, you get back TR,
meaning TR&& and TR are always the same type for a reference. When you add an lvalue
reference to reference type TR, you always get back an lvalue reference, meaning TR&
is always the same as std::remove_reference_t<TR>&. This is known as reference
collapsing, and it explains why, when an lvalue is passed to forwarding reference
f(T&&t), T can be inferred as an lvalue reference.

• When treated as an expression, a variable v is always an lvalue, regardless of whether v
was declared as a non-reference T, an lvalue-reference T&, or an rvalue-reference T&&.
Hence, if you want a forwarding reference to be inferred as something other than an
lvalue reference, you need to pass something other than a variable, such as a function
call result (e.g., std::forward<T>(t)) or a cast (static_cast<T&&>(t)).

• An expression that is an invocation of a function returning a non-reference, non-void
type is of a category known as a prvalue. Since C++17, you can think of a prvalue
as a set of instructions for how to create an object that has not yet been created.
Hence, invoking use_object below creates only one Obj, namely o, because what
make_object() returns is conceptually just a recipe saying, “Please initialize some Obj
with the default initializer {}.”

// Doesn't copy or move an Obj, but requires the invoking
// context to create a default-initialized Obj
Obj make_object() { return {}; }

// Only one Obj is ever created per invocation
void use_object() { Obj o = make_object(); o.use(); }

This behavior is sometimes known as mandatory copy elision. Another way to think
about it is that even if the code for creating an Obj resides within the generated code
for make_object, the compiler must arrange for the new Obj to reside in the stack
frame that belongs to the calling function (use_object) so that the Obj isn’t destroyed
on return from make_object.

24

https://www.scs.stanford.edu/~dm/blog/decltype.html
https://timsong-cpp.github.io/cppwp/n4861/temp.deduct.call#3
https://timsong-cpp.github.io/cppwp/n4861/dcl.ref#6
https://timsong-cpp.github.io/cppwp/n4861/dcl.ref#6
https://en.cppreference.com/w/cpp/language/copy_elision

• When you declare a variable as auto v = expression, the type deduction rules are
the same as for templates—meaning v’s type will be the non-reference type T inferred
when invoking the template function template<typename T> void f(T t) with the
same expression, i.e., f(expression).

• When you declare a variable as decltype(auto) v = expression, the type of v will
be exactly decltype(expression). decltype is confusing for the uninitiated, as the
single keyword does two totally different things, often depending on something as trivial
as extra parentheses (details here). However, when decltype is applied to a function
call expression, the type is always exactly the return type of the function, which can be
a non-reference, lvalue-reference, or rvalue-reference.

In good1, we need to construct a new Obj from the reference function argument in all cases
except when the argument was a temporary object (i.e., good1(Obj{})). When the argument
was a temporary, the inferred type T is Obj (meaning argument t has type Obj&&). If the
argument was a variable of type Obj, then T will be inferred as Obj&, and we need to copy it
to avoid modifying it. If the variable was anything other than an Obj, we need to construct
an Obj from it.

The goal of local_copy is to construct a new object of type Want from an argument of type
Have unless the argument is already a temporary object of type Want, in which case it should
just return a reference to the existing temporary object. The return type of the function
uses std::conditional_t to distinguish these two cases—it returns a new Want (meaning a
prvalue) unless Want and Have are the same type, in which case it returns an rvalue reference
to its input object.

Notice that local_copy takes a Have& and not a Have&&, because it is intended to be used
with variables, whose expression type will always be an lvalue and hence cannot be bound
to an rvalue reference. (We explicitly specify the type of Have when invoking local_copy,
so it can’t be a forwarding reference.) local_copy casts its return value to Have&&, which
(through reference collapsing) is the same as Have when Have is an lvalue reference. It’s also
possible that the argument was a temporary object of type other than Obj, in which case it
is returned as an rvalue reference from which the return Obj is constructed.

There are still a few cases in which good1 behaves differently from the hypothetical ho-
mogeneous good(Obj ...arg). If you call good1(std::move(obj)), no new Obj will be
constructed from the argument, whereas ordinarily you would expect to move-construct a
new Obj. Arguably this is a feature; since a moved object is left in an unspecified state,
the main differences in semantics will be one fewer invocation of the move constructor
Obj::Obj(Obj&&) (or copy constructor if Obj lacks a move constructor). Another difference
is that you can call good({}) and the {} will construct an Obj, since the argument type is
known, whereas good1({}) is illegal because the compiler doesn’t know the argument type.

By the way, if this all seems too complex, there is sometimes an alternative to variadic functions
for homogenous argument lists—you can write functions to take an initializer_list:

inline void
almost_good3(std::initializer_list<Obj> args)

25

https://timsong-cpp.github.io/cppwp/n4861/dcl.type.auto.deduct#4
https://timsong-cpp.github.io/cppwp/n4861/dcl.type.auto.deduct#4
https://www.scs.stanford.edu/~dm/blog/decltype.html#decltype-overview
https://en.cppreference.com/w/cpp/types/conditional

{
for (const Obj &o : args)

o.use(); // doesn't work with non-const method, though
}

The two disadvantages are that you’ll have to call the function with an extra set of braces,
as in alsmost_good3({obj, Obj{}}), and that you only have const access to members of
std::initializer_list, so it won’t work with our example Obj type, in which the use()
method is not const.

Array of function pointers
Sometimes you need to convert a runtime constant into a compile-time constant without
manually writing out every possible value in a switch statement. The best way to do this is
to initialize an array of function pointers using a parameter pack expansion.

As an example, suppose you wish to serialize a std::variant v. You can serialize the current
type of the variant by serializing the number v.index(). Then you can serialize the body of
the variant with std::visit. To deserialize v, you must reverse the process. First, deserialize
the index value i. Then set v.index() to i by setting v to contain its ith type. Finally,
deserialize the contents with std::visit.

Unfortunately, the problem with this plan is that the inverse of v.index()—a method to
set the index of the variant—does not exist. We could try to implement such a function by
brute-force, but the result will be problematic:

// Painful to write, only works if variant has exactly 3 types
void
set_index(auto &v, std::size_t n)
{

switch (n) {
case 0:

v.template emplace<0>();
break;

case 1:
v.template emplace<1>();
break;

case 2:
v.template emplace<2>();
break;

}
}

The less serious problem with this code is that it is very tedious to write. Even though
emplace really is a different function for each index of the variant, writing it out this way is
painful. The more serious problem is that the above function only works for variants with
exactly 3 cases. A variant with only 2 cases doesn’t have valid code for emplace<2>, so

26

https://en.cppreference.com/w/cpp/utility/variant
https://en.cppreference.com/w/cpp/utility/variant/visit

invoking set_index on such a type will fail to compile.

What we need is a way to take a runtime constant and convert it to a compile time constant
we can supply as a template parameter to v.emplace<◦>(). We can represent compile-
time constants with the template type std::integral_constant, which has a constexpr
conversion operator returning the integral value represented by the type. Conceptually, we
would like to do something like this:

// Parse a pack of char as a decimal number
constexpr std::size_t
chars2size(std::same_as<char> auto ...c)
{

std::size_t r = 0;
for (std::size_t i : { c... })

r = r*10 + i - '0';
return r;

}

// Define 0_const, 1_const, etc. as compile-time integral constants
// (Note: doesn't work with clang++ yet)
template<char ...C> requires ((C >= '0' && C <= '9') && ...)
consteval std::integral_constant<std::size_t, chars2size(C...)>
operator ""_const()
{

return {};
}

// Illegal nonsense--a function can only return one type
auto
get_constant(std::size_t n)
{

switch (n) {
case 0:

return 0_const;
case 1:

return 1_const;
// ...
}

}

Of course, that doesn’t make sense because 0_const and 1_const are of different types. A
function can only return one type (which obviously can’t depend on a runtime argument).
In order for a function to produce a type dependent on a runtime parameter, instead of
returning the type, the function needs to call an overloaded function object. We therefore
must implement something like the following:

template<typename R = void, typename F>

27

https://en.cppreference.com/w/cpp/types/integral_constant

inline constexpr R
with_constant(std::size_t n, F &&f)
{

switch (n) {
case 0:

return std::forward<F>(f)(0_const);
case 1:

return std::forward<F>(f)(1_const);
// ...
}

}

void
set_index(auto &v, std::size_t n)
{

with_constant(n, [&v](auto i) { v.template emplace<i>(); });
}

Okay, so now we know what the function should look like, but we still have the problem
that it only works for a fixed number of values of n. Not even a fixed maximum, but a fixed
number. However, we can fix this by taking the maximum value as a parameter, then using
std::make_index_sequence to generate a parameter pack that we expand into an array of
function pointers.

1 namespace detail {
2

3 template<std::size_t I, typename R, typename F>
4 inline constexpr R with_integral_constant(F f)
5 {
6 return static_cast<F>(f)(std::integral_constant<std::size_t, I>{});
7 }
8

9 } // namespace detail
10

11 template<std::size_t N, typename R = void, typename F>
12 inline constexpr R
13 with_n(int n, F &&f)
14 {
15 constexpr auto invoke_array =
16 []<std::size_t...I>(std::index_sequence<I...>) {
17 return std::array{ detail::with_integral_constant<I, R, F&&>... };
18 }(std::make_index_sequence<N>{});
19

20 return invoke_array.at(n)(std::forward<F>(f));
21 }
22

28

23 template<typename T> requires requires {
24 { std::variant_size_v<T>+0 } -> std::same_as<std::size_t>;
25 }
26 void
27 set_index(T &t, std::size_t n)
28 {
29 with_n<std::variant_size_v<T>>(n, [&t](auto i) {
30 t.template emplace<i>();
31 });
32 }

Some notes on the above code. First, note that invoke_array, because it is an
array, must have all its elements be of the same type. Hence, we really do need
detail::with_integral_constant to be a function, rather than a lambda expression,
to ensure all elements of the array have the same type. We could create an array of
std::function<R(F&&)>, but std::function::~function is not a constexpr destructor,
so then invoke_array could not be constexpr, which might inhibit some compiler
optimizations. (Note in some cases, if you have non-generic lambdas with no variable capture,
they can be converted to ordinary function pointers by prefixing the lambda with +, as in
+[]{}.)

Next, note that we supply the number of possible values, N, as the first template argument
to with_n, and this argument is mandatory. By using std::array::at, we ensure that an
exception will be thrown for out-of-bounds values of n. Note also that if we want to use with_n
with a return type other than void, it must be supplied as the second template argument
R. Since the code is different for each value of n, we can’t infer a return type. (Possibly we
could do something fancy to compute a plausible return type using std::common_type_t,
but it doesn’t seem worth the complexity.)

As a reminder about constraints, the clause { std::variant_size_v<T>+0 } ->
std::same_as<std::size_t> is known as a compound requirement, and states that
decltype((◦)) of the expression in braces must satisfy the constraint to the right of the
arrows. Since the expression (std::variant_size_v<T>) is probably an lvalue of type
const std::size_t&, we just add 0 to turn it into a prvalue of type std::size_t, avoiding
any worries about the const or references. An alternative would be to use our is_template
concept, as in:

template<is_template<std::variant> T>
void
set_index(T &t, std::size_t n)
{

/* ... */
}

Finally, note the importance of our lambda in set_index accepting the parameter
by value (auto i) and not by reference (auto &&i or const auto &i). Because of
some quirkiness in how constexpr works, you can’t call constexpr methods (such as

29

https://en.cppreference.com/w/cpp/utility/functional/function
https://timsong-cpp.github.io/cppwp/n4868/expr.prim.lambda#closure-7
https://timsong-cpp.github.io/cppwp/n4868/over.built#9
https://en.cppreference.com/w/cpp/types/common_type
https://en.cppreference.com/w/cpp/language/constraints
https://github.com/cplusplus/papers/issues/973

std::integral_constant::operator std::size_t) on a reference at compile time, only
on a value. Hence, line 30 will cause a compilation error if i is a reference.

Conclusion
As C++ evolves, many old, error-prone, and frankly disgusting idioms are no longer necessary
and should be eliminated. For instance, you should never again rely on SFINAE now that
we have concepts. Similarly, it’s time to update our variadic function idioms to leverage the
new language features. Concepts now allow us to restrict the types in a function parameter
pack. constexpr-by-default lambdas help us capture parameter packs even in contexts such
as requires clauses. The ability to use lambdas in unevaluated contexts lets us avoid helper
classes for many purposes. Folds and if constexpr can save us from implementing multiple
overloaded functions for recursive and base cases. Class template argument deduction makes
it possible to introduce types such as multilambda without helper functions to create them.

Unfortunately, effective use of variadic templates still involves some unwieldy idioms, in large
part because of the asymmetry between expanding patterns (which works in many contexts)
and capturing parameter packs (which often requires introducing otherwise unnecessary
lambda expressions). If C++ adopts parameter packs in structured bindings, this will go a
long way towards further simplifying the use of parameter packs. Another nice feature would
be homogeneous variadic function parameters, though unfortunately that was rejected by
the committee, so won’t be adopted in current form. Still, perhaps a future version of the
standard could at least deprecate omitting the comma in declarations of old-style varargs
functions, which is the main impediment.

I hope the idioms I presented are useful to you. If you are still writing C++17-compatible
code, I hope this post provides further motivation for you to abandon legacy compatibility
and embrace the significant improvements in C++20.

30

https://en.cppreference.com/w/cpp/language/sfinae
https://en.cppreference.com/w/cpp/language/constraints
https://en.cppreference.com/w/cpp/language/if
https://en.cppreference.com/w/cpp/language/class_template_argument_deduction
https://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1061r0.html
https://wg21.link/p1219r0
https://github.com/cplusplus/papers/issues/297

	Introduction
	Overview of variadic templates
	Expanding parameter packs
	sizeof...(pack)
	Folds
	Capturing parameter packs
	Template parameter packs
	Function parameter packs
	Init-capture packs

	Idioms
	Recursing over argument lists
	Recursing over template parameters
	Comma fold
	Short-circuiting && and || folds
	Using lambda expressions to capture packs
	Using lambda expressions to capture packs in requires clauses
	Using decltype on lambda expressions
	Multilambda
	Recursive types through inheritance
	Homogeneous function parameter packs
	Array of function pointers

	Conclusion

