
Syrup: User-Defined Scheduling Across the Stack
Kostis Kaffes

Stanford University
Jack Tigar Humphries

Stanford University

David Mazières
Stanford University

Christos Kozyrakis
Stanford University

Abstract
Suboptimal scheduling decisions in operating systems, net-
working stacks, and application runtimes are often respon-
sible for poor application performance, including higher
latency and lower throughput. These poor decisions stem
from a lack of insight into the applications and requests the
scheduler is handling and a lack of coherence and coordina-
tion between the various layers of the stack, including NICs,
kernels, and applications.
We propose Syrup, a framework for user-defined sched-

uling. Syrup enables untrusted application developers to ex-
press application-specific scheduling policies across these
system layers without being burdened with the low-level
system mechanisms that implement them. Application de-
velopers write a scheduling policy with Syrup as a set of
matching functions between inputs (threads, network pack-
ets, network connections) and executors (cores, network
sockets, NIC queues) and then deploy it across system layers
without modifying their code. Syrup supports multi-tenancy
as multiple co-located applications can each safely and se-
curely specify a custom policy. We present several examples
of uses of Syrup to define application and workload-specific
scheduling policies in a few lines of code, deploy them across
the stack, and improve performance up to 8× compared with
default policies.

CCS Concepts: • Networks → Programmable networks; •
Software and its engineering → Scheduling.

Keywords: scheduling, programmability, kernel
ACM Reference Format:
Kostis Kaffes, Jack Tigar Humphries, David Mazières, and Christos
Kozyrakis. 2021. Syrup: User-Defined Scheduling Across the Stack.
In ACM SIGOPS 28th Symposium on Operating Systems Principles

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP 2021, October 25–28, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8709-5/21/10. . . $15.00
https://doi.org/10.1145/3477132.3483548

(SOSP ’21), October 26–29, 2021, Virtual Event, Germany. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3477132.3483548

1 Introduction
Scheduling is a fundamental operation in computer systems
that occurs at multiple layers across the stack, from global
load balancers to programmable network devices to the oper-
ating system in end-hosts. Despite this diversity, schedulers
perform a single fundamental operation: they map work to
execution resources. The units of work range from network
packets to OS threads to application-level requests, while
execution resources include NIC queues, cores, and network
sockets, depending on where scheduling occurs.
The scheduling policy used for each application is criti-

cal to its performance; different applications and workloads
perform best under different policies. Matching scheduling
policies to the application characteristics can reduce or elim-
inate problems such as head-of-line blocking [27, 38], lack of
work conservation [32, 42], priority inversion [45], and lack
of scheduler scalability [15, 31, 43]. Given the wide range of
algorithms, tuning parameters, and implementation options,
the performance difference from using a generic scheduling
policy versus an application-specific scheduling policy is
often an order of magnitude or more [18, 27, 38, 40, 42].
Unfortunately, the scheduling policy is typically baked

into the design of most systems. Applications are forced to
use the default policies across system layers which are often
suboptimal. For example, the complex Linux scheduler and
its Completely Fair Scheduler (CFS) policy were found to be
non-work-conserving for important application classes [35].
At the same time, widely-used hash-based packet steering
(RSS) is known to lead to load imbalances affecting appli-
cation tail latency [13, 27, 43]. Application developers can
hack existing full-featured operating system components —
from scheduling classes to the networking stack to NIC and
flash card drivers — in order to implement custom policies.
However, this is extremely hard to do in the first place and
equally hard to upstream and maintain in the long term. One
should not need to be a Linux kernel contributor to optimize
their application. Hence, developers who have wanted to
use custom scheduling even for existing applications have
built runtimes, operating systems, and even hardware from
scratch [14–16, 27, 31, 37, 38, 42, 51], sacrificing compatibility
with existing APIs, applications, and hardware. For example,
even a popular data plane operating system like IX [14] only

https://doi.org/10.1145/3477132.3483548
https://doi.org/10.1145/3477132.3483548

SOSP 2021, October 25–28, 2021, Virtual Event, Germany Kostis Kaffes, Jack Tigar Humphries, David Mazières, and Christos Kozyrakis

supports three NICs belonging to the same vendor (Intel),
while recent designs propose keeping the existing kernel
API and using specialized hardware to accelerate the data
plane [44].
We argue that rather than resort to kernel hacking or

building specialized full-stack systems that optimize sched-
uling for each new class of workloads, application developers
should be able to express their preferred scheduling policies to
the underlying systems. The high-level policy code should be
automatically integrated with the various scheduling mech-
anisms throughout a modern system, delivering a signifi-
cant fraction of the performance benefits possible with an
application-specific operating or runtime system.
To address this need, we developed Syrup, a framework

for user-defined scheduling. As shown in Figure 1, untrusted
application developers can use Syrup to define and safely
deploy arbitrary scheduling policies across various layers of
the stack, including the kernel networking stack, the kernel
scheduler, and programmable network devices. For example,
developers can specify how threads are scheduled to cores
or how packets are scheduled to network sockets.

Application

Kernel Scheduler

Networking Stack
Syrup Hook

Syrup Hook

Network Interface Card
Syrup Hook

S
y
r
u
p

F
r
a
m
e
w
o
r
k

S
y
r
u
p

P
o
l
i
c
y

Figure 1. Syrup enables user-defined scheduling across the
stack.

Syrup makes specifying scheduling policies easy by treating
scheduling as a matching problem. Users specify scheduling
policies by implementing functions that match inputs to ex-
ecutors without dealing with low-level system details such
as how inputs are actually steered to the selected executors.
Syrup currently supports a range of inputs including network
packets, network connections, and kernel threads, while ex-
ecutors can be NIC queues, cores, and network sockets. De-
velopers just need to declare their scheduling intention and
Syrup does everything else,making scheduling almost declar-
ative. Syrup introduces system hooks so that policies are
deployed efficiently across different layers of widely-used
software and hardware stacks. Syrup also allows commu-
nication between scheduling policies that run in different
system layers using a Map abstraction, and guarantees inter-
application isolation, ensuring that policies only handle in-
puts belonging to the app that deployed them.

Syrup currently provides hooks for three backends: eBPF [3]
software, eBPF hardware, and ghOSt [25]. eBPF software is
used to safely deploy matching functions at various hooks
in the kernel networking stack, while eBPF hardware allows
Syrup to take advantage of programmable network devices.
ghOSt [25] is used to offload thread scheduling to matching
functions that run in userspace.
We show Syrup can concisely express and efficiently im-

plement the workload-specific scheduling policies needed
for demanding workloads. First, we demonstrate that several
scheduling policies with different requirements can be im-
plemented in a few lines of code and deployed for socket se-
lection for a multi-threaded RocksDB [2] workload in Linux
while achieving up to 8× lower tail latency and 3× higher
throughput compared to the default policy. The requirements
range from peeking into packet contents to identify the re-
quest type to communicating with a userspace agent that
generates tokens consumed by different users in an SLO-
aware policy. Using Syrup, we also deploy custom policies
that work in concert across the network stack and the thread
scheduler, improving the performance of a different RocksDB
workload by 60% compared to single-layer scheduling. Fi-
nally, we show that the same Syrup-based scheduling policy
is portable across different layers of the stack by moving
scheduling for MICA [34], a high-performance key-value
store that serves millions of requests per second, between a
smartNIC and the network stack.

The rest of the paper is organized as follows. §2 motivates
user-defined scheduling across the stack. §3 presents the
design of Syrup and §4 describes its implementation. §5 eval-
uates how applications benefit from Syrup-based scheduling.
Finally, §6 discusses open research questions and potential
Syrup extensions, while §7 presents related work.

2 Motivation
2.1 User-defined Scheduling Matters

To showcase the importance of scheduling, we examine a
very simpleworkload scenario.We set up a 6-thread RocksDB
server [2] that handles homogeneous GET requests with a
service time of 10-12`s. All threads have a socket bound to
the same UDP port and we let Linux distribute incoming
datagrams to sockets. More details about the experimental
setup can be found in §5.2.
This very common case should be a slam-dunk for the

vanilla scheduling policy in Linux that assigns datagrams
to sockets using the hash of the 5-tuple of each datagram.
However, in Figure 2, we see that this policy leads to many
dropped requests and high and noisy 99% latency for high
request rates (> 250K RPS). Most of the data points for vanilla
Linux are so high that all we see is the lower part of the
standard deviation bars across twenty runs. Such behavior
has been observed before [13, 27] and is happening because
the hash-based scheduling scheme can cause imbalances
when there is a small number of 5-tuples (50) and sockets

Syrup: User-Defined Scheduling Across the Stack SOSP 2021, October 25–28, 2021, Virtual Event, Germany

(6), and more 5-tuples than expected are randomly assigned
to the same socket, overloading it. This is a major problem
as most cloud SLOs are set in terms of tail latency. A simple
round-robin policy over network sockets implemented in
Syrup eliminates drops and achieves sub-200`s tail latency
for a load 80% higher than the default policy.

0 100 200 300 400 500
Load (RPS x 1e3)

0

200

400

600

800

1000

99
%

La
ten

cy
 (u

s)

(a) 99% Latency

0 100 200 300 400 500
Load (RPS x 1e3)

0
2
4
6
8

10
12
14

%
Dr

op
pe

d R
eq

ue
sts

Vanilla Linux
Round Robin

(b) % Dropped Requests

Figure 2. RocksDB benchmark with 100% GET requests.

It is important to note that while the round-robin policy is
better for this workload, it is no panacea. For other workload
types, locality might matter more. Optimizations like Linux’s
Receive Flow Steering (RFS) that places network processing
on the same core as the receiving application would be im-
possible without hash-based scheduling. A netperf TCP_RR
test that uses RFS has been shown to achieve up to 200%
higher throughput than one without RFS [1]. Hence, sched-
uling flexibility and customizability is a necessary feature
for modern operating systems.
Most existing systems do not offer scheduling flexibil-

ity. The upstream Linux kernel essentially supports just six
scheduling policies (CFS, BATCH, IDLE, FIFO, RR, DEAD-
LINE), and adding a new policy even to a custom kernel
requires significant development effort [37]. Hence, appli-
cation developers often build a new bespoke framework or
data plane system for each application class they want to
schedule differently [14, 16, 24, 27, 31, 34, 38, 40, 42, 51]. This
approach has significant shortcomings:
• Considerable development effort is necessary even to
prototype new scheduling policies.

• These dataplanes typically use special APIs that are
incompatible with commonly-used applications built on
top of existing systems, e.g., Linux.

• Maintaining such specialized per-application systems as
the infrastructure around them changes is time-consuming
and costly.

Instead of building new runtimes or operating systems for
each application class, we argue that application developers
should specify their preferred scheduling policy and safely
deploy it to existing systems. Schedulers throughout the
system stack should take the application preferences into
account to optimize for workload-specific patterns.

2.2 Scheduling Requirements

In this section, we examine an important application class,
key-value stores (KVS), and derive a minimum set of require-
ments that a user-defined scheduling frameworkmust satisfy.
Key-value stores are widely used in web applications, and
their diverse workloads and high performance requirements
present a wide variety of scheduling challenges.

Expressibility: Different workloads perform best under
different scheduling policies, even within a single application
type. For example, homogeneous workloads where requests
have about the same execution time are better served by low-
overhead, First-Come-First-Serve (FCFS) policies [14, 28, 34].
For workloads with higher execution time variability, FCFS
often leads to head-of-line blocking. Policies that use work-
stealing [42] or centralized scheduling and preemption [27]
are better suited for such workloads, achieving up to 8× bet-
ter performance. In more extreme bimodal scenarios, it might
even be necessary to reserve some cores for each request type
using the Size Interval Task Assignment policy [20] or one
of its variations [16, 38]. Therefore, a scheduling framework
must allow applications to define custom policies easily.

Cross-layer deployment: Scheduling is not limited to
a single layer of the stack. Prior work has shown that im-
plementing a policy at the right layer can greatly improve
performance. In some cases, it is beneficial to offload packet
scheduling to hardware to improve scalability [14, 28, 31].
However, in other cases, more complex policies running
in software can lead to better performance [27]. More im-
portantly, some systems improve performance even further
by implementing scheduling policies that work in concert
across multiple layers of the stack [26, 29, 51]. For example,
locality constraints that are important for high-performance
networked applications [14, 34] need to be enforced both at
the NIC RX queue and at the application thread layers.

Low Overhead:Many modern cloud workloads, includ-
ing but not limited to key-value stores, in-memory databases,
web search, and interactive analytics, operate on the mi-
crosecond scale. Hence, scheduling mechanisms and policies
that operate per packet or I/O event should incur very little
overhead. Applications with end-to-end latencies on the or-
der of a few tens of microseconds cannot tolerate scheduling
delays higher than single-digit microseconds.

Multi-tenancy and Isolation:One of themain disadvan-
tages of most of the aforementioned custom data plane and
runtime systems is that hosting more than one application
requires starting multiple dedicated system instances. Even
systems built for multiplexing, e.g., Shenango [40], offer no
scheduling flexibility, using the same policies for all applica-
tion and workload mixes. This can severely limit application
performance as there is no one-size-fits-all scheduling policy.
Moreover, any systemwith built-in support for flexibility will
need safeguards to ensure that different scheduling policies,
one for each application, can safely co-exist.

SOSP 2021, October 25–28, 2021, Virtual Event, Germany Kostis Kaffes, Jack Tigar Humphries, David Mazières, and Christos Kozyrakis

Syrup Maps

Kernel Scheduler

Networking Stack

Syrup Hook

Syrup Hook

Network Interface Card
Syrup Hook

Application Code
…
syr_deploy_policy(<policy_file>, <hook>);
…
// Interact with the policy.
syr_map_lookup(<map>, <key>);
syr_map_update(<map>, <key>, <value>);

Policy file: Example Hash-based Policy

uint32_t schedule(void *pkt_start,
 void * pkt_end) {
 uint32_t hash =
 hash((struct *udphdr) pkt_start);
 int num_cores =
 syr_map_lookup(core_map, 0);
 return hash % num_cores;
}

2

3

5

4

Syrupd

1

Figure 3. Scheduling workflow in Syrup.
3 Syrup Design
Syrup is a framework that enables user-defined scheduling
while meeting all of the requirements mentioned above. Ap-
plication developers write a custom scheduling policy for
their application using Syrup and then deploy the untrusted
code safely and efficiently across system layers in the data
center. Scheduling policies expressed in Syrup can move and
split across layers as needed with minimal effort.

3.1 Workflow Overview
Figure 3 summarizes the key components of Syrup and the
typical scheduling workflow. First, the developer or the ad-
ministrator of an application that wants to use Syrup speci-
fies her desired scheduling policy by implementing a simple
C interface in a separate file ❶. In §3.2, we describe how
Syrup adopts a matching abstraction for scheduling that al-
lows developers to specify policies in an almost-declarative
fashion. The application code then calls the syr_deploy_
policy function, which takes two arguments: a file describ-
ing the desired scheduling policy and one or more target
deployment hooks for the policy ❷. This function commu-
nicates with a system-wide Syrup daemon, syrupd, which
does all the heavy lifting for the policy deployment. The
daemon compiles the policy file to a binary or object file ❸ —
depending on the target scheduling hook — and deploys it in
the user-specified hooks across the stack ❹. The userspace
application and the Syrup policies deployed across differ-
ent hooks can optionally communicate information such as
load, latency statistics, or expected completion time using
a key-value store-like Map abstraction ❺. Maps are defined
in the policy file and set up by syrupd at deployment time.
Applications can update or deploy new policies at any time
while they are running. If no Syrup policy is deployed, the
application runs using the default scheduling policy of the
underlying runtime and operating system.

3.2 Scheduling as a Matching Problem

Syrup aims to offer a single scheduling abstraction that can
be used for different scheduling decisions across the stack
and make it easy for users to implement custom scheduling
policies. Syrup achieves this by treating scheduling as fun-
damentally an online matching problem. Scheduling policies
are represented as matching functions between inputs and
executors that process the inputs. Inputs can be any supported

units of work and executors can be any system processing
components. Syrup currently supports network packets, con-
nections, and threads as inputs and NIC queues, cores, and
network sockets as executors. Syrup policies run whenever
a new input is ready for processing, e.g., a packet arrives or
a thread becomes runnable, or an executor becomes avail-
able. Implementing Syrup support for additional inputs (I/O
operations) and executors (NVMe queues) that cover storage
use cases is straightforward [49].

Syrup’s matching abstraction offers generality as it can be
used for decisions as fine-grained as placing packets to cores
for network stack processing to as large-scale as placing
jobs to machines in a data center. Moreover, online matching
breaks scheduling down into a series of "small" decisions, im-
proving the composability and the understandability of even
complex policies. For example, optimizing packet processing
in Linux translates first to assigning packets to NIC queues,
then to cores for network stack processing, and eventually
to application-level sockets. A Syrup user can define and
deploy a different self-contained scheduling policy for each
of these decisions.

Implementing scheduling as per-application online match-
ing also offers reliability and isolation advantages. Syrup
makes sure that each policy only processes inputs belong-
ing to the application that deployed it. A bad-performing or
buggy policy will only affect the application that deployed it,
leading to improved reliability over monolithic system-wide
policies. Malicious applications can only affect overall system
performance by hogging some executors, a behavior quickly
detected and dealt with using a resource manager. We dis-
cuss in detail how Syrup meets these isolation guarantees in
§3.5 and §4.3.

3.3 Specifying a policy in Syrup

To define a scheduling policy, users simply need to provide
an implementation of the schedule matching function (see
Table 1) that is then deployed to a scheduling hook by syrupd.
The only thing this user-defined function needs to do is select
an executor for the input passed to it as an argument. The
actual enforcement of the scheduling decision, e.g., assigning
a packet to a specific network socket when SO_REUSEPORT
is used, is hook-specific and handled exclusively by the Syrup
framework. This almost-declarative API removes most of
the programming burden from the policy developer.

Syrup’s schedule function is expected to return a uint32_
t instead of an actual executor object. The return value is
a key to an application- and hook-specific Map set up by
syrupd at deployment time. This Map holds the set of avail-
able executors, e.g., in the case of connection scheduling, the
corresponding Map stores network sockets. There are also
two special return values, PASS and DROP, that signal to
the system to use its default policy or drop the input respec-
tively. Syrup users can populate this Map with executors as
they see fit, e.g., add network sockets after bind() is called.

Syrup: User-Defined Scheduling Across the Stack SOSP 2021, October 25–28, 2021, Virtual Event, Germany

Syrup API

Function Name Arguments Output Description

schedule input executor Implements the scheduling policy by matching the
<input> with an <executor>; written in a safe subset of C

syr_deploy_policy policy_file, hook prog_fd Deploys the policy in <policy_file> to scheduling <hook>
syr_map_open path map_fd Opens the Map pinned to <path>
syr_map_close map_fd status Closes Map associated with <map_fd>
syr_map_lookup_elem map_fd, key value Returns the <value> associated with <key> in <map_fd>
syr_map_update_elem map_fd, key, value status Stores <value> to <map_fd>’s <key>

Table 1. The Syrup API. schedule is implemented by Syrup users while the rest of the functions are provided by the framework.

This design choice makes Syrup policies more portable as
they can be reused without any code change across layers
that support the same inputs. For example, the following
hash-based policy can assign UDP packets to NIC queues,
cores, or application-level sockets. In §5.4, we show that this
simple policy implemented in Syrup improves throughput
by more than 80% for a high-performance key-value store
application.

1 uint32_t schedule(void *pkt_start , void *pkt_end) {

2 uint32_t hash = hash((struct *udphdr) pkt_start);

3 return hash % NUM_EXECUTORS;

4 }

Similarly, porting a policy to a hook that handles differ-
ent inputs typically requires minimal changes in the input-
handling code, e.g., hashing the TCP header instead of the
UDP one. §4.3 explains why we represent a packet using two
pointers, one pointing to the start of the packet and one to
the end. We present more policy examples in §5.2.

3.4 Cross-layer communication

§2.2 motivated that the runtime communication between the
application code and the schedulers deployed across differ-
ent layers of the stack is often crucial for scheduling perfor-
mance and functionality. For example, resource allocation de-
cisions using expensive learning-based techniques are often
offloaded to userspace, outside of the critical path [36, 47].

In Syrup, such communication is done using Maps that pro-
vide a key-value store API, as shown in Table 1. In addition
to the Maps used as executor containers, applications can
declare and populate custom Maps. User-defined Maps are
declared in the policy file and pinned to sysfs by syrupd so
that different programs from the same user can access them.
We can control access to maps using file system permissions.
Our implementation supports application-definedMaps with
32-bit unsigned integer keys and arbitrary C structs as values.
However, we have found that 64-bit unsigned integer values
are sufficient for our target applications and policies. Hence,
to simplify the API, we use by default 64-bit values. We dis-
cuss the atomicity model of Maps in §4.1 and the different
operations’ overhead in §5.5.

To showcase the usefulness of Maps and the scheduling
flexibility provided by Syrup, we develop a token-based re-
source allocation policy similar to the one used by Reflex [30].
To avoid SLO violations, this policy issues tokens to each
user periodically. Incoming requests consume tokens, and if
a user’s tokens drop to zero, requests are dropped. We select
a token generation rate so that the system operates slightly
below its saturation rate.

1 struct app_hdr {

2 uint32_t user_id;

3 ...

4 }

5
6 uint32_t schedule(void *pkt_start , void *pkt_end) {

7 void * data = (void *) (pkt_start + sizeof(struct udphdr));

8 struct * app_hdr = (struct app_hdr *) data;

9
10 uint32_t user_id = app_hdr ->user_id;

11
12 uint64_t * tokens = syr_map_lookup_elem (&token_map , &user_id);

13 if (* tokens == 0) {

14 return DROP;

15 } else {

16 __sync_fetch_and_add(tokens , -1);

17 return PASS;

18 }

19 }

In the code snippet above, we omit some of the necessary
bound checks for brevity. The scheduling code first parses
each UDP packet to identify the user the packet belongs to
(line 10). It then does a Map lookup to find the number of
available tokens for the user (line 12). If there are no tokens
available, it signals to the system to drop the input (lines
13-14). If there are available tokens, it decreases the token
number for the user and signals to the system to choose its
default executor (lines 15-17). Syrup code that runs in the
kernel can directly update the value of a Map using atomic
instructions (line 16). Code running in userspace can period-
ically replenish the tokens for each user, as shown below:

1 void generate_tokens(int token_fd , uint32_t user_id , uint64_t

tokens) {

2 syr_map_update_elem(token_fd , user_id , tokens);

3 }

To conclude, Maps provide a general communication abstrac-
tion that enables cross-layer communication while catering
to evolving application needs.

SOSP 2021, October 25–28, 2021, Virtual Event, Germany Kostis Kaffes, Jack Tigar Humphries, David Mazières, and Christos Kozyrakis

3.5 Syrupd for multi-tenancy and isolation

Syrupd provides cross-application isolation as motivated
in §2.2. Before loading a policy into a scheduling hook, it
installs checks that ensure that each policy handles only
inputs belonging to the policy’s application. Applications
could also load their policies directly into the different Syrup
hooks but, without syrupd, there would be no safeguards
protecting applications from each other. We discuss how
syrupd installs the input checks in §4.3.

4 Syrup Implementation
To enable user-defined scheduling, we must safely deploy
user code in the kernel and hardware or offload schedul-
ing decisions to userspace. Syrup’s implementation supports
both of these approaches by using two recently-developed
frameworks, eBPF [3] and ghOSt [25]. We use eBPF to safely
deploy policies across the Linux networking stack and pro-
grammable NICs and ghOSt to offload kernel thread schedul-
ing to userspace agents. As we show in §5.3, Syrup policies
can be deployed and interoperate using both frameworks at
the same time.
4.1 eBPF & ghOSt

eBPF Extended Berkeley Packet Filter, eBPF, is an in-kernel
virtual machine that allows running userspace-provided code
in the kernel in a sanitized way. eBPF programs are loaded
into the kernel using a system call, attached to a specific
code path and triggered by events, e.g., the arrival of a net-
work packet. The eBPF program is loaded in bytecode that
is recognized by the virtual machine and is compiled at load
time to the underlying hardware instruction set. Just-in-time
(JIT) compilation allows eBPF programs to achieve native
code performance and their invocation to be as cheap as a
regular function call. eBPF is supported by the LLVM/Clang
toolchain allowing users to write scheduling policies for
Syrup in a safe subset of C (see §4.3) and compile them to
eBPF bytecode using the "-target bpf" flag. Implementing
Syrup policies that will be deployed to an eBPF hook is as
simple as writing a C function. We provide such policy ex-
amples in §5.2. Syrup handles deployment and ensures that
the right inputs are handled by each application’s policy.

As we already described in §3.4, Syrup uses Maps for cross-
layer communication and for allowing applications to modify
the possible executors that handle their inputs. Syrup Maps
are implemented using eBPF maps. eBPF maps are kernel
data structures that can store arbitrary values and can be
pinned to sysfs so that multiple programs can have access
to them. In Syrup we use eBPF maps that can either hold
different executors, e.g., CPUs or network sockets, as well
as simple uint64_t values. We describe in more detail how
users specify executors and inputs in §4.4. One disadvantage
of BPF maps is that they do not support synchronization
primitives, e.g., locks. However, it is possible to use atomic
instructions directly on BPF map values. The existence of

this feature, together with the fact that scheduling does not
– in most cases – need to be deterministic, means that the
lack of synchronization primitives neither affects our ability
to implement policies in Syrup in practice nor undermines
system stability.

ghOSt eBPF is an excellent backend for network stack
scheduling due to the security (§4.3), low overhead (§5.5),
and flexibility it provides (§4.2). However, eBPF’s support
for kernel thread scheduling is not very mature. There are
very few eBPF hooks in the kernel scheduler subsystem,
and most of them are associated with observability, not
decision-making. Thus, we opt to offload thread scheduling
to userspace using ghOSt instead. The coarser granularity of
thread scheduling allows us to do so, while, e.g., offloading
per-packet scheduling decisions to userspace would add too
much context-switch overhead.
ghOSt [25] is a new Linux kernel scheduler that imple-

ments centralized scheduling and has an easy-to-use API
for implementing new centralized policies. ghOSt allows
policies to be implemented in a single spinning userspace
thread, similar in spirit to a microkernel or Exokernel [17],
in order to reduce development and debugging overhead.
Syrup users follow the same workflow as in Figure 3, i.e.,
they implement a scheduling policy as a C function that
takes kernel threads as inputs and matches them with logical
cores. Similar to userspace application code, Syrup policies
deployed in ghOSt can use Maps to communicate with the
application or policy code deployed to other hooks across the
stack. ghOSt contains a lightweight kernel scheduling class
that detects interesting scheduling events, such as thread
state changes (e.g., thread created, thread blocked, thread
yielded, etc.) and notifies the userspace process of these state
changes via a message-passing API. The spinning userspace
thread processes these messages, updates its own state, and
then invokes the user-defined scheduling function to make
a decision. The spinning userspace thread notifies the ker-
nel of its scheduling decisions via a system call. The kernel
acts on those decisions by sending interrupts to the remote
logical cores that are being rescheduled and then context
switching to the scheduled threads on those remote cores.

4.2 Supported Hooks

As shown in Figure 4, our initial implementation of Syrup
supports scheduling hooks across the networking stack and
the kernel scheduler. There is a Thread scheduler hook that
allows Syrup users to define a scheduling policy that matches
threads to cores using ghOSt. The Socket Select hook en-
ables policies that choose one of many TCP or UDP network
sockets that use the SO_REUSEPORT option to listen for
incoming connections or datagrams on the same port. The
CPU Redirect hook allows users to steer packets to specific
cores for kernel network stack processing. The XDP_DRV
and XDP_SKB hooks allow Syrup to handle packets early in

Syrup: User-Defined Scheduling Across the Stack SOSP 2021, October 25–28, 2021, Virtual Event, Germany

the network stack, before going through protocol process-
ing. Syrup code running in these hooks can redirect packets
directly to AF_XDP network sockets [23] in userspace achiev-
ing kernel-bypass-like performance on top of the Linux ker-
nel. We describe these hooks and their use cases in more
detail in §5.4. Finally, the XDP Offload hook allows users to
run their policies on smartNICs and programmatically steer
packets to the NIC RX queues.

4.3 Cross-application Isolation

Syrup allows the simultaneous deployment of multiple user-
defined policies for different applications and offers the fol-
lowing guarantees:
• A policy loaded by one application only has access to
the inputs belonging to that application.

• The policy code loaded by one application cannot make
unauthorized accesses to memory belonging to other
applications or the kernel.

We examine how Syrup achieves these two guarantees in
each of its backends, eBPF and ghOSt.

eBPF Isolation Injecting user-defined code into the ker-
nel is fundamentally dangerous regardless of Syrup’s re-
quirements. Hence, the eBPF framework offers an in-kernel
verifier that performs a number of checks before the eBPF
program is loaded into the kernel. The verifier simulates
the execution of the program one instruction at a time and
checks for out-of-bound jumps and out-of-range data ac-
cesses, while it allows pointer accesses only after an explicit
check for bound violations. This is the reasonwhywe need to
include pointers to both the packet start and the packet end as
input arguments in the policy shown in Figure 3. Every mem-
ory access to the packet needs to explicitly check whether
it goes out of bounds, exceeding the packet_end pointer.
Moreover, the verifier analyzes up to 1 million instructions.
If there is a possibility that the loaded eBPF program exceeds
that threshold, the verifier rejects it to guarantee liveness.
As a result of this, only bounded loops are allowed, a restric-
tion that does not affect the design and implementation of
scheduling policies as we found out empirically. These eBPF
features satisfy the second guarantee, i.e., they do not allow
unwarranted memory accesses.

However, satisfying the first guarantee while using eBPF
is not trivial. eBPF was primarily designed as a system ad-
ministrator tool; its developers expected eBPF programs to
be loaded by a root user and apply system-wide policies.
For example, BPF programs loaded in the lower parts of the
networking stack are triggered and have access to every
network packet regardless of the application.

To avoid such issues, we offer Syrup-as-a-service through
syrupd, a long-running daemon that is using a Unix Domain
Socket to listen for requests from applications. An applica-
tion calling the syrup_deploy_policy() function sends a
request to that daemon instead of loading the eBPF program

into the kernel itself. The request includes the policy file
name and the hook. The daemon keeps track of which port
belongs to which application and dynamicaly deploys the
new policy making sure that each application’s program
handles only packets directed to its corresponding port. It
maintains an eBPF map of type PROG_ARRAY and at start-up
loads an eBPF program that matches port numbers of in-
coming requests to entries in the PROG_ARRAY map. When
the daemon receives the request to load a new application-
specific policy, it loads the BPF bytecode for the policy in
the PROG_ARRAY map and inserts the corresponding port-
matching rule that makes a tail call to the corresponding
policy program. This design makes sure that policies of each
application only handle inputs belonging to that application.

ghOSt Isolation Each application wants to implement its
own Syrup policy for thread-scheduling, and importantly,
each application’s Syrup policymust schedule only the threads
and access only the memory belonging to its own applica-
tion, not those of the kernel, other policies, or other apps.
ghOSt has the right isolation mechanisms in place to meet
Syrup’s protection guarantees. Each application’s Syrup pol-
icy launches a new userspace ghOSt scheduling process. The
ghOSt kernel code ensures that each Syrup thread policy
running in a ghOSt userspace process can only see thread
state and can only schedule threads that belong to its own
application. Furthermore, policies are unable to access mem-
ory that does not belong to them because each ghOSt policy
is isolated to its own address space. ghOSt policies run at a
lower priority than CFS, so a malicious application cannot
take over and starve the system.

4.4 Specifying Inputs and Executors

Syrupd and Syrup users must specify the inputs each policy
handles and the executors the policy can use. Specifying
executors is straightforward. For hooks in the upper layers
of the network stack, the executors are networks sockets that
listen for datagrams/connections on the same port. Users
register the first socket they create with Syrup using the
socket’s and the program’s file descriptors and then add this
and subsequent sockets to the relevant executor map created
when the policy is deployed. The application controls the
map index used for each socket, allowing the policy function
to make a scheduling decision simply by returning an index
to that map. For the rest of the scheduling hooks, executors
are hardware resources of the server, i.e., either CPU cores or
NIC queues. Syrupd currently statically allocates a number
of these resources per application and adds them to per-
policy maps using the core or the queue id. Similar to the
socket case, policies make a scheduling decision by returning
an index to the relevant map.
In the case of inputs, there are differences between eBPF

and ghOSt backends. For the upper layers of the networking
stack, each Syrup program is associated with a set of sockets.

SOSP 2021, October 25–28, 2021, Virtual Event, Germany Kostis Kaffes, Jack Tigar Humphries, David Mazières, and Christos Kozyrakis

Network Interface Card

XDP DRV

XDP SKB
SKB

Allocation

NIC Driver

RX Core

CPU Redirect

XDP Offload

Protocol
Stack

Socket Select

Application
Socket

Application
Socket

SoftIRQ Core

XDP DRV

XDP SKB
SKB

Allocation

NIC Driver

RX Core

CPU Redirect

Protocol
Stack

Socket Select

SoftIRQ Core

CoreCore

Thread Scheduler
ghOSt

Application
Thread

Syrup Hook

Network Stack Syrup Hooks

User-space component

Kernel component

Thread Scheduling Syrup Hook

Hardware

Application
Thread

Hook Input Executor

Thread Scheduler Thread Core

Socket Select
TCP Connection TCP Socket

UDP Datagram UDP Socket

CPU Redirect Network Packet Core

XDP_SKB Network Packet AF_XDP Socket

XDP_DRV Network Packet AF_XDP Socket

XDP Offload Network Packet NIC RX Queue

Figure 4. Syrup-supported hooks across the stack along with their inputs and executors.

The operating system makes sure that each Syrup program
handles as inputs the datagrams (for the case of UDP) or the
connection-establishing SYN packets (for the case of TCP)
directed to that set of sockets. For the lower layers of the
networking stack, syrupd does the heavy lifting, filtering
inputs to the correct policy programs, as described in §4.3.
In both cases, the policy program receives a set of pointers
to the packet and its metadata that it can process to make
a scheduling decision. For ghOSt-deployed policies, users
need to register threads with the policy through a function
call and add them to a map. Then, the thread id and the type
of thread state change that occurred are passed as inputs
to the scheduling program. There is a significant difference
between network stack and thread scheduling. In thread
scheduling, the policy selects one of the threads/inputs when
an executor/core becomes available, while network stack
policies select an executor when an input becomes available.

5 Evaluation
We aim to answer the following questions:
1. Can Syrup be used to express and implement a variety

of scheduling policies? (§5.2)
2. Can Syrup be used for cross-layer scheduling? (§5.3)
3. Are Syrup policies portable across different hooks? (§5.4)
4. What are Syrup’s overheads? (§5.5)

5.1 Experimental Methodology

5.1.1 Experimental Setup In answering the questions
above, we use two different sets of servers, set A and set B.
Set A has two client and one server machines. Each machine
includes two Intel Xeon E5-2630 CPUs operating at 2.3GHz,
one Intel 82599ES 10GbE NIC, and runs Linux kernel 5.9
unless otherwise noted. Set B has two client and one server
machines as well. Each machine includes two Intel Xeon

Gold 5117 CPUs operating at 2.00GHz, one Netronome Ag-
ilio CX 10GbE NIC, and runs Linux kernel 5.9. We use Set B
due to the programmability offered by the Netronome NIC.
To avoid performance variability, we only use the physical
cores in the same socket as the NIC. We configure the NIC to
have a number of RX queues equal to the number of hyper-
threads used by the application and map the corresponding
interrupts to the hyperthread buddies of the hyperthreads
that host application threads.
5.1.2 Applications

RocksDB RocksDB [2] is a popular database developed
by Facebook that can handle both point (PUT/GET) and
range (SCAN) queries. It is an application that presents dif-
ferent scheduling challenges as its queries vary in duration,
complexity, or even storage backend (DRAM vs. Flash). We
examine a workload scenario where clients issue a mix of
GET and SCAN requests. GETs are very short, having a
service time of 10-12`s, while SCANs last for much longer,
around 700`s. On a server set A machine, we start multiple
RocksDB server threads that receive datagrams on the same
port using the SO_REUSEPORT option and use Syrup to
implement and inject the scheduling policy that selects the
socket (and therefore the thread) that handles each incoming
datagram (§5.2). We use an open-loop load generator similar
to mutilate [33] that transmits requests over UDP. Moreover,
in §5.3, we use Syrup to implement and deploy a policy that
schedules RocksDB threads to cores.

MICA To showcase Syrup’s ability to take advantage of
various scheduling hooks, we use MICA [34] as an example
application. MICA [34] is a key-value store that achieves
high-performance by partitioning data across cores and us-
ing client- and NIC-side request steering to minimize data
movement. For each key-value request, clients calculate a
hash of the key and set the destination UDP port based on
that hash. The server inserts flow steering rules into the

Syrup: User-Defined Scheduling Across the Stack SOSP 2021, October 25–28, 2021, Virtual Event, Germany

NIC that direct incoming requests to queues (and therefore
cores). However, this design requires client knowledge of
the server’s deployment details, an unreasonable require-
ment for large-scale deployments. If the client is not aware
of details about the server’s partitions, MICA steers requests
to their "home" core in userspace using highly-optimized
DPDK queues for communication.
To enable server-side request scheduling in MICA, we

built an AF_XDP-based backend. AF_XDP [23] is an address
family and socket type which allows the kernel to redirect
incoming packets directly to userspace memory buffers and
avoid expensive protocol processing. AF_XDP sockets may
support two modes of operation depending on the NIC and
the kernel version. In the native mode, packets are forwarded
to userspace just after the DMA of the buffer descriptor and
before the SKB allocation requiring driver support but allow-
ing for zero-copy networking. In the generic mode, packets
are forwarded from the netif_receive_skb() function af-
ter SKB allocation. This mode is driver-independent, but it
does not support zero-copy.

When network traffic goes through AF_XDP sockets, we
can use Syrup to schedule in two layers, i.e., selecting a NIC
RX queue and selecting one of the AF_XDP sockets bound
to each queue. For the MICA experiments, we use 8 MICA
server threads running on the set B machines and the load
generator from the original MICA paper, configured to use
our AF_XDP backend.

5.2 Scheduling policies in Syrup

5.2.1 Syrup Makes Scheduling Easy The first goal of
our evaluation is to show that Syrup can be easily used
for the definition and implementation of a wide variety of
scheduling policies that can improve workload performance
in practice. Towards that goal, we use a RocksDB deployment
with six server threads where 99.5% of the requests that
clients issue are GETs and 0.5% are SCANs, similar to the one
used by Shinjuku [27]. Head-of-line blocking effects make it
challenging to achieve high performance in this workload
scenario. Since SCANs constitute less than 1% of the requests
issued, the overall 99% latency should solely be determined
by the GET latency. However, in Figure 6, we see that this
is not the case for the Vanilla Linux policy. The 99% latency
for this workload measured on the client side is both very
high (>1000`s) and very noisy even for low request rates;
the vertical lines represent the standard deviation of the tail
latency across five runs. The noise exists because - similarly
to Figure 2 - there is load imbalance across network sockets
exacerbated by the high skew in the request execution times.
To avoid this imbalance, we use Syrup to implement a

simple round-robin policy in less than 10 lines of code (Fig-
ure 5a). The same policy is used for the GET-only workload
presented in Figure 2. In our policy, we initialize an index
(line 1) and increment it every time we schedule a datagram

(line 5). The non-atomic increment can lead to benign race
conditions, e.g., scheduling two consecutive datagrams to
the same socket, that do not affect the policy’s performance.
Then, we select a socket/thread using the index, ensuring
perfect load balancing. In our case, NUM_THREADS is a compile-
time parameter, but it can alternatively be read dynamically
from a Map at run time. Figure 6 shows that the Round
Robin Syrup-defined policy eliminates noise and achieves a
throughput 124% higher than that of the Vanilla Linux policy
before the tail latency explodes.
Nevertheless, we observe that even for the Round Robin

policy, SCANs still determine the overall tail latency, i.e., it
is more than 1000`s. The latency is so high because shorter
GETs can get stuck behind longer SCANs waiting to be
served. To avoid this problem, we implemented a SCAN_
avoid policy in Syrup which has both a userspace (Figure 5b)
and a kernel (Figure 5c) component. For each incoming
packet, the scheduling code that runs in the kernel iterates
over network sockets until it finds one that is not currently
serving a SCAN (lines 10-12). Each iteration selects a random
network socket to check (lines 5-6) to avoid imbalance issues.
Userspace code (Figure 5b) sets the request type each socket
is handling by updating a Map every time it starts (lines 2-3)
and finishes (lines 5-6) processing a SCAN request. Syrup
allows us to implement this policy that requires userspace-
kernel communication in less than 25 lines of code in total.
In Figure 6, we see that, by using this SCAN Avoid policy,
we can keep the 99% latency at less than 150`s, i.e., 8× lower
than Vanilla Linux’s latency, for a load as high as 150,000 RPS.
At higher loads, the tail latency gradually increases as it is
more likely that all sockets are handling SCAN requests, and
therefore it becomes harder to avoid head-of-line blocking.

Finally, we use Syrup to develop a third policy (Figure 5d)
that peeks into the packet content and makes a more in-
formed scheduling decision. We implement a simple version
of the SITA (Size Interval Task Assignment) policy [20] in
Syrup. Our policy first performs a bound check using pointer
arithmetic on void * pointers allowed by Clang (lines 5-6). It
then checks the request type in each packet (line 9). If the
request is a SCAN, we steer it to network socket 0 (lines
11-12). If the request is a GET, we round-robin across the
rest of the network sockets (lines 14-15). Before Syrup, the
implementation of SITA-like policies required significant
development effort [16] or even hardware changes [38]. Fig-
ure 6 shows that the Syrup-based SITA policy can keep the
tail latency low (<150`s) for a load as high as 310,000 RPS,
i.e., more than 100% higher than the SCAN Avoid policy. The
per-core performance of Syrup for this workload is on par
with that of kernel-bypass systems such as Shinjuku [27].
A direct comparison was impossible as our setup lacks the
posted interrupt feature needed by Shinjuku.

Conclusion Syrup allows us to quickly implement var-
ious scheduling policies, including ones that span across

SOSP 2021, October 25–28, 2021, Virtual Event, Germany Kostis Kaffes, Jack Tigar Humphries, David Mazières, and Christos Kozyrakis

1 uint32_t idx = 0;

2 uint32_t schedule(void *pkt_start ,

3 void *pkt_end) {

4 idx++;

5 return idx % NUM_THREADS;

6 }

7

(a) Round Robin eBPF
1 Request * req = parse_request(pkt);

2 if (req ->type == SCAN)

3 map_update (&scan_map , &tid , SCAN);

4 // Do processing ...

5 if (req ->type == SCAN)

6 map_update (&scan_map , &tid , GET);

7

(b) SCAN Avoid Userspace

1 uint32_t schedule(void *pkt_start ,

2 void *pkt_end) {

3 uint32_t cur_idx = 0;

4 for (int i = 0; i < NUM_THREADS; i++) {

5 cur_idx = get_random () % NUM_THREADS;

6 uint64_t * scan = map_lookup (&scan_map , &cur_idx)

;

7 if (!scan)

8 return PASS;

9 // Stop searching when a non -SCAN core is found.

10 if (*scan == GET)

11 break;

12 }

13 return cur_idx;

14 }

15
16

(c) SCAN Avoid eBPF

1 uint32_t idx = 0;

2
3 uint32_t schedule(void *pkt_start ,

4 void *pkt_end) {

5 if (pkt_end - pkt_start < 16)

6 return PASS;

7
8 // First 8 bytes are UDP header.

9 uint64_t * type = (uint64_t *)(pkt + 8);

10
11 if (*type == SCAN)

12 return 0;

13
14 idx++;

15 return (idx % (NUM_THREADS - 1)) + 1;

16 }

17

(d) SITA eBPF

Figure 5. Scheduling policies implemented in Syrup.

0 50000 100000 150000 200000 250000 300000 350000 400000
Load (RPS)

0

1000

2000

3000

4000

5000

99
%

La
ten

cy
 (u

s)

Vanilla Linux
Round Robin
SCAN Avoid
SITA

Figure 6. Performance of a RocksDB workload running on
6 cores and serving 99.5% GET - 0.5% SCAN requests when
using different Syrup scheduling policies.

layers or peek into the inputs, in few lines of code (∼10) with
little effort, drastically improving application performance
(up to 8×).
5.2.2 Using Syrup for more complex policies We also
evaluate a more refined version of the token-based sched-
uling policy first described in §3.4. In the benchmarked sce-
nario, we have two users, one with high-priority latency-
sensitive (LS) traffic and the other with lower-priority best-
effort (BE) traffic. They both issue RocksDB GET requests.
Our token-based policy periodically, i.e., every 100`s, gen-
erates tokens the LS user consumes every time one of her
requests is served. After each epoch, any leftover tokens are
gifted to the BE user. Our token generation rate is 350,000
per second, which guarantees no tail latency explosion in
our 6-core setup.
For our experiment, we keep the total offered load con-

stant at 400K RPS, i.e., slightly higher than the saturation
point, and scan across different LS and BE load combinations.
Figure 7a shows that when the LS load is low, the BE user
can take advantage of the spare tokens serving most of her
offered load. In Figure 7b, we see that donating tokens to the

50 100 150 200 250 300 350
LS Load (RPS x 1e3)

0
50

100
150
200
250
300
350

BE
 T

hro
ug

hp
ut

(R
PS

 x
1e

3) Round Robin
Token-based

(a) BE Throughput (RPS)

50 100 150 200 250 300 350
LS Load (RPS x 1e3)

0
200
400
600
800

1000
1200
1400

LS
 99

%
La

ten
cy

 (u
s)

(b) LS 99% Latency (us)

Figure 7. Performance of the Round Robin and Token-based
schedulers for a workload which scans across different LS
and BE load breakdowns. The total offered load (LS + BE) is
always 400K RPS.
BE user does not affect the performance of the LS user until
her load reaches the saturation point of 350K RPS. If we use
the round-robin policy from Figure 5a instead, the BE user
achieves a slightly higher throughput but at the cost of 6×
higher tail latency for the LS user.

Conclusion Syrup can be used to enforce application-
specific Quality-of-Service (QoS) guarantees across the stack.
5.3 Cross-layer scheduling using Syrup

One of the main contributions of Syrup is that it enables
coordinated cross-layer scheduling. We showcase that by
using Syrup to implement and deploy scheduling policies
for a RocksDB workload where 50% of the requests are GETs
and 50% are SCANs at two different layers. We configure
RocksDB to run with 36 threads on six cores to avoid ex-
cessive intra-socket head-of-line blocking and use Linux
kernel version 4.19 to be compatible with ghOSt. First, we
implement a thread scheduling policy that matches runnable
threads to logical cores and use ghOSt to deploy it. Similar
to the policy used in Shinjuku [27], our policy gives strict
priority to threads processing GET requests, preempting at
will threads processing SCAN requests. The policy reads an
application-populated Map to determine which threads are
processing GET requests and which are processing SCANs

Syrup: User-Defined Scheduling Across the Stack SOSP 2021, October 25–28, 2021, Virtual Event, Germany

and then matches threads to logical cores. We also use the
SCAN Avoid policy from §5.2 for request/datagram sched-
uling at the socket selection layer without statically reserv-
ing threads for each request type. It is worth noting that
when thread scheduling is active, only five cores can be used
for application processing; one is reserved for the spinning
ghOSt agent.

SCAN Avoid Thread Scheduling SCAN Avoid + Thread Scheduling

0 2 4 6 8 10
Load (RPS x 1e3)

0

200

400

600

800

1000

99
%

La
ten

cy
 (u

s)

(a) GET 99% Latency

0 2 4 6 8 10 12 14
Load (RPS x 1e3)

0

2000

4000

6000

8000

10000
99

%
La

ten
cy

 (u
s)

(b) SCAN 99% Latency

Figure 8. Performance of a RocksDBworkloadwith 50%GET
and 50% SCAN requests when Syrup is used for scheduling
at one or more layers of the stack. The baseline Linux policy
is omitted as its latency is outside the range of our plot.

Figure 8 presents the performance of each of the policies
individually as well as when they work together. First, we ob-
serve that when only thread scheduling is used, the GET tail
latency is very high (>800`s) even for very low load as GETs
can still get stuck behind SCANs in a network socket. Simi-
larly, when only the SCAN Avoid policy is used for request
scheduling, the GET latency – despite being low initially –
explodes at a load of 6000 RPS. This is happening because all
cores might be busy running threads serving SCAN requests.
The default Linux CFS scheduler, being oblivious to the re-
quest handled by each thread, does not preempt them when
a thread serving a GET becomes runnable. Syrup allows us
to combine the two policies, avoid intra-socket head-of-line
blocking and thread scheduling delays, and achieve sub 500`s
tail latency for a load as high as 8000 RPS, i.e., 60% higher
than the best-case single-layer scheduling scenario. Similarly,
combining request and thread scheduling provides lower tail
latency for SCANs because it avoids queuing more than one
SCANs in the same core or network socket. However, the
maximum supported throughput for SCANs (Figure 8b) is
slightly lower when thread scheduling is active as one of the
cores has to be used by the scheduling agent.

Conclusion Syrup allows us to easily implement policies
that span across layers and communicate with each other,
maximizing performance.
5.4 Syrup using different hooks

Our main goal when scheduling for MICA is to optimize
locality. Using Syrup, we can deploy custom scheduling poli-
cies in multiple hooks across MICA’s networking stack. The
policy deployed in the kernel AF_XDP hook using eBPF,

which we call Syrup SW, reads the key hash from each in-
coming packet and selects the corresponding AF_XDP socket
of the packet’s "home" thread using a simple modulo opera-
tion. In this scenario, each MICA thread creates 8 AF_XDP
sockets, one for each NIC RX queue. The same policy is
reused in the second hook, called Syrup HW, this time run-
ning on the Netronome NIC and selecting an RX queue. Each
MICA thread only creates a single AF_XDP socket bound
to a NIC RX queue for this scenario. The scheduling code is
very similar to the simple hash-based example discussed in
§3.3.

SW Redirect (Original MICA) Syrup SW (Kernel) Syrup HW (NIC)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Load (RPS x 1e6)

0

200

400

600

800

1000

99
.9%

 L
ate

nc
y (

us
)

(a) 50% GET - 50% PUT

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Load (RPS x 1e6)

0

200

400

600

800

1000

99
.9%

 L
ate

nc
y (

us
)

(b) 95% GET - 5% PUT

Figure 9. MICA performance for two different workload
mixes when scheduling takes place at different layers of the
stack. Software redirection was used by MICA originally,
when client-side scheduling was impossible.

Figure 9 presents the 99.9% latency for two different MICA
workloads, one with 50% GET and 50% PUT operations and
one with 95% GET and 5% PUT operations. We observe
that the tail latency of the original MICA version that uses
application-layer packet redirection exceeds 1ms at a load of
1.7-1.8 MRPS. The MICA version using Syrup for scheduling
in the AF_XDP layer (Syrup SW) exceeds that threshold at a
load of 2.7-2.8 MRPS. This happens because packet redirec-
tion at the application layer may require 2 data movements,
one from the core that handles the NIC RX queue to a MICA
core that parses the request and one to the request’s "home"
core. Using Syrup, the MICA core to MICA core communica-
tion never needs to happen; each packet is always steered to
its "home"MICA core from the core that handled the network
interrupt. Finally, the tail latency for Syrup HW explodes at
a load of 3.2-3.3 MRPS, i.e., 18% higher than the Syrup SW
variation and 83% higher than the version that does not use
Syrup. Syrup HW eliminates all end-host data movement
since packets are steered directly to the hyperthread-buddy
of the MICA core that eventually processes them.
The tail latency across all three variations is relatively

higher, and the throughput is relatively lower compared to
the numbers reported in the MICA paper [34] because the
programmable Netronome NICwe use does not support zero-
copy. However, when we tried our AF_XDP backend (Syrup
SW) in a non-programmable Intel 82599 NIC that supports
the zero-copy XDP_DRV hook, we achieved latency and

SOSP 2021, October 25–28, 2021, Virtual Event, Germany Kostis Kaffes, Jack Tigar Humphries, David Mazières, and Christos Kozyrakis

throughput similar to those in the MICA paper when the
same number of NICs was used.

Conclusion Policies written using Syrup are portable
since they can be deployed in different layers of the stack
depending on the capabilities of the underlying operating
system and hardware.
5.5 Syrup’s Overheads

There are two primary sources of overhead associated with
Syrup scheduling policies. The first is the CPU cycles con-
sumed to make and enforce a scheduling decision. Table 2
shows the number of lines of code (LoC), x86 instructions,
and cycles for each of the policies described §5.2. We can see
that all policies are implemented in very few lines of code.
The SCAN Avoid policy requires more instructions than the
other policies due to loop unrolling. Furthermore, all policies
run in less than 2,000 cycles, showing that Syrup can be used
for low-latency and high-performance workloads. There is
little variation across policies because most of this time is
spent on enforcing, e.g., redirecting a packet, rather than
making, e.g., choosing a socket, each scheduling decision.

Policy LoC Instructions Cycles (± stdev)
Round Robin 6 56 1563 (± 89)
SCAN Avoid 21 311 1709 (± 115)
SITA 16 81 1699 (± 210)
Token-based 45 106 1582 (± 54)

Table 2. Overhead of different Syrup policies.

Backend Get (nsec) Update (nsec)
Host 986 1009
Host Contended 1009 1041
Offload 23735 25001
Offload Contended 25001 24115

Table 3. Map operation latency for different backends.
The second main overhead of Syrup is the time needed to

pass information across layers, i.e., to read from and write
to a Map. Table 3 shows the overhead for different Map op-
erations issued from the userspace for different backends.
Accessing a host-based Map with 1M elements takes about
1`s regardless of contention (two threads issuing operations
concurrently) and type of operation, while accessing a Map
based on a Netronome NIC (Offload) takes about 25`s. We
expect the access cost to the offloaded map to decrease with
the adoption of new, faster I/O standards such as CXL [8].
The access cost from Syrup code running in the kernel or on
NIC hardware is the same as that of a regular memory ac-
cess. It is possible for userspace applications to memory-map
eBPF maps and access them directly using regular memory
operations. However, this feature is only available in newer

kernels, so it is not compatible with ghOSt, and we do not
use it in our experiments.

6 Discussion

6.1 Adding more backends

Recent research has shown that improving IO request sched-
uling leads to significant performance gains [22, 30]. One
natural extension for Syrup’s scheduling model is storage;
we can use Syrup to match IO requests with storage device
queues. In fact, the token-based policy we evaluate in §5.2
is very similar to the one used by Reflex [30] for IO request
scheduling in flash devices.

Syrup’s current implementation focuses primarily on end-
host scheduling. However, scheduling occurs across the data
center stack, from cluster managers and software load bal-
ancers to programmable switches. We can extend Syrup to
support such backends as they are fully compatible with
Syrup’s matching view of scheduling; similar to end-host
components, they schedule inputs (jobs/requests/packets)
to executors (servers). Developers will implement their pre-
ferred scheduling in C code that will run in userspace or in P4
code that will run in programmable network devices, and the
Syrup framework will deploy that code safely and efficiently
across the data center stack. For new hardware devices to
play well with Syrup, they need three things: programma-
bility, a matching abstraction between inputs and executors,
and support for a Map abstraction which can either reside
in the device, the end-host, or remotely.

Extending Syrup to a distributed setting will require solv-
ing some interesting research challenges. First, we need to
make sure that the Map abstraction still works, allowing
Syrup components deployed to different layers of the stack
to communicate seamlessly. Potential solutions range from
adopting a managed Key-Value Store service to using parti-
tioned systems like Anna [48]. Second, Syrupmust guarantee
isolation between user-defined P4 programs that run in the
same programmable network device. Syrup can enforce iso-
lation by inserting P4 match/action rules that, e.g., use the
IP address/port number pair of a network packet to steer it
to the correct handling function.

6.2 Making coding in Syrup easier

Even though the safe C subset we use provides a natural
way to write and safely inject scheduling functions across
the stack, it is sometimes cumbersome to use. For example,
developers need to explicitly check before dereferencing a
potentially unsafe memory access. We view adding such
checks automatically as a natural next step for Syrup.
If we realize the extensions in §6.1, we may end up with

a fragmented environment where some of the scheduling
code is compiled to eBPF and some to P4. The existence of
a P4 to eBPF compiler [5] means that we can avoid such

Syrup: User-Defined Scheduling Across the Stack SOSP 2021, October 25–28, 2021, Virtual Event, Germany

fragmentation by adopting P4 as the main scheduling lan-
guage for Syrup. However, given P4’s limited match/action
model, it will be interesting to explore if it is possible to com-
pile a high-level language similar to Lucid [46] to low-level
eBPF and P4 code or even develop a custom domain-specific
language for scheduling.

6.3 Support for Late Binding

Most of the hooks Syrup uses across Linux’s networking
stack only support early binding of inputs to executors. In
other words, the arrival of a packet triggers a scheduling
function that has to select an executor at that time. While
early-binding is convenient as it does not require scheduler-
side queueing, it can lead to head-of-line blocking when
inputs with short processing time get stuck behind ones
with longer processing time in the same executor [31, 42, 51].
This problem can be avoided through late binding. When
late binding is used, an input is assigned to an executor only
when the executor can immediately start to process it [27, 41].
Implementing late binding in the Linux networking stack
requires storing packets in a temporary buffer and trigger-
ing the scheduling function when an executor signals it is
available, e.g., when a thread calls recvmsg on a socket.

6.4 Scheduling Streams

Scheduling requests sent over streams is particularly chal-
lenging. This is why recently-developed network protocols [39]
and RPC frameworks [31] are request-based. However, it is
possible to support scheduling requests sent over a TCP
stream using a Linux mechanism, the Kernel Connection
Multiplexor (KCM) [10]. With KCM, users can programmat-
ically identify request boundaries across packets in TCP
streams and do request-level scheduling. For the case of
multi-packet requests over UDP, users can store a mapping
of requests to executors in a Map, similar to what [51] did.

7 Related Work
Cross-layer scheduling There is a large body of work on

scheduling across different layers of the stack. Some systems
prefer to do scheduling as early as possible. For example,
R2P2 [31] offloads request scheduling to a programmable
switch. Other systems exploit advanced features of Network
Interface Cards (NICs) for scheduling. IX [14] and eRPC [28]
use Receive Side Scaling to spread packets to cores based on
the 5-tuple hash. Mind the Gap [24] implements a centralized
scheduling policy on ARM cores present in modern NICs.
Reflex [30] uses a token-based policy for multi-tenant SSD de-
ployments. ZygOS [42] implements work-stealing on top of
IX to reduce load imbalance across cores. Shinjuku [27] uses
a dedicated core for scheduling and low-overhead interrupts
for fast preemption. TAS [29] dynamically adapts the num-
ber of cores used for network processing to be proportional
with the load and selects userspace contexts that handle in-
coming connections or requests. RackSched [51] implements

least-loaded request-to-server scheduling in a programmable
switch while using a policy similar to Shinjuku’s in each end-
host. Finally, nanoPU [26] implements both core selection
and hardware thread scheduling in hardware. Syrup makes it
easy to develop and deploy policies such as those introduced
by these systems without implementing a new system for
each.

User-informed kernel decisions Passing application-spe-
cific information from userspace to the kernel and vice versa
has been around at least since the early 90s and scheduler
activations [11]. Redline [50] allows interactive applications
to declare specifications that the kernel’s resource managers
use to ensure responsiveness. Recently, MittOS [19] allowed
applications to pass deadline information to the kernel so
that requests that will fail to meet the deadline get rejected
quickly.
Syrup is more directly related to systems that give appli-

cations safe control of functionalities traditionally handled
by the kernel. The first such design was the Exokernel [17]
that used a small kernel to export hardware resources to
untrusted library operating systems through a low-level in-
terface. Exokernel’s capability of safely "downloading" appli-
cation code into the kernel, e.g., packet filters, was an early
inspiration for the development of the eBPF framework. In-
fokernel [12] exposed kernel information to the userspace,
which can, in turn, change parameters and inputs to manip-
ulate policies used by the kernel. Finally, recently-developed
Caladan’s [18] userspace code communicates with a custom
kernel driver to drive interference-aware scheduling deci-
sions. Syrup exploits eBPF to safely inject code to a mono-
lithic Linux kernel while allowing the exchange of arbitrary
information between the user- and kernel-space through the
general Map abstraction.

eBPF Even though it is a relatively new kernel feature,
eBPF has seen significant industry adoption. Cloudflare uses
eBPF extensively for DoS mitigations and layer 4 load balanc-
ing [4]. Cilium [7] has built its entire business model around
eBPF, offering an eBPF-backed networking, observability,
and security platform on top of Kubernetes. The industry use
case more closely related to Syrup is Facebook’s Katran [9]
which is a C++ library and BPF program for building high-
performance L4 load balancing forwarding planes. Unlike
Syrup, Katran provides support for only a single scheduling
decision (L4 packets/connections to hosts) in a single layer
of the stack (XDP) while it does not allow different appli-
cations to safely specify and run their own policies on the
same server.

Academic projects have very recently started to use eBPF
in more exotic ways. BMC [6] exploits eBPF to create an
in-kernel memcached cache achieving better efficiency and
performance even than kernel-bypass techniques. Prism [21]
uses eBPF and a connection hand-off protocol to implement
efficient proxies for object storage systems. Finally, Wu et al.

SOSP 2021, October 25–28, 2021, Virtual Event, Germany Kostis Kaffes, Jack Tigar Humphries, David Mazières, and Christos Kozyrakis

explore the potential use of eBPF for storage [49], identifying
challenges and opportunities.

8 Conclusion
We propose Syrup, a framework for user-defined scheduling.
Syrup allows application developers to specify scheduling
policies in a safe, efficient, and high-level manner across the
stack. Syrup’s design treats scheduling as a matching prob-
lem between work units and executors without burdening
developers with low-level details and system mechanisms.
We show that applications can use Syrup to unlock perfor-
mance gains that previously requiredmonths of development
work in a few lines of code.

Acknowledgments
We thank Peter Kraft, Qian Li, John Ousterhout, Deepti
Raghavan, Amin Vahdat, Thomas Wenisch, Eric Brewer, our
shepherd Ryan Stutsman, and the anonymous SOSP review-
ers for their helpful feedback. This work is partially sup-
ported by Stanford Platform Lab sponsors and Facebook.

References
[1] 2010. rfs: Receive Flow Steering. https://lwn.net/Articles/381955/.
[2] 2012. RocksDB. https://rocksdb.org/.
[3] 2017. A thorough introduction to eBPF. https://lwn.net/Articles/

740157/.
[4] 2019. Cloudflare architecture and how BPF eats the world.

https://blog.cloudflare.com/cloudflare-architecture-and-how-bpf-
eats-the-world/.

[5] 2020. p4c-ubpf: a New Back-end for the P4 Compiler. https://p4.org/
p4/p4c-ubpf.

[6] 2021. BMC: Accelerating Memcached using Safe In-kernel Caching
and Pre-stack Processing. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21). USENIX Association.
https://www.usenix.org/conference/nsdi21/presentation/ghigoff

[7] 2021. Cilium. https://cilium.io/.
[8] 2021. Compute Express Link: The Breakthrough CPU-to-Device Inter-

connect. https://www.computeexpresslink.org/about-cxl.
[9] 2021. Katran. https://github.com/facebookincubator/katran.
[10] 2021. Kernel Connection Multiplexor. https://www.kernel.org/doc/

Documentation/networking/kcm.txt.
[11] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and

Henry M. Levy. 1991. Scheduler Activations: Effective Kernel Support
for the User-Level Management of Parallelism. SIGOPS Oper. Syst. Rev.
25, 5 (Sept. 1991), 95–109. https://doi.org/10.1145/121133.121151

[12] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Nathan C. Bur-
nett, Timothy E. Denehy, Thomas J. Engle, Haryadi S. Gunawi, James A.
Nugent, and Florentina I. Popovici. 2003. Transforming Policies into
Mechanisms with Infokernel. SIGOPS Oper. Syst. Rev. 37, 5 (Oct. 2003),
90–105. https://doi.org/10.1145/1165389.945455

[13] Tom Barbette, Georgios P. Katsikas, Gerald Q. Maguire, and De-
jan Kostić. 2019. RSS++: Load and State-Aware Receive Side Scal-
ing. In Proceedings of the 15th International Conference on Emerg-
ing Networking Experiments And Technologies (CoNEXT ’19). Asso-
ciation for Computing Machinery, Orlando, Florida, 318–333. https:
//doi.org/10.1145/3359989.3365412

[14] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane
Operating System for High Throughput and Low Latency. In 11th

USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14). USENIX Association, Broomfield, CO, 49–65. https://www.
usenix.org/conference/osdi14/technical-sessions/presentation/belay

[15] Alexandros Daglis, Mark Sutherland, and Babak Falsafi. 2019. RPC-
Valet: NI-Driven Tail-Aware Balancing of `s-Scale RPCs. In Proceedings
of the Twenty-Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS ’19).
Association for Computing Machinery, Providence, RI, USA, 35–48.
https://doi.org/10.1145/3297858.3304070

[16] Diego Didona and Willy Zwaenepoel. 2019. Size-aware Sharding
For Improving Tail Latencies in In-memory Key-value Stores. In 16th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). USENIX Association, Boston, MA, 79–94. https://www.
usenix.org/conference/nsdi19/presentation/didona

[17] D. R. Engler, M. F. Kaashoek, and J. O’Toole. 1995. Exokernel: An
Operating System Architecture for Application-Level Resource Man-
agement. SIGOPS Oper. Syst. Rev. 29, 5 (Dec. 1995), 251–266. https:
//doi.org/10.1145/224057.224076

[18] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. 2020.
Caladan: Mitigating Interference at Microsecond Timescales. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, 281–297. https://www.usenix.org/
conference/osdi20/presentation/fried

[19] MingzheHao, Huaicheng Li, Michael Hao Tong, Chrisma Pakha, Riza O.
Suminto, Cesar A. Stuardo, Andrew A. Chien, and Haryadi S. Gunawi.
2017. MittOS: Supporting Millisecond Tail Tolerance with Fast Reject-
ing SLO-Aware OS Interface. In Proceedings of the 26th Symposium
on Operating Systems Principles (SOSP ’17). Association for Comput-
ing Machinery, Shanghai, China, 168–183. https://doi.org/10.1145/
3132747.3132774

[20] Mor Harchol-Balter, Mark E. Crovella, and Cristina D. Murta. 1999. On
Choosing a Task Assignment Policy for a Distributed Server System.
J. Parallel and Distrib. Comput. 59, 2 (1999), 204 – 228. https://doi.org/
10.1006/jpdc.1999.1577

[21] Yutaro Hayakawa, Michio Honda, Douglas Santry, and Lars Eggert.
2021. Prism: Proxies without the Pain. In 18th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 21). USENIX
Association. https://www.usenix.org/conference/nsdi21/presentation/
hayakawa

[22] Mohammad Hedayati, Kai Shen, Michael L. Scott, and Mike Marty.
2019. Multi-Queue Fair Queuing. In 2019 USENIX Annual Techni-
cal Conference (USENIX ATC 19). USENIX Association, Renton, WA,
301–314. https://www.usenix.org/conference/atc19/presentation/
hedayati-queue

[23] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann,
John Fastabend, Tom Herbert, David Ahern, and David Miller. 2018.
The EXpress Data Path: Fast Programmable Packet Processing in
the Operating System Kernel. In Proceedings of the 14th Interna-
tional Conference on Emerging Networking EXperiments and Technolo-
gies (CoNEXT ’18). Association for Computing Machinery, Heraklion,
Greece, 54–66. https://doi.org/10.1145/3281411.3281443

[24] Jack Tigar Humphries, Kostis Kaffes, David Mazières, and Christos
Kozyrakis. 2019. Mind the Gap: A Case for Informed Request Schedul-
ing at the NIC. In Proceedings of the 18th ACM Workshop on Hot Top-
ics in Networks (HotNets ’19). Association for Computing Machinery,
Princeton, NJ, USA, 60–68. https://doi.org/10.1145/3365609.3365856

[25] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir Weisse,
Barret Rhoden, Josh Don, Luigi Rizzo, Oleg Rombakh, Paul Turner, and
Christos Kozyrakis. 2021. ghOSt: Fast & Flexible User-Space Delegation
of Linux Scheduling. In Proceedings of the 28th ACM Symposium on
Operating Systems Principles (SOSP ’21). Association for Computing
Machinery, Virtual Event, Germany. https://doi.org/10.1145/3477132.
3483542

https://lwn.net/Articles/381955/
https://rocksdb.org/
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://blog.cloudflare.com/cloudflare-architecture-and-how-bpf-eats-the-world/
https://blog.cloudflare.com/cloudflare-architecture-and-how-bpf-eats-the-world/
https://p4.org/p4/p4c-ubpf
https://p4.org/p4/p4c-ubpf
https://www.usenix.org/conference/nsdi21/presentation/ghigoff
https://cilium.io/
https://www.computeexpresslink.org/about-cxl
https://github.com/facebookincubator/katran
https://www.kernel.org/doc/Documentation/networking/kcm.txt
https://www.kernel.org/doc/Documentation/networking/kcm.txt
https://doi.org/10.1145/121133.121151
https://doi.org/10.1145/1165389.945455
https://doi.org/10.1145/3359989.3365412
https://doi.org/10.1145/3359989.3365412
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://doi.org/10.1145/3297858.3304070
https://www.usenix.org/conference/nsdi19/presentation/didona
https://www.usenix.org/conference/nsdi19/presentation/didona
https://doi.org/10.1145/224057.224076
https://doi.org/10.1145/224057.224076
https://www.usenix.org/conference/osdi20/presentation/fried
https://www.usenix.org/conference/osdi20/presentation/fried
https://doi.org/10.1145/3132747.3132774
https://doi.org/10.1145/3132747.3132774
https://doi.org/10.1006/jpdc.1999.1577
https://doi.org/10.1006/jpdc.1999.1577
https://www.usenix.org/conference/nsdi21/presentation/hayakawa
https://www.usenix.org/conference/nsdi21/presentation/hayakawa
https://www.usenix.org/conference/atc19/presentation/hedayati-queue
https://www.usenix.org/conference/atc19/presentation/hedayati-queue
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3365609.3365856
https://doi.org/10.1145/3477132.3483542
https://doi.org/10.1145/3477132.3483542

Syrup: User-Defined Scheduling Across the Stack SOSP 2021, October 25–28, 2021, Virtual Event, Germany

[26] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen, Muhammad
Shahbaz, Nick McKeown, and Changhoon Kim. 2020. The nanoPU:
Redesigning the CPU-Network Interface toMinimize RPC Tail Latency.
arXiv:2010.12114 [cs.AR]

[27] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazières, and Christos Kozyrakis. 2019. Shinjuku: Preemp-
tive Scheduling for `second-scale Tail Latency. In 16th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 19).
USENIX Association, Boston, MA, 345–360. https://www.usenix.org/
conference/nsdi19/presentation/kaffes

[28] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacen-
ter RPCs can be General and Fast. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). USENIX As-
sociation, Boston, MA, 1–16. https://www.usenix.org/conference/
nsdi19/presentation/kalia

[29] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma,
Arvind Krishnamurthy, and Thomas Anderson. 2019. TAS: TCP Ac-
celeration as an OS Service. In Proceedings of the Fourteenth EuroSys
Conference 2019 (EuroSys ’19). Association for Computing Machin-
ery, Dresden, Germany, Article 24, 16 pages. https://doi.org/10.1145/
3302424.3303985

[30] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. ReFlex:
Remote Flash ≈ Local Flash. In Proceedings of the Twenty-Second In-
ternational Conference on Architectural Support for Programming Lan-
guages andOperating Systems (ASPLOS ’17). Association for Computing
Machinery, Xi’an, China, 345–359. https://doi.org/10.1145/3037697.
3037732

[31] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard
Bugnion. 2019. R2P2: Making RPCs first-class datacenter citizens.
In 2019 USENIX Annual Technical Conference (USENIX ATC 19).
USENIX Association, Renton, WA, 863–880. https://www.usenix.org/
conference/atc19/presentation/kogias-r2p2

[32] Baptiste Lepers, Redha Gouicem, Damien Carver, Jean-Pierre Lozi,
Nicolas Palix, Maria-Virginia Aponte, Willy Zwaenepoel, Julien
Sopena, Julia Lawall, and GillesMuller. 2020. ProvableMulticore Sched-
ulers with Ipanema: Application to Work Conservation. In Proceedings
of the Fifteenth European Conference on Computer Systems (EuroSys
’20). Association for Computing Machinery, Heraklion, Greece, Article
3, 16 pages. https://doi.org/10.1145/3342195.3387544

[33] Jacob Leverich and Christos Kozyrakis. 2014. Reconciling High Server
Utilization and Sub-Millisecond Quality-of-Service. In Proceedings of
the Ninth European Conference on Computer Systems (EuroSys ’14).
Association for Computing Machinery, Amsterdam, The Netherlands,
Article 4, 14 pages. https://doi.org/10.1145/2592798.2592821

[34] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. 2014. MICA: A Holistic Approach to Fast In-Memory Key-
Value Storage. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14). USENIX Association, Seattle,
WA, 429–444. https://www.usenix.org/conference/nsdi14/technical-
sessions/presentation/lim

[35] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien
Quéma, and Alexandra Fedorova. 2016. The Linux Scheduler: A Decade
of Wasted Cores. In Proceedings of the Eleventh European Conference on
Computer Systems (EuroSys ’16). Association for ComputingMachinery,
London, United Kingdom, Article 1, 16 pages. https://doi.org/10.1145/
2901318.2901326

[36] Hongzi Mao, Parimarjan Negi, Akshay Narayan, Hanrui Wang, Ji-
acheng Yang, Haonan Wang, Ryan Marcus, Ravichandra Addanki,
Mehrdad Khani Shirkoohi, Songtao He, et al. 2019. Park: An Open
Platform for Learning-Augmented Computer Systems. Advances in
Neural Information Processing Systems 32 (NIPS 2019) (2019).

[37] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,

Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius, Xi
Wang, and Amin Vahdat. 2019. Snap: A Microkernel Approach to Host
Networking. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP ’19). Association for Computing Machinery,
Huntsville, Ontario, Canada, 399–413. https://doi.org/10.1145/3341301.
3359657

[38] A. Mirhosseini, B. L. West, G. W. Blake, and T. F. Wenisch. 2020. Q-
Zilla: A Scheduling Framework and Core Microarchitecture for Tail-
Tolerant Microservices. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 207–219. https://doi.org/
10.1109/HPCA47549.2020.00026

[39] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ouster-
hout. 2018. Homa: A Receiver-Driven Low-Latency Transport Protocol
Using Network Priorities. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM ’18).
Association for Computing Machinery, Budapest, Hungary, 221–235.
https://doi.org/10.1145/3230543.3230564

[40] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency
for Latency-sensitive Datacenter Workloads. In 16th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 19).
USENIX Association, Boston, MA, 361–378. https://www.usenix.org/
conference/nsdi19/presentation/ousterhout

[41] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013.
Sparrow: Distributed, Low Latency Scheduling. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP
’13). Association for Computing Machinery, Farmington, Pennsylvania,
69–84. https://doi.org/10.1145/2517349.2522716

[42] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS:
Achieving Low Tail Latency for Microsecond-Scale Networked Tasks.
In Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP ’17). Association for Computing Machinery, Shanghai, China,
325–341. https://doi.org/10.1145/3132747.3132780

[43] Alexander Rucker, Muhammad Shahbaz, Tushar Swamy, and Kunle
Olukotun. 2019. Elastic RSS: Co-Scheduling Packets and Cores Using
Programmable NICs. In Proceedings of the 3rd Asia-Pacific Workshop on
Networking 2019 (APNet ’19). Association for Computing Machinery,
Beijing, China, 71–77. https://doi.org/10.1145/3343180.3343184

[44] Hugo Sadok, Zhipeng Zhao, Valerie Choung, Nirav Atre, Daniel S.
Berger, James C. Hoe, Aurojit Panda, and Justine Sherry. 2021. We
Need Kernel Interposition over the Network Dataplane. Association
for Computing Machinery, Virtual, USA, 152–158. https://doi.org/10.
1145/3458336.3465281

[45] L. Sha, R. Rajkumar, and J. P. Lehoczky. 1990. Priority Inheritance
Protocols: An Approach to Real-Time Synchronization. IEEE Trans.
Comput. 39, 9 (Sept. 1990), 1175–1185. https://doi.org/10.1109/12.57058

[46] John Sonchack, Devon Loehr, Jennifer Rexford, and DavidWalker. 2021.
Lucid: A Language for Control in the Data Plane. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference (SIGCOMM ’21). Association for
Computing Machinery, Virtual Event, USA, 731–747. https://doi.org/
10.1145/3452296.3472903

[47] Yawen Wang, Kapil Arya, Marios Kogias, Manohar Vanga, Aditya
Bhandari, Neeraja J. Yadwadkar, Siddhartha Sen, Sameh Elnikety, Chris-
tos Kozyrakis, and Ricardo Bianchini. 2021. SmartHarvest: Harvesting
Idle CPUs Safely and Efficiently in the Cloud. In Proceedings of the
Sixteenth European Conference on Computer Systems (EuroSys ’21). As-
sociation for Computing Machinery, Online Event, United Kingdom,
1–16. https://doi.org/10.1145/3447786.3456225

[48] Chenggang Wu, Jose Faleiro, Yihan Lin, and Joseph Hellerstein. 2019.
Anna: A KVS for any scale. IEEE Transactions on Knowledge and Data
Engineering (2019).

https://arxiv.org/abs/2010.12114
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://www.usenix.org/conference/nsdi19/presentation/kalia
https://www.usenix.org/conference/nsdi19/presentation/kalia
https://doi.org/10.1145/3302424.3303985
https://doi.org/10.1145/3302424.3303985
https://doi.org/10.1145/3037697.3037732
https://doi.org/10.1145/3037697.3037732
https://www.usenix.org/conference/atc19/presentation/kogias-r2p2
https://www.usenix.org/conference/atc19/presentation/kogias-r2p2
https://doi.org/10.1145/3342195.3387544
https://doi.org/10.1145/2592798.2592821
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://doi.org/10.1145/2901318.2901326
https://doi.org/10.1145/2901318.2901326
https://doi.org/10.1145/3341301.3359657
https://doi.org/10.1145/3341301.3359657
https://doi.org/10.1109/HPCA47549.2020.00026
https://doi.org/10.1109/HPCA47549.2020.00026
https://doi.org/10.1145/3230543.3230564
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://doi.org/10.1145/2517349.2522716
https://doi.org/10.1145/3132747.3132780
https://doi.org/10.1145/3343180.3343184
https://doi.org/10.1145/3458336.3465281
https://doi.org/10.1145/3458336.3465281
https://doi.org/10.1109/12.57058
https://doi.org/10.1145/3452296.3472903
https://doi.org/10.1145/3452296.3472903
https://doi.org/10.1145/3447786.3456225

SOSP 2021, October 25–28, 2021, Virtual Event, Germany Kostis Kaffes, Jack Tigar Humphries, David Mazières, and Christos Kozyrakis

[49] Yu JianWu, HongyiWang, Yuhong Zhong, Asaf Cidon, Ryan Stutsman,
Amy Tai, and Junfeng Yang. 2021. BPF for Storage: An Exokernel-
Inspired Approach. In Proceedings of the 18th ACM Workshop on Hot
Topics in Operating Systems (HotOS ’21). Association for Computing
Machinery.

[50] Ting Yang, Tongping Liu, Emery D. Berger, Scott F. Kaplan, and
J. Eliot B. Moss. 2008. Redline: First Class Support for Interactivity in
Commodity Operating Systems. In 8th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 08). USENIX Association,

San Diego, CA. https://www.usenix.org/conference/osdi-08/redline-
first-class-support-interactivity-commodity-operating-systems

[51] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu, Christos Kozyrakis,
Ion Stoica, and Xin Jin. 2020. RackSched: A Microsecond-Scale Sched-
uler for Rack-Scale Computers. In 14th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 20). USENIX Association,
1225–1240. https://www.usenix.org/conference/osdi20/presentation/
zhu

https://www.usenix.org/conference/osdi-08/redline-first-class-support-interactivity-commodity-operating-systems
https://www.usenix.org/conference/osdi-08/redline-first-class-support-interactivity-commodity-operating-systems
https://www.usenix.org/conference/osdi20/presentation/zhu
https://www.usenix.org/conference/osdi20/presentation/zhu

	Abstract
	1 Introduction
	2 Motivation
	2.1 User-defined Scheduling Matters
	2.2 Scheduling Requirements

	3 Syrup Design
	3.1 Workflow Overview
	3.2 Scheduling as a Matching Problem
	3.3 Specifying a policy in Syrup
	3.4 Cross-layer communication
	3.5 Syrupd for multi-tenancy and isolation

	4 Syrup Implementation
	4.1 eBPF & ghOSt
	4.2 Supported Hooks
	4.3 Cross-application Isolation
	4.4 Specifying Inputs and Executors

	5 Evaluation
	5.1 Experimental Methodology
	5.2 Scheduling policies in Syrup
	5.3 Cross-layer scheduling using Syrup
	5.4 Syrup using different hooks
	5.5 Syrup's Overheads

	6 Discussion
	6.1 Adding more backends
	6.2 Making coding in Syrup easier
	6.3 Support for Late Binding
	6.4 Scheduling Streams

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

