
On-the-Fly Verification of Rateless Erasure Codes
for Efficient Content Distribution

Maxwell N. Krohn
MIT

krohn@mit.edu

Michael J. Freedman
NYU

mfreed@cs.nyu.edu

David Mazières
NYU

dm@cs.nyu.edu

Abstract— The quality of peer-to-peer content distribution
can suffer when malicious participants intentionally corrupt
content. Some systems using simple block-by-block downloading
can verify blocks with traditional cryptographic signatures and
hashes, but these techniques do not apply well to more elegant
systems that use rateless erasure codes for efficient multicast
transfers. This paper presents a practical scheme, based on
homomorphic hashing, that enables a downloader to perform
on-the-fly verification of erasure-encoded blocks.

I. INTRODUCTION

Peer-to-peer content distribution networks (P2P-CDNs) are
trafficking larger and larger files, but end-users have not
witnessed meaningful increases in their available bandwidth,
nor have individual nodes become more reliable. As a result,
the transfer times of files in these networks often exceed
the average uptime of source nodes, and receivers frequently
experience download truncations.

Exclusively unicast P2P-CDNs are furthermore extremely
wasteful of bandwidth: a small number of files account for a
sizable percentage of total transfers. Recent studies indicate
that from a university network, KaZaa’s 300 top bandwidth-
consuming objects can account for 42% of all outbound traf-
fic [1]. Multicast transmission of popular files might drastically
reduce the total bandwidth consumed; however, traditional
multicast systems would fare poorly in such unstable networks.

Developments in practical erasure codes [2] and rateless
erasure codes [3], [4], [5] point to elegant solutions for both
problems. Erasure codes of rate r (where 0 < r < 1) map
a file of n message blocks onto a larger set of n/r check
blocks. Using such a scheme, a sender simply transmits a
random sequence of these check blocks. A receiver can decode
the original file with high probability once he has amassed a
random collection of slightly more than n unique check blocks.
At larger values of r, senders and receivers must carefully
coordinate to avoid block duplication. In rateless codes, block
duplication is much less of a problem: encoders need not pre-
specify a value for r and can instead map a file’s blocks to a
set of check blocks whose size is exponential in n.

When using low-rate or rateless erasure codes, senders and
receivers forgo the costly and complicated feedback protocols
often needed to reconcile truncated downloads or to maintain
a reliable multicast tree. Receivers can furthermore collect
blocks from multiple senders simultaneously. One can envision
an ideal situation, in which many senders transmit the same
file to many recipients in a “forest of multicast trees.” No

retransmissions are needed when receivers and senders leave
and reenter the network, as they frequently do.

A growing body of literature considers erasure codes in the
context of modern distributed systems. Earlier work applied
fixed-rate codes to centralized multicast CDNs [6], [7]. More
current work considers rateless erasure codes in unicast, multi-
source P2P-CDNs [8], [9]. Most recently, SplitStream [10] has
explored applying rateless erasure codes to overlapping P2P
multicast networks, and Bullet [11] calls on these codes when
implementing “overlay meshes.”

There is a significant downside to this popular approach.
When transferring erasure-encoded files, receivers can only
“preview” their file at the very end of the transfer. A receiver
may discover that, after dedicating hours or days of bandwidth
to a certain file transfer, he was receiving incorrect or useless
blocks all along. Most prior work in this area assumes honest
senders, but architects of robust, real-world P2P-CDNs cannot
make this assumption.

This paper describes a novel construction that lets recipi-
ents verify the integrity of check blocks immediately, before
consuming large amounts of bandwidth or polluting their
download caches. In our scheme, a file F is compressed down
to a smaller hash value, H(F), with which the receiver can
verify the integrity of any possible check block. Receivers
then need only obtain a file’s hash value to avoid being duped
during a transfer. Our function H is based on a discrete-log-
based, collision-resistant, homomorphic hash function, which
allows receivers to compose hash values in much the same
way that encoders compose message blocks. Unlike more
obvious constructions, ours is independent of encoding rate
and is therefore compatible with rateless erasure codes. It is
fast to compute, efficiently verified using probabilistic batch
verification, and has provable security under the discrete-log
assumption. Furthermore, our implementation results suggest
this scheme is practical for real-world use.

In the remainder of this paper, we will discuss our setting in
more detail (Sections II and III), describe our hashing scheme
(Section IV), analyze its important properties (Sections V
and VI), discuss related works (Section VII), and conclude
(Section VIII).

II. BRIEF REVIEW OF ERASURE CODES

In this paper, we consider the non-streaming transfer of very
large files over erasure channels such as the Internet. Typically,
a file F is divided into n uniformly sized blocks, known

Fig. 1. Example Online encoding of a five-block file. bi are message blocks,
a1 is an auxiliary block, and ci are check blocks. Edges represent addition
(via XOR). For example, c4 = b2+b3+b5, a1 = b3+b4, and c7 = a1+b5.

as message blocks (or alternatively, input symbols). Erasure
encoding schemes add redundancy to the original n message
blocks, so that receivers can recover from packet drops without
explicit packet retransmissions.

Though traditional forward error correction codes such as
Reed-Solomon are applicable to erasure channels [12], decod-
ing times quadratic in n make them prohibitively expensive
for large files. To this effect, researchers have proposed a
class of erasure codes with sub-quadratic decoding times.
Examples include Tornado Codes [7], LT Codes [3], Raptor
Codes [5] and Online Codes [4]. All four of these schemes
output check blocks (or alternatively, output symbols) that are
simple summations of message blocks. That is, if the file F is
composed of message blocks b1 through bn, the check block
c1 might be computed as b1 + b2. The specifics of these linear
relationships vary with the scheme.

Tornado Codes, unlike the other three, are fixed-rate. A
sender first chooses a rate r and then can generate no more
than n/r check blocks. Furthermore, the encoding process
grows more expensive as r approaches zero. For multicast and
other applications that benefit from lower encoding rates, LT,
Raptor and Online codes are preferable [9]. Unlike Tornado
codes, they feature rateless encoders that can generate an
enormous sequence of check blocks with state constant in n.
LT codes are decodable in time O(n ln(n)), while Tornado,
Raptor and Online Codes have linear-time decoders.

This paper uses Online Codes when considering the
specifics of the encoding and decoding processes; however, all
three rateless techniques are closely related, and the techniques
described are equally applicable to LT and Raptor Codes.

Online Codes. Online Codes consist of three logical com-
ponents: a precoder, an encoder and a decoder. A sender
initializes the encoding scheme via the precoder, which takes
as input a file F with n message blocks and outputs nδk
auxiliary blocks. k is small constant such as 3, and δ, a
parameter discussed later, has a value such as .005. The
precoder works by adding each message block to k distinct
randomly-chosen auxiliary blocks. An auxiliary block is thus
the sum of 1/δ message blocks on average. This process
need not be random in practice; the connections between the
message and auxiliary blocks can be a deterministic function

of the input size n, and the parameters k and δ. Finally, the n
message blocks and the nδk auxiliary blocks are considered
together as a composite file F ′ of size n′ = n(1 + δk), which
is suitable for encoding.

To construct the ith check block, the encoder randomly
samples a pre-specified probability distribution for a value di,
known as the check block’s degree. The encoder then selects di

blocks from F ′ at random, and computes their sum, ci. The
outputted check block is a pair 〈xi, ci〉, where xi describes
which blocks were randomly chosen from F ′. In practice, an
encoder can compute the degree di and the meta-data xi as
the output of a pseudo-random function on input (i, n). It
thus suffices to send 〈i, ci〉 to the receiving client, who can
compute xi with knowledge of n, the encoding parameters,
and access to the same pseudo-random function. See Figure 1
for a schematic example of precoding and encoding.

To recover the file, a recipient collects check blocks of
the form 〈xi, ci〉. Assume a received block has degree one;
that is, it has meta-data xi of the form {j}. Then, ci is
simply the jth block of the file F ′, and it can be marked
recovered. Once a block is recovered, the decoder subtracts
it from the appropriate unrecovered check blocks. That is, if
the kth check block is such that j ∈ xk, then bj is subtracted
from ck, and j is subtracted from xk . Note that during this
subtraction process, other blocks might be recovered. If so,
then the decoding algorithm continues iteratively. When the
decoder receives blocks whose degree is greater than one, the
same type of process applies; that is, all recovered blocks are
subtracted from it, which might in turn recover it.

In the encoding process, auxiliary blocks behave like mes-
sage blocks; in the decoding process, they behave like check
blocks. When the decoder recovers an auxiliary block, it then
adds it to the pool of unrecovered check blocks. When the
decoder recovers a message block, it simply writes the block
out to a file in the appropriate location. Decoding terminates
once all n message blocks are recovered.

In the absence of the precoding step, the codes are expected
to recover (1−δ)n message blocks from (1+ε)n check blocks,
as n becomes large. The auxiliary blocks introduced in the
precoding stage help the decoder to recover the final δn blocks.
A sender specifies δ and ε prior to encoding; they in turn
determine the encoder’s degree distribution and consequently
the number of block operations required to decode.

Online Codes, like the other three schemes, use bitwise
exclusive OR for both addition and subtraction. We note that
although XOR is fast, simple, and compact (i.e., XORing two
blocks does not produce carry bits), it is not essential. Any
efficiently invertible operation suffices.

III. THREAT MODEL

Deployed P2P-CDNs like KaZaa consist of nodes who func-
tion simultaneously as publishers, mirrors, and downloaders
of content. Nodes transfer content by sending contiguous file
chunks over point-to-point links, with few security guarantees.
We imagine a similar but more powerful network model:

2

When a node wishes to publish F , he uses a collision-
resistant hash function such as SHA1 [13] to derive a succinct
cryptographic file handle, H(F). He then pushes F into the
network and also publicizes the mapping of the file’s name
N(F) to its key, H(F). Mirrors maintain local copies of the
file F and transfer erasure encodings of it to multiple clients
simultaneously. As downloaders receive check blocks, they
can forward them to other downloaders, harmlessly “down-
sampling” if constrained by downstream bandwidth. Once a
downloader fully recovers F , he generates his own encoding
of F , sending “fresh” check blocks to downstream recipients.
Meanwhile, erasure codes enable downloaders to collect check
blocks concurrently from multiple sources.

This setting differs notably from traditional multicast set-
tings. Here, internal nodes are not mere packet-forwarders but
instead are active nodes that produce unique erasure encodings
of the files they redistribute.

Unfortunately, in a P2P-CDN, one must assume that adver-
sarial parties control arbitrarily many nodes on the network.
Hence, mirrors may be frequently malicious.1 Under these
assumptions, the P2P-CDN model is vulnerable to a host of
different attacks:

Content Mislabeling. A downloader’s original lookup
mapped N(F) → H(F̃). The downloader will then request
and receive the file F̃ from the network, even though he
expected F .

Bogus-Encoding Attacks. Mirrors send blocks that are not
check blocks of the expected file, with the intent of thwarting
the downloader’s decoding. This has also been termed a
pollution attack [14].

Distribution Attacks. A malicious mirror sends valid check
blocks from the encoding of F , but not according to the
correct distribution. As a result, the receiver might experience
degenerate behavior when trying to decode.

Deployed peer-to-peer networks already suffer from ma-
licious content-mislabeling. A popular file may resolve to
dozens of names, only a fraction of which are appropriately
named. A number of solutions exist, ranging from simply
downloading the most widely replicated name (on the as-
sumption that people will keep the file if it is valid), to more
complex reputation-based schemes. In more interesting P2P-
CDNs, trusted publishers might sign file hashes. Consider the
case of a Linux vendor using a P2P-CDN to distribute large
binary upgrades. If the vendor distributes its public key in CD-
based distributions, clients can verify the vendor’s signature
of any subsequent upgrade. The general mechanics of reliable
filename resolution are beyond the scope this paper; for the
most part, we assume that a downloader can retrieve H(F)
given N(F) via some out-of-band and trusted lookup.

This work focuses on the bogus-encoding attack. When
transferring large files, receivers will talk to many different

1We do not explicitly model adversaries controlling the underlying physical
routers or network trunks, although our techniques are also robust against these
adversaries, with the obvious limitations (e.g., the adversary can prevent a
transfer if he blocks the downloader’s network access).

mirrors, in series and in parallel. At the very least, the receiver
should be able to distinguish valid from bogus check blocks
at decoding time. One bad block should not ruin hundreds
of thousands of valid ones. Moreover, receivers have limited
bandwidth and cannot afford to communicate with all possible
mirrors on the network simultaneously. They would clearly
benefit from a mechanism to detect cheating as it happens, so
they can terminate connections to bad servers and seek out
honest senders elsewhere on the network.

To protect clients against encoding attacks, P2P-CDNs
require some form of source verification. That is, downloaders
need a way to verify individual check blocks, given a reliable
and compact hash of the desired file. Furthermore, this verifi-
cation must not be interactive; it should work whether or not
the original publisher is online. The question becomes, should
the original publisher authenticate file blocks before or after
they are encoded? We consider both cases.

A. Hashing All Input Symbols

A publisher wishes to distribute an n-block file F . Assum-
ing Online Codes, he first runs F through a precoder, yielding
an n′-block file F ′. He then computes a Merkle hash tree of
F ′ [15]. The file’s full hash is the entirety of the hash tree, but
the publisher uses the hash tree’s root for the file’s succinct
cryptographic handle. To publish, he pushes the file and the
file’s hash tree into the network, all keyed by the root of the
hash tree. Note that although the hash tree is smaller than the
original file, its size is still linear in n.

To download F , a client maps N(F) to H(F) as usual,
but now H(F) is the root of the file’s hash tree. Next, the
client retrieves the rest of the hash tree from the network,
and is able to verify its consistency with respect to its
root. Given this information, he can verify check blocks as
the decoding progresses, through use of a “smart decoder.”
As check blocks of degree one arrive, he can immediately
verify them against their corresponding leaf in the hash tree.
Similarly, whenever the decoder recovers an input symbol bj

from a check block 〈xi, ci〉 of higher degree, the receiver
verifies the recovered block bj against its hash. If the recovered
block verifies properly, then the receiver concludes that 〈xi, ci〉
was generated honestly and hence is valid. If not, then the
receiver concludes that it is bogus.

In this process, the decoder only XORs check blocks
with validated degree-one blocks. Consequently, valid blocks
cannot be corrupted during the decoding process. On the other
hand, invalid check blocks which are reduced to degree-one
blocks are easily identified and discarded. Using this “smart
decoder,” a receiver can trivially distinguish bogus from valid
check blocks and need not worry about the download cache
pollution described in [14]. The problem, however, is that a
vast majority of these block operations happen at the very
end of the decoding process—when almost n check blocks
are available to the decoder. Figure 2 exhibits the average
results for decoding a file of n = 10, 000 blocks, taken over
50 random Online encodings. According to these experiments,
when a receiver has amassed .9n check blocks, he can recover

3

0.00

0.07

0.20

0.30

0.40

0.60

0.80

1.00

 0.5 0.6 0.7 0.8 0.9 1 1.1

F
ra

ct
io

n
of

 M
es

sa
ge

 B
lo

ck
s

R
ec

ov
er

ed

(Number of Check Blocks Received) / (File Size in Blocks)

Fig. 2. Number of blocks recoverable as function of number of blocks
received. Data collected over 50 random encodings of a 10,000 block file.

only .068n message blocks; when he has amassed n check
blocks, he can recover only .303n message blocks. In practice,
a downloader could dedicate days of bandwidth to receiving
gigabytes of check blocks, only to find that most are bogus.

B. Hashing Check Blocks

Instead of hashing the input to the erasure encoder, publish-
ers might hash its output. If so, the P2P-CDN is immediately
limited to fixed-rate codes. Recall that the publisher is not
directly involved in the file’s ultimate distribution to clients
and therefore cannot be expected to hash and sign check blocks
on-the-fly. Thus, the publisher must pre-specify a tractable
rate r and “pre-authorize” n/r check blocks. In practice,
the publisher might do this by generating n/r check blocks,
computing their hash tree, and keying the file by its root. When
mirrors distribute the file, they distribute only those check
blocks that the publisher has preauthorized. With the benefit of
the hash tree taken over all possible check blocks, the receiver
can trivially verify check blocks as they arrive. Section V-D
explores this proposal in more detail. We simply observe here
that it becomes prohibitively expensive for encoding at low
rates, in terms of the publisher’s computational resources and
the bandwidth required to distribute hashes.

IV. HOMOMORPHIC HASHING

Our solution combines the advantages of the previous
section’s two approaches. As in the first scheme, our hashes
are reasonably-sized and independent of the encoding rate r.
As in the second, they enable receivers to authenticate check
blocks on the fly.

We propose two possible authentication protocols based on a
homomorphic collision-resistant hash function (CRHF). In the
global hashing model, there is a single way to map F to H(F)
by using global parameters. As such, one-time hash generation
is slow but well-defined. In the per-publisher hashing model,
each publisher chooses his own hash parameters, and different
publishers will generate different hashes for the same file.

We will later show that the per-publishing model enables
publishers to generate hashes more efficiently, although the
downloader’s verification overhead is the same.

In today’s file-sharing systems, there may be multiple
publishers for the same content—e.g., different individuals
may rip the same CD—thus these publishers may use global
hashing so that all copies look identical to the system. In other
environments, content has a single, well-known publisher, and
the per-publisher scheme is more appropriate. While the latter
might be ill-suited for copyright circumvention, it otherwise is
more useful, allowing publishers to sign file hashes and clients
to authenticate file name to file hash mappings. Many Internet
users could benefit from cheap, trusted, and efficient distribu-
tion of bulk data: anything from Linux binary distributions to
large academic data sets could travel through such a network.

A. Notation and Preliminaries

In the following discussion, we will be using scalars, vectors
and matrices defined over modular subgroups of Z. We write
scalars in lowercase (e.g., x), vectors in lowercase boldface
(e.g., x) and matrices in uppercase (e.g., X). Furthermore,
for the matrix X , the jth column is a vector written as xj ,
and the ijth cell is a scalar written as xij . Vectors might
be row vectors or column vectors, and we explicitly specify
them as such. All additions are assumed to be taken over
Zq , and multiplications and exponentiations are assumed to
be taken over Zp, with q and p selected as described in the
next subsection. Finally, we invent one notational convenience
concerning vector exponentiation. That is, we define gr = g

component-wise: if the row vector r = (r1 r2 · · · rm), then
the row vector gr = (gr1 gr2 · · · grm).

B. Global Homomorphic Hashing

In global homomorphic hashing, all nodes on the network
must agree on hash parameters so that any two nodes inde-
pendently hashing the same file F should arrive at exactly
the same hash. To achieve this goal, all nodes must agree on
security parameters λp and λq . Then, a trusted party globally
generates a set of hash parameters G = (p, q,g), where p and
q are two large random primes such that |p| = λp, |q| = λq ,
and q|(p − 1). The hash parameter g is a 1×m row-vector,
composed of random elements of Zp, all order q. These and
other parameters are summarized in Table I.

In decentralized P2P-CDNs, such a trusted party might
not exist. Rather, users joining the system should demand
“proof” that the group parameters G were generated honestly.
In particular, no node should know i, j, xi, xj such that gxi

i =
g

xj

j , as one that had this knowledge could easily compute
hash collisions. The generators might therefore be generated
according to the algorithm PickGroup given in Figure 3. The
input (λp, λq , m, s) to the PickGroup algorithm serves as
a heuristic proof of authenticity for the output parameters,
G = (p, q,g). That is, unless an adversary exploits specific
properties of SHA1, he would have difficulty computing a seed
s that yields generators with a known logarithmic relation. In
practice, the seed s might be chosen globally, or even chosen

4

TABLE I

SYSTEM PARAMETERS AND PROPERTIES

Name Description e.g.

λp discrete log security parameter 1024
λq discrete log security parameter 257
p random prime, |p| = λp

q random prime, q|(p − 1), |q| = λq

β block size in bits 16 KB
m = dβ/(λq − 1)e 512

(number of “sub-blocks” per block)
g 1 × m row vector of order q elts in Zp

G hash parameters, given by (p, q,g)
n original file size 1 GB

k precoding parameter 3
δ fraction of unrecoverable message blocks .005

(without the benefit of precoding)
n′ precoded file size, n′ = (1 + δk)n 1.015 GB
ε asymptotic encoding overhead .01
d average degree of check blocks ∼ 8.17

per file F such that s = SHA1(N(F)). Either way, the same
parameters G will always be used when hashing file F .

File Representation. As per Table I, let β be the block size,
and let m = dβ/(λq − 1)e. Consider a file F as an m × n
matrix, whose cells are all elements of Zq . Our selection of
m guarantees that each element is less than 2λq−1, and is
therefore less than the prime q. Now, the jth column of F
simply corresponds to the jth message block of the file F ,
which we write bj = (b1,j , . . . , bm,j). Thus:

F = (b1 b2 · · · bn) =

b1,1 · · · b1,n

...
. . .

...
bm,1 · · · bm,n

We add two blocks by adding their corresponding column-
vectors. That is, to combine the ith and jth blocks of the file,
we simply compute:

bi + bj = (b1,i + b1,j , . . . , bm,i + bm,j) mod q

Precoding. Recall that the precoding stage in Online Codes
produces auxiliary blocks that are summations of message
blocks, and that the resulting composite file has the original
n message blocks, and the additional nδk auxiliary blocks.
The precoder now proceeds as usual, but uses addition over
Zq instead of the XOR operator.

We can represent this process succinctly with matrix nota-
tion. That is, the precoding stage is given by a binary n× n′

matrix, Y = (I |P). The matrix Y is the concatenation of
the n × n identity matrix I , and the n × nδk matrix P that
represents the composition of auxiliary blocks. All rows of
P sum to k, and its columns sum to 1/δ on average. The
precoded file can be computed as F ′ = FY . The first n
columns of F ′ are the message blocks. The remaining nδk
columns are the auxiliary blocks. For convenience, we refer
to auxiliary blocks as bi, where n < i ≤ n′.

Encoding. Like precoding, encoding is unchanged save for
the addition operation. For each check block, the encoder picks
an n′-dimensional bit vector x and computes c = F ′x. The
output 〈x, c〉 fully describes the check block.

Algorithm PickGroup(λp, λq , m, s)
Seed PRNG G with s.
do

q ← qGen(λq)
p← pGen(q, λp)

while p = 0 done
for i = 1 to m do

do
x← G(p− 1) + 1

gi ← x(p−1)/q (mod p)
while gi = 1 done

done
return (p, q, g)

Algorithm qGen(λq)
do

q ← G(2λq)
while q is not prime done
return q

Algorithm pGen(q, λp)
for i = 1 to 4λp do

X ← G(2λp)
c← X (mod 2q)
p← X − c + 1 // Note p ≡ 1 (mod 2q)
if p is prime then return p

done
return 0

Fig. 3. The seed s can serve as an heuristic “proof” that the hash parameters
were chosen honestly. This algorithm is based on that given in the NIST
Standard [16]. The notation G(x) should be taken to mean that the pseudo-
random number generator G outputs the next number in its pseudo-random
sequence, scaled to the range {0, . . . , x−1}.

Hash Generation. To hash a file, a publisher uses a CRHF,
secure under the discrete-log assumption. This hash function is
a generalized form of the Pederson commitment scheme [17]
(and from Chaum et al. [18]), and it is similar to that used in
various incremental hashing schemes (see Section VII). Recall
that a CRHF is informally defined as a function for which
finding any two inputs that yield the same output is difficult.

For an arbitrary message block bj , define its hash with
respect to G:

hG(bj) =

m
∏

i=1

g
bi,j

i mod p (1)

Define the hash of file F as a 1×n row-vector whose elements
are the hashes of its constituent blocks:

HG(F) = (hG(b1) hG(b2) · · · hG(bn)) (2)

To convey the complete hash, publishers should transmit both
the group parameters and the hash itself: (G, HG(F)). From
this construction, it can be seen that each block of the file
is β bits, and the hash of each block is λp bits. Hence, the
hash function HG reduces the file by a factor of β/λp, and
therefore |HG(F)| = |F |λp/β.

Hash Verification. If a downloader knows (G, HG(F)), he
can first compute the hash values for the nδk auxiliary blocks.
Recall that the precoding matrix Y is a deterministic function

5

of the file size n and the preestablished encoding parameters
δ and k. Thus, the receiver computes Y and obtains the hash
over the composite file as HG(F ′) = HG(F) ·Y . The hash of
the auxiliary blocks are the last nδk cells in this row vector.

To verify whether a given check block 〈x, c〉 satisfies c =
F ′x, a receiver verifies that:

hG(c) =

n′

∏

i=1

hG(bi)
xi (3)

hG functions here as a homomorphic hash function. For any
two blocks bi and bj , hG(bi + bj) = hG(bi)hG(bj).

Downloaders should monitor the aggregate behavior of
mirrors during a transfer. If a downloader detects a number
of unverifiable check blocks above a predetermined threshold,
he should consider the sender malicious and should terminate
the transfer.

Decoding. Decoding proceeds as described in Section II.
Of course, XOR is conveniently its own inverse, so imple-
mentations of standard Online Codes need not distinguish
between addition and subtraction. In our case, we simply use
subtraction over Zq to reduce check blocks as necessary.

Despite our emphasis on Online Codes in particular, we
note that these techniques apply to LT and Raptor codes. LT
Codes do not involve preprocessing, so the above scheme can
be simplified. Raptor Codes involve a two-stage precoding
process, and probably are not compatible with the implicit
calculation of auxiliary block hashes described above. In this
case, we compute file hashes over the output of the precoder,
therefore obtaining slightly larger file hashes.

C. Per-Publisher Homomorphic Hashing

The per-publisher hashing scheme is an optimization of the
global hashing scheme just described. In the per-publisher
hashing scheme, a given publisher picks group parameters
G so that a logarithmic relation among the generators g is
known. The publisher picks q and p as above, but generates g

by picking a random g ∈ Zp of order q, generating a random
vector r whose elements are in Zq and then computing g = gr.

Given the parameters g and r, the publisher can compute
file hashes with many fewer modular exponentiations:

HG(F) = grF (4)

The publisher computes the product rF first, and then per-
forms only one modular exponentiation per file block to obtain
the full file hash. See Section V-B for a more complete
running-time analysis. The hasher must be careful to never
reveal g and r; doing so allows an adversary to compute
arbitrary collisions for HG.

Aside from hash parameter generation and hash generation,
all aspects of the protocol described above hold for both
the per-publisher and the global scheme. A verifier does not
distinguish between the two types of hashes, beyond ensuring
that the party who generated the parameters is trusted.

D. Computational Efficiency Improvements

We have presented a bare-bones protocol that achieves our
security goals but is expensive in terms of bandwidth and
computation. The hash function HG is orders of magnitude
slower than a more conventional hash function such as SHA1.
Our goal here is to improve verification performance, so that
a downloader can, at the very least, verify hashes as quickly
as he can receive them from the network. The bare-bones
primitives above imply that a client must essentially recompute
the hash of the file HG(F), but without knowing r.

We use a technique suggested by Bellare, Garay, and
Rabin [19] to improve verification performance. Instead of
verifying each check block ci exactly, we verify them proba-
bilistically and in batches. Each downloader picks a batch size
t such as 256 blocks, and a security parameter l such as 32.

The downloader runs a probabilistic batch verifier given
by V . The algorithm takes as input the parameter array
(HG(F ′), G, X, C). As usual, HG(F ′) is the hash of the
precoded file F ′ and G denotes the hash parameters. The
m × t matrix C represents the batch of t check blocks that
the downloader received; for convenience, we will write the
decomposition C = (c1 · · · ct), where a column ci of the
matrix represents the ith check block of the batch. The m× t
matrix X is a sparse binary matrix. The cell xij should be set
to 1 if the jth check block contains the message block bi and
should be 0 otherwise. In other words, the jth column of the
matrix X is exactly xj .

Algorithm V(HG(F ′), G, X, C)

1) Let si ∈ {0, 1}l be chosen randomly for
0 < i ≤ t, and let the column vector s =
(s1, . . . , st).

2) Compute column vector z = Cs

3) Compute γj =
∏n′

i=0 hG(bi)
xij for all j ∈

{1, .., t}. Note that if the sender is honest, then
γj = hG(cj).

4) Compute y′ =
∏m

i=1 gzi

i , and y =
∏t

j=1 γ
sj

j

5) Verify that y′ ≡ y mod p

This algorithm is designed to circumvent the expensive
computations of hG(ci) for check blocks in the batch. V
performs an alternative and roughly equivalent computation
with the product y in Step 4. The key optimization here is
that the exponents sj are small (l bits) compared to the much
larger λq-bit exponents used in Equation 1.

Batching does open the receiver to small-scale attacks: a
receiver accepts a batch worth of check blocks before closing
a connection with a malicious sender. With our example
parameters, each batch is 4 MB. However, a downloader
can batch over multiple sources. Only once a batch fails to
verify might the downloader attempt per-source batching to
determine which source is sending corrupted check blocks.
Finally, downloaders might tune the batching parameter t
based upon their available bandwidth or gradually increase
t for each source, so as to bound its overall fraction of bad
blocks.

6

E. Homomorphic Hash Trees

As previously noted, hashes HG(F) are proportional in size
to the file F and hence can grow quite large. With our sample
hash parameters, an 8 GB file will have a 64 MB hash—
a sizable file in and of itself. If a downloader were to use
traditional techniques to download such a hash, he would be
susceptible to the very same attacks we have set out to thwart,
albeit on a smaller scale.

To solve this problem, we construct homomorphic hash
trees—treating large hashes themselves as files, and repeatedly
hashing until an acceptably small hash is output. We also use a
traditional hash function such as SHA1 to reduce our hashes to
standard 20-byte sizes, for convenient indexing at the network
and systems levels.

First, pick a parameter L to represent the size of the largest
hash that a user might download without the benefit of on-
the-fly verification. A reasonable value for L might be 1 MB.
Define the following:

H0
G(F) = F

H i
G(F) = HG(H i−1

G (F)) for i > 0

IG(F) = (G, j, Hj
G(F))

for minimal j such that |IG(F)| < L

JG(F) = SHA1(IG(F))

That is, H i
G(F) denotes i recursive applications of HG. Note

that J outputs hashes that are the standard 20 bytes in size.
Now, the different components of the system are modified
accordingly:

Filename to Hash Mappings. Lookup services map
N(F)→ JG(F), for some G.

File Publication. To publish a file F , a publisher must
compute the hashes chain of hashes H1

G(F), . . . , Hj
G(F), and

also the hashes IG(F) and JG(F). For i ∈ {0, ..., j− 1},
the publisher stores H i

G(F) under the key (JG(F), i), and he
additionally stores IG(F) under the key (JG(F),−).

File Download. To retrieve a file F , a downloader first
performs the name-to-hash lookup N(F)→ JG(F), for some
G. He then uses the peer-to-peer routing layer to determine
a set of sources who serve the file and hashes corresponding
to JG(F). The downloader queries one of the mirrors with
the key (JG(F),−), and expects to receive IG(F). This
transfer can be at most L big. Assuming the hash JG(F) =
SHA1(IG(F)) correctly verifies, the downloader knows the
value j, and the jth order hash Hj

G(F). He can then request
the next hash in the sequence simultaneously from all of the
mirrors who serve F . The downloader queries these servers
with the key (JG(F), j−1), expecting the hash H j−1

G (F) in
response. This transfer also can be completed using erasure
encoding and our hash verification protocol. The downloader
iteratively queries its sources for lower-order hashes until it
receives the 0th order hash, or rather, the file itself.

In practice, it would be rare to see a j greater than 3.
With our sample hash parameters, the third-order hash of a
512 GB file is a mere 32 KB. However, this scheme can

scale to arbitrarily large files. Also note that because each
application of the hash function cuts the size of the input by
a factor of β/λp, the total overhead in hash transmission will
be bounded below a small fractional multiple of the original
file size, namely:

overhead
filesize

=

j
∑

i=1

(

λp

β

)i

<
∞
∑

i=1

(

λp

β

)i

<
1

1− λp/β
− 1 =

λp

β − λp

With our example parameters, λp/(β − λp) ≈ 0.79%.

V. ANALYSIS

In this section, we analyze our hashing scheme and report
performance numbers of a sample implementation.

A. Correctness

We first claim that homomorphic hashing scheme coupled
with the batch verifier given in Section IV-D guarantees cor-
rectness. That is, a verifier should always accept the encoded
output from an honest sender. Our proof is in Appendix I.
Given the proof of this more involved probabilistic verifier, it
is easy to see that the naı̈ve verifier is also correct.

B. Running Time Analysis

In analyzing the running time of our algorithms, we count
the number of multiplications over Z

∗
p and Zq needed. For

instance, a typical exponentiation yx in Z
∗
p requires 1.5|x|

multiplications using the “iterative squaring” technique. |x|
multiplications are needed to produce a table of values y2z

,
for all z such that 1 ≤ z < |x|. Assuming data compression,
half of the bits of x on average will be 1, thus requiring
|x|/2 multiplications of values in the table. In our analysis,
we denote MultCost(p) as the cost of multiplication in Z

∗
p,

and MultCost(q) as the cost of multiplication in Zq .
Note that computations of the form

∏m
i=1 gxi

i are com-
puted at various stages of the different hashing protocols.
As mentioned above, the precomputation of the g2z

i requires
mλq multiplications over Z

∗
p. But the product itself can be

computed in (mλq/2) MultCost(p) computations—and not
the (mλq/2 + m − 1) MultCost(p) one might expect—by
keeping a “running product.”

We recognize that certain operations like modular squaring
are cheaper than generic modular multiplication. Likewise,
multiplying an element of Zq by a 32-bit number is less
expensive than multiplying two random elements from Zq . In
our analysis, we disregard these optimizations and seek only
simplified upper bounds.

Per-Publisher Hash Generation. Publishers first precom-
pute a table g2z

for all z such that 1 ≤ z < λq . This
table can then be used to compute HG(F) for any file F .
Here and throughout this analysis, we can disregard the one-
time precomputation, since n � m. Thus, the n-vector
exponentiation in Equation 4 requires an expected nλq/2
multiplications in Z

∗
p. To compute rF as in Equation 4, mn

7

Algorithm FastMult ((y1, s1), . . . , (yt, st))
y ← 1
for j = l − 1 down to 0 do

for i = 1 to t do
if si[j] = 1 then y← yyi

done
if l > 0 then y← y2

done
return y

Fig. 4. Algorithm for computing
Qt

i=1 ysi
i . Each si is an l-bit number,

and the notation si[j] gives the jth bit of si, si[0] being the least significant
bit. This algorithm is presented in [19], although we believe there to be an
off-by-one-error in that paper, which we have corrected here.

multiplications are needed in Zq . The total cost is therefore
mn MultCost(q) + nλq MultCost(p)/2.

Global Hash Generation. Publishers using the global hashing
scheme do not know r and hence must do multiple expo-
nentiations per block. That is, they must explicitly compute
the product given in Equation 1, with only the benefit of the
precomputed squares of the gi. If we ignore these costs, Global
Hash Generation requires a total of nmλq MultCost(p)/2
worth of computation.

Naı̈ve Hash Verification. Hash verifiers who chose not to
gain batching speed-ups perform much the same operations
as the global hash generators. That is, they first precompute
tables of squares, and then compute the left side of Equation 3
for the familiar cost of mλq MultCost(p)/2. The right side of
the equation necessitates an average of d multiplications in Z

∗
p,

where d, we recall, is the average degree of a check block c.
Thus, the expected per-block cost is (mλq/2+d)MultCost(p).

Fast Hash Verification. We refer to the algorithm described
in Section IV-D. In Step 2, recall that C is a m × t matrix,
and hence the matrix multiplication costs mt MultCost(q). V
determines γj in Step 3 with d multiplications over Z

∗
p, at a

total cost of td MultCost(p). In Step 4, computing y′ costs
mλq/2 MultCost(p) with access to precomputed tables of the
form g2x

i . For y, no such precomputations exist; the bases in
this case are γj , of which there are more than n. To compute
y efficiently, we suggest the FastMult algorithm described in
Figure 4, which costs (tl/2 + l − 1) MultCost(p).2 Summing
these computations and amortizing over the batch size t yields
a per-block cost of:

m ·MultCost(q) +

[

d +
l

2
+

mλq/2 + l − 1

t

]

·MultCost(p)

C. Microbenchmarks

We implemented a version of these hash primitives using the
GNU MP library, version 4.1.2. Table II shows the results of
our C++ testing program when run on a 3.0 GHz Pentium
4, with the sample parameters given in Table I and the
batching parameters given in Section IV-D. On this machine,

2FastMult offers no per-block performance improvement for naı̈ve verifi-
cation, thus we only consider it for fast verification.

MultCost(p) ≈ 6.2 µsecs and MultCost(q) ≈ 1.0 µsecs.
Our results are reported in both cost per block and overall
throughput. For comparison, we include similar computations
for SHA1 and for the Rabin signature scheme with 1024-bit
keys [20]. We also include disk bandwidth measurements for
reading blocks off a Seagate 15K Cheetah SCSI disk drive (in
batches of 64), and maximum theoretical packet arrival rate on
a T1. We will call on these benchmarks in the next section.

Although batched verification of hashes is almost an order
of magnitude slower than a more conventional hash function
such as SHA1, it is still more than an order of magnitude
faster than the maximum packet arrival rate on a good Internet
connection. Furthermore, by adjusting the batch parameter
t, downloaders can upper-bound the amount of time they
waste receiving bad check blocks. That is, receivers with
faster connections can afford to download more potentially
bogus check blocks, and can therefore increase t (and thus
verification throughput) accordingly.

Our current scheme for global hash generation is rather
slow, but publishers with reasonable amounts of RAM can
use k-ary exponentiation to achieve a four-fold speedup (see
Appendix III for details). Our performance analysis focuses on
the per-publisher scheme, which we believe to be better-suited
for copyright-friendly distribution of bulk data.

D. Performance Comparison

In Section III-A, we discussed other strategies for on-the-
fly verification of check blocks in peer-to-peer networks. We
now describe these proposals in greater detail, to examine
how our scheme compares in terms of bandwidth, storage,
and computational requirements. There are three schemes in
particular to consider:

High-Degree SHA1 Hash Tree. The publisher generates
n/r check blocks, and then hashes each one. Since this
collection of hashes might be quite large, the publisher uses
the recursive scheme described in Section IV-E to reduce it to
a manageable size. The publisher distributes the file, keyed by
the root of the hash tree. Downloaders first retrieve all nodes in
the hash tree and then can verify check blocks as they arrive.

Binary SHA1 Hash Tree. As before, the publisher gen-
erates n/r check blocks, but then computes a binary hash
tree over all check blocks. The publisher keys the file by
the root of its hash tree. In this scheme, mirrors need access
to the entire hash tree, but clients do not. Rather, when the
mirrors send check blocks, they prepend the “authentication
path” describing the particular check block’s location in the
hash tree. If downloaders know the hash tree’s root a priori,
they can, given the correct authentication path, verify that a
received check block is one of those intended by the publisher.

Sign Every Block. A publisher might generate n/r blocks
and simply sign every one. The hash of the file is then the
SHA1 of the filename and the publisher’s public key. The
mirrors must download and store these signatures, prepending
them to check blocks before they are sent to remote clients. To
retrieve the file, clients first obtain the publisher’s public key

8

TABLE II

MICROBENCHMARKS

time throughput
Operation on 16 KB block b (msec) (MB/sec)

Per-publisher computation of hG(b) 1.39 11.21
Global computation of hG(b) 420.90 0.037
Naı̈ve verification of hG(b) 431.82 0.038
Batched Verification of hG(b) 2.05 7.62

SHA1(b) 0.28 56.25
Sign b with Rabin-1024 1.98 7.89
Verify Rabin-1024 Signature of b 0.29 53.88

Receiving b on a T1 83.33 0.186
Reading b from disk (sequentially) 0.27 57.87

from the network, and verify this key against the hash of the
file. When they arrive from mirrors, the check blocks contain
their own signatures and are thus easily verified.

These three schemes require a suitable value of r. For codes
with rate r, a file with n message blocks will be expanded
into n/r check blocks. For simple lower bounds, assume that
any set of n of these check blocks suffices to reconstruct
the file. In a multicast scenario, a client essentially collects
these blocks at random, and the well-known “coupon collector
bound” predicts that he will receive −(n/r) ln(1 − r) check
blocks on average before collecting n unique check blocks.3

Using this bound, we can estimate the expected additional
transmission overheads due to repeated check blocks:

r −(1/r) ln(1 − r)
1/2 0.3863
1/4 0.1507
1/8 0.0683

1/16 0.0326
1/32 0.0160

That is, with an encoding rate r=1/2, a receiver expects an
additional 39% overhead corresponding to duplicate blocks. In
many-to-many transmission schemes, small encoding rates are
essential to achieving good bandwidth utilization.

We now present a performance comparison of the three
fixed-rate schemes and our homomorphic hashing proposal,
focusing on key differences between them: hash generation
costs incurred by the publisher, storage requirements at the
mirror, bandwidth utilization between the mirror and down-
loader, and verification performance.

1) Hash Generation: Fixed-rate schemes such as the three
presented above can generate signatures only as fast as they
can generate check blocks. Encoding performance depends
upon the file’s size, but because we wish to generalize our
results to very large files, we must assume that the publisher
cannot store the entire input file (or output encoding) in main
memory. Hence, secondary storage is required.

Our implementation experience with Online Codes has
shown that the encoder works most efficiently if it stores the
relevant pieces of the encoding graph structure and a fixed
number of check blocks in main memory.4 The encoder can

3This asymptotic bound is within a 10−5 neighborhood of the exact
probability when n = 216.

4With little impact on performance, our implementation also stores auxiliary
blocks in memory.

make several sequential passes through the file. With each
pass, it adds message blocks from disk into check blocks in
memory, as determined by the encoding graph. As the pass
is completed, it flushes the completed batch of check blocks
to the network, to disk, or to functions that compute hashes
or signatures. This technique exploits the fact that sequential
reads from disk are much faster than random seeks.

Our current implementation of Online Codes can achieve
encoding throughputs of about 21 MB/sec (on 1 GB files,
using roughly 512 MB of memory). However, to better com-
pare our system against fixed-rate schemes, we will assume
that an encoder exists than can achieve the maximum possible
throughput. This upper bound is ae/(βn), where the file has
n blocks, the block size is β, the amount of memory available
for storing check blocks is a, and the disk’s sequential read
throughput is e.

When publishers use fixed-rate schemes to generate hashes,
they must first precompute n/r check blocks. Using the
encoder described above, this computation requires nβ/(ra)
scans of the entire file. Moreover, each scan of the file involves
n block reads, so n2β/(ra) block reads in total are required.
Concurrent with these disk reads, the publisher computes
hashes and signatures of the check blocks and the implied
hash trees if necessary.

The theoretical requirements for all four schemes are sum-
marized in Table III. In the final three columns, we have
attempted to provide some concrete realizations of our theoret-
ical bounds. Throughout, we assume (1) a 1 GB file, broken
up into n = 216 blocks, each of size β = 16 KB, (2) the
publisher has a = 512 MB of memory for temporary storage
of check blocks, and (3) disk throughputs can be sustained
at 57.87 MB/sec as we observed on our machine. Under
these conditions, an encoder can achieve theoretical encoding
throughputs of up to 28.9 MB/sec. We further assume that
(4) looking to keep overhead due to redundant check blocks
below 5%, the publisher uses an encoding rate of r=1/16 and
(5) a publisher can entirely overlap disk I/O and computations
and therefore only cares about whichever takes longer. In the
right-most column, we present reasonable lower bounds on
hash generation performance for the four different schemes.

Despite our best efforts to envision a very fast encoder, the
results for the three fixed-rate schemes are poor, largely due
to the cost encoding of n/r file blocks. Moreover, in the sign-
every-block scheme, CPU becomes the bottleneck due to the
expense of signature computation.

By contrast, the homomorphic hashing scheme can escape
excessive disk accesses, because it hashes data before it is
encoded. It therefore requires only one scan of the input
file to generate the hashes of the message blocks. The pub-
lisher’s subsequent computation of the higher-level hashes
H2(F), H3(F), . . . easily fit into memory. Our prototype can
compute a homomorphic hash of a 1 GB file in 123.63
seconds, reasonably close to the lower bound of 91.81 seconds
predicted in Table III.

Of course, performance for the three fixed-rate schemes
worsens as r becomes smaller or n becomes larger. It is

9

TABLE III

HASH GENERATION

Scheme Block Reads DLog Hashes SHA1 Hashes Sigs Disk (sec) CPU (sec) Lower Bound (sec)

Homomorphic Hashing n nβ/(β − λp) 1 1 17.69 91.81 91.81
Big-Degree SHA1 Hash Tree n2β/(ra) 0 (n/r)β/(β − 160) 1 566.23 293.96 566.23
Binary SHA1 Hash Tree n2β/(ra) 0 2n/r 1 566.23 587.20 587.20
Sign Every Block n2β/(ra) 0 0 n/r 566.23 2076.18 2076.18

TABLE IV

ADDITIONAL STORAGE REQUIREMENTS FOR MIRRORS

Scheme Overhead Storage (MB)

Homomorphic Hash 0.008 8.06
Big-Degree Tree 0.020 20.02
Binary Tree 0.039 40.00
Sign Every Block 0.125 128.00

possible to ameliorate these problems by raising the block
size β or by striping the file into several different files, but
these schemes involve various trade-offs that are beyond the
scope of this paper.

2) Mirror’s Encoding Performance: In theory, the homo-
morphic hashing scheme renders encoding more computation-
ally expensive because it substitutes XOR block addition for
more expensive modular additions. We have measured that
our machine computes the exclusive OR of two 16 KB check
blocks in 8.5 µsecs. By comparison, our machine requires 37.4
µsecs to sum two blocks with modular arithmetic. The average
check-block degree in our implementation of Online Codes is
8.17, so check-block generation on average requires 69.5 µsecs
and 305 µsecs under the two types of addition. This translates
to CPU-bound throughputs of 224.8 MB/sec and 51.3 MB/sec,
respectively. However, recall that disk throughput and memory
limitations combine to bound encoding for both schemes at
only 28.9 MB/sec. Moreover, these throughputs are quite large
relative to typical network throughput; many P2P-CDN mirror
nodes would be happy with T1-rates at 1.5 Mbit/sec.

3) Storage Required on the Mirror: Mirrors participating in
P2P-CDNs agree to donate disk space for content distribution,
though usually they mirror files they also use themselves. All
four verification schemes require additional storage for hashes
and signatures. With homomorphic hashing, the mirror should
store the hash that the publisher provides. Regenerating the
hash is theoretically possible but computationally expensive.
Similarly, mirrors in the two SHA1 hash tree schemes should
retrieve complete hash trees from the publisher and store them
to disk, or otherwise must dedicate tremendous amounts of
disk I/O to generate them on-the-fly. Finally, in the sign-every-
block scheme, the mirror does not know the publisher’s private
key and hence cannot generate signatures. He has no choice
but to store all signatures. We summarize these additional
storage requirements in Table IV, again assuming a 1 GB input
file and an encoding rate of r=1/16.

4) Bandwidth: The bandwidth requirements of the various
schemes are given in terms of up-front and per-block costs.
These results are considered in Table V. The new parameter

λσ describes the size of signatures, which is 1024 bits in our
examples. In multicast settings, receivers of fixed-rate codes
incur additional overhead due to repeated blocks (reported
as “penalty”). At an encoding rate of r = 1/16, the coupon
collector bound predicts about 3.3% overhead. In all four
schemes, downloaders might see duplicate blocks when recon-
ciling partial transfers with other downloaders. That is, if two
downloaders participate in the same multicast tree, and then
try to exchange check blocks with each other, they will have
many blocks in common. This unavoidable problem affects
all four schemes equally and can be mitigated by general set-
reconciliation algorithms [8] and protocols specific to peer-to-
peer settings [9].

The binary SHA1 tree and the sign-every-block scheme
allow downloaders to retrieve a file without up-front transfer
of cryptographic meta-data. Of course, when downloaders
become full mirrors, they cannot avoid this cost. In the former
scheme, the downloader needs the hash tree in its entirety,
adding an additional 3.9% overhead to its total transfer. In the
latter, the downloader requests all those signatures not already
received. This translates to roughly 11.7% additional overhead
when r=1/16.

5) Verification: Table VI summarizes the per-block ver-
ification costs of the four schemes. For our homomorphic
hashing scheme, we assume batched verification with the
parameters given in Section IV-D. The Rabin signature scheme
was specially chosen due to its fast verification time, as shown.
Surprisingly, verifying a check block using a SHA1 binary tree
is more than twice as slow as using our homomorphic hashing
protocol, due to the height of the tree.

E. Discussion

For encoding rates such as r = 1/16, each of the three
fixed-rate schemes has important strengths and weaknesses.
Though the sign-every-block scheme is bandwidth-efficient,
requires no up-front hash transfer, and has good verification
performance, its hash generation costs are prohibitive and its
storage costs are higher. Similarly, though the binary hash
tree method has no up-front transfer, its bandwidth, storage
and verification costs make it less attractive than hash trees
with larger fan-out. The homomorphic hashing scheme entails
no such tradeoffs, as it performs well across all categories
considered. Homomorphic hashing ranks less favorably when
considering verification throughput, but as argued in Sec-
tion V-C, tuning batch size allows throughput to scale with
available bandwidth.

10

TABLE V

BANDWIDTH

Up-Front Per-Block
Scheme Predicted (bits) e.g. (MB) Predicted (bits) e.g. (KB) Total (GB) Total w/ Penalty (GB)

Homomorphic Hashing λpnβ/(β − λp) 8.06 β + m 16.06 1.0118 1.0118
Big-Degree SHA1 Hash Tree 160nβ/(β − 160) 20.02 β 16.00 1.0196 1.0528
Binary SHA1 Hash Tree 0 0 β + 160 log2(n/r) 16.39 1.0244 1.0578
Sign Every Block 0 0 β + λσ 16.13 1.0078 1.0407

TABLE VI

PER-BLOCK VERIFICATION PERFORMANCE

Scheme Batch SHA1 Rabin Total (msec)

Homomorphic Hash 1 0 0 2.05
Big-Degree Tree 0 1 0 0.28
Binary Tree 0 log2(n/r) 0 5.60
Sign Every Block 0 0 1 0.29

VI. SECURITY

In modern real-world P2P-CDNs, an honest receiver who
wishes to obtain the file F from the network communicates
almost exclusively with untrusted parties. As mentioned in
Section III, a crucial stage of the file transmission protocol—
mapping file names to file hashes—is beyond the scope of
this paper. In our analysis, we assume that the receiver can
reliably resolve N(F)→JG(F) through a trusted, out-of-band
channel. We wish to prove, however, that given JG(F), the
downloader can recover F from the network while recognizing
certain types of dishonest behavior almost immediately.

A. Collision-Resistant Hash Functions

First, we formally define a collision-resistant hash function
(CRHF) in the manner of [21]. Recall that a family of
hash functions is given by a pair of PPT algorithms F =
(HGen,H). HGen denotes a hash generator function, taking
an input of security parameters (λp, λq , m) and outputting a
description of a member of the hash family, G. HG will hash
inputs of size mλq to outputs of size λp, exactly as we have
seen thus far. A hash adversary A is a probabilistic algorithm
that attempts to find collisions for the given function family.

Definition 1: For any CRHF family F , any probabilistic
algorithm A, and security parameter λ = (λp, λq , m) where
λq < λp and m ≤ poly(λp), let

Advcol-atk
F ,λ (A) = Pr

[

G← HGen(λ); (x1, x2)← A(G) :

HG(x1) = HG(x2) ∧ x1 6= x2

]

F is a (τ, ε)-secure hash function family if, for all PPT
adversaries A with time-complexity τ(λ), Advcol-atk

F ,λ (A) <
ε(λ), where ε(λ) is negligible in λ and τ(λ) is polynomial
in λ.

Our definition of the hash primitive h per Section IV fits
naturally into this definition. In fact, the PickGroup algorithm
is a reasonable candidate for the function HGen(). See [21]
for a proof that the function family hG is collision-resistant
hash function, assuming that the discrete log problem is hard
over the group parameterized by (λp, λq).

B. Security of Encoding Verifiers

We can now define a notion of security against bogus-
encoding attacks. For simplicity, we assume erasure codes
that have a precoding algorithm P , and an encoder amenable
to succinct matrix representation; as discussed in Section II,
examples include LT, Raptor and Online Codes.

As usual, consider an adversary A against an honest verifier
V . The adversary A succeeds in a bogus-encoding attack if he
can convince the verifier V to accept blocks from “forged” or
bogus file encodings. When making the decision of whether
or not to accept a given encoding, V can only access the hash
HG(F ′) of the precoded file F ′ he expects. In this definition,
the adversary has the power to generate the file F , which is
the precoded as normal to obtain F ′.

Definition 2 (Secure Encoding Verifier): For any CRHF H,
any probabilistic algorithm A, any honest verifier V , any
m, n > 0, any batch size t > 1, let:

Advenc-atk
H,V,m,n,t(A) =

Pr
[

G← HGen(H); (F, X, C)← A(G, m, n, t);

F ′ ← P(F); b← V(HG(F ′), G, X, C) :

F is m× n ∧ F ′ is m× n′ ∧ X is n′ × t

∧ C is m× t ∧ F ′X 6= C ∧ b = Accept
]

(5)

The encoding verifier V is (τ, ε)-secure if, ∀ m, n > 0, t >
1 and PPT adversaries A with time-complexity τ(m, n, t),
Advenc-atk

H,V,m,n,t(A) < ε(m, n, t).
Our definition requires that V be (τ, ε)-secure for all values

of t > 1. Thus, a protocol that uses a secure encoding verifier
can tune t as desired to trade computational efficiency for
communication overhead. From here, we can prove that the
batch verification procedure presented previously is secure.
See Appendix II.

Theorem 1: Given security parameters l, λp, λq , batch size
t, number of generators m, and the (τ, ε)-secure hash family
h generated by (λq , λp, m), the batched verification procedure
V given above is a (τ ′, ε′)-secure encoding verifier, where
τ ′ = τ −mt(MultCost(q) + MultCost(p)) and ε′ = ε + 2−l.

We do not state or prove the corresponding theorem for
the naı̈ve verifier, but it is straightforward to check that it
has equivalent or stronger properties than that of the batch
verifier. The security of the recursive hashing scheme outlined
in Section IV-E follows from an inductive application of
Theorem 1.

11

C. Future Work and End-To-End Security

These security guarantees, while necessary, are not sufficient
for all multicast settings. In Section III, we proposed both the
bogus-encoding attack and the distribution attack. While we
have solved the former, one can imagine malicious encoders
who thwart the decoding process through an incorrect distri-
bution of well-formed check blocks. Because Tornado, Raptor,
Online, and LT Codes are all based on irregular graphs, their
output symbols are not interchangeable. Bad encoders could
corrupt degree distributions; they could also purposefully avoid
outputting check blocks derived from some particular set of
message blocks. Indeed, the homomorphic hashing scheme
and the three fixed-rate schemes discussed in Section V-D are
all vulnerable to the distribution attack.

In future work, we hope to satisfy a truly end-to-end
definition of security for encoding schemes. For the end-to-end
model, we envision an experiment in which the adversary can
chose to supply the recipient with either its own check blocks,
or those from an honest encoder. The X and C parameters of
the verifier function now correspond to the entire download
history, not just the most recent batch of blocks. The verifier
outputs Reject if it believes it is talking to a malicious encoder,
in which case the experiment discards the batch of blocks
just received. In the end, the experiment runs the decoder
on all retained check blocks after receiving (1 + ε)n′ + aB
total blocks, where a is a constant allowance for wasted
bandwidth per bad encoder, and B is the number of times the
verifier correctly output Reject after receiving blocks from the
adversary. The adversary succeeds if this decoding fails with
non-negligible probability.

One approach towards satisfying such a definition might be
to require a sender to commit to a pseudo-random sequence
determined by a succinct seed, and then send check blocks
whose xi portions are entirely determined by the pseudo-
random sequence. But in the context of non-reliable network
transport or multicast “downsampling,” a malicious sender can
drop particular blocks in the sequence and place the blame on
congestion. If, for example, the sender drops all degree-one
blocks, or drops all check blocks that mention a particular
message block, decoding will never succeed.

A more promising approach involves validating an exist-
ing set of check blocks by simulating the receipt of fu-
ture check blocks. Given an existing set of check blocks
〈x1, c1〉, 〈x2, c2〉, . . . , 〈xQ, cQ〉, the verifier can run the en-
coder (without the contents of F) to generate a stream of
block descriptions xQ+1,xQ+2, If the file would not be
recoverable given cQ+1, cQ+2, . . ., this is evidence that the
distribution of x1, . . . ,xQ has been skewed. If the file would
be recoverable, the verifier can repeat the experiment several
times to amplify its confidence in x1, . . . ,xQ. To be of any
use, such a verifier can do no more than O(log n) operations
per check block received. Thus simulated streams should be
re-used for efficiency, with the effects of the first simulated
block xQ+1 replaced by those of the next real block received.
The feasibility of efficiently “undoing” encoding remains an

open question; therefore we leave the description and analysis
of an exact algorithm to future work.

VII. RELATED WORKS

Multicast source-authentication is well-studied problem in
the recent literature; for a taxonomy of security concerns and
some schemes, see [22]. Preexisting solutions fall into two
broad categories: (1) sharing secret keys among all participants
and MACing each block, or (2) using asymmetric cryptogra-
phy to authenticate each block sent. Unfortunately, the former
lacks any source authentication, while the latter is costly with
respect to both computation resources and bandwidth.

A number of papers have looked at providing source authen-
tication via public key cryptography, yet amortizing asymmet-
ric operations over several blocks. Gennaro and Rohatgi [23]
propose a protocol for stream signatures, which follows an
initial public-key signature with a chain of efficient one-time
signatures, although it does not handle block erasures (e.g.,
from packet loss). Wong and Lam [24] delay consecutive
packets into a pool, then form an authentication hash and sign
the tree’s root. Rohatgi [25] uses reduced-size online/offline k-
time signatures instead of hashes. Recent tree-based [26] and
graph-based [27] approaches reduce the time/space overheads
and are designed for bursty communication and random packet
loss. More recent work [28], [29] makes use of trusted erasure
encoding in order to authenticate blocks, while most schemes,
including our own, try to authenticate blocks in spite of
untrusted erasure encoding.

Another body of work is based solely on symmetric key
operations or hash functions for real-time applications. Several
protocols used the delayed disclosure of symmetric keys to
provide source authentication, including Chueng [30], the Guy
Fawkes protocol [31], and more recently TESLA [32], [33],
by relying on loose time synchronization between senders
and recipients. The recent BiBa [34] protocol exploits the
birthday paradox to generate one-time signatures from k-wise
hash collisions. The latter two can withstand arbitrary packet
loss; indeed, they were explicitly developed for Digital Foun-
tain’s content distribution system [6], [7] to support video-on-
demand and other similar applications. Unfortunately, these
delayed-disclosure key schemes require that publishers remain
online during transmission.

In the traditional settings considered above, the publisher
and the encoder are one in the same. In our P2P-CDN setting,
untrusted mirrors generate the check blocks; moreover a
trusted publisher cannot explicitly authenticate every possible
check block, since their number grows exponentially with file
size. Thus, a publisher must generate its authentication tokens
on the initial message blocks, and we require a hash function
that preserves the group structure of the encoding process.

Our basic homomorphic hashing scheme is complementary
to existing threads of work that make use of homomorphic
group operations. One-way accumulators [35], [36] and in-
cremental hashing [21], based on RSA and DL constructions
respectively, examine commutative hash functions that yield
an output independent of the operations’ order. Improvements

12

to the schemes’ efficiency [37], [38], [39], however, largely
focus on dynamic or incremental changes to the elements
being hashed/authenticated, e.g., the modification of an entry
of an authenticated dictionary. More recent work has inves-
tigated homomorphic signature schemes for specific applica-
tions: undirected transitive signatures [40], authenticated prefix
aggregation [41], redactable signatures [42], and set-union
signatures via accumulators [42]. We use similar techniques to
maintain group structure across applications of cryptographic
functions, but to different ends. Composing homomorphic
signatures with traditional hash functions such as SHA1 [13]
would not solve our problem, as the application of the tra-
ditional hash function would destroy the group structure we
hope to preserve.

VIII. CONCLUSIONS

Current peer-to-peer content distribution networks, such as
the widely popular file-sharing systems, suffer from unveri-
fied downloads. A participant may download an entire file,
increasingly in the hundreds of megabytes, before determining
that the file is corrupted or mislabeled. Current downloading
techniques can use simple cryptographic primitives such as
signatures and hash trees to authenticate data. However, these
approaches are not efficient for low encoding rates, and are
not possible for rateless codes.

To our knowledge, this paper is the first to consider non-
interactive, on-the-fly verification of rateless erasure codes.
We present a discrete-log-based hash scheme that provides
useful homomorphic properties for verifying the integrity of
downloaded content. Because recipients can compose hashes
just as encoders compose message blocks, they can ver-
ify any possible check block. Using batching techniques to
improve verification efficiency, we provide implementation
results that suggest this scheme is practical for real-world use.
A tight reduction proves our scheme secure under standard
cryptographic assumptions. We leave formalization of end-
to-end security and protection against distribution attacks as
interesting open problems.

ACKNOWLEDGMENTS

We thank Michael Walfish for first alerting us to the
distribution attack. We also thank Petar Maymounkov and
Benny Pinkas for helpful discussions, and our shepherd Dan
Wallach for his feedback. This research was conducted as
part of the IRIS project (http://project-iris.net/),
supported by the NSF under Cooperative Agreement No. ANI-
0225660. Maxwell Krohn is supported by an MIT EECS
Fellowship, Michael Freedman by an NDSEG Fellowship, and
David Mazières by an Alfred P. Sloan Research Fellowship.

REFERENCES

[1] S. Saroui, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M.
Levy, “An analysis of Internet content delivery systems,” in Proc. 5th
Symposium on Operating Systems Design and Implementation (OSDI),
Boston, MA, Oct. 2002.

[2] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Ste-
mann, “Practical loss-resilient codes,” in Proc. 29th Annual ACM
Symposium on Theory of Computing (STOC), El Paso, TX, May 1997.

[3] M. Luby, “LT codes,” in Proc. 43rd Annual Symposium on Foundations
of Computer Science (FOCS), Vancouver, Canada, Nov. 2002.

[4] P. Maymounkov, “Online codes,” NYU, Tech. Rep. 2002-833, Nov.
2002.

[5] A. Shokrollahi, “Raptor codes,” Digital Fountain, Inc., Tech. Rep.
DF2003-06-001, June 2003.

[6] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A Digital Fountain
approach to reliable distribution of bulk data,” in Proc. ACM SIGCOMM
’98, Vancouver, Canada, Sept. 1998.

[7] J. Byers, M. Luby, and M. Mitzenmacher, “Accessing multiple mirror
sites in parallel: Using Tornado codes to speed up downloads,” in Proc.
IEEE INFOCOM ’99, New York, NY, Mar. 1999.

[8] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed content
delivery across adaptive overlay networks,” in Proc. ACM SIGCOMM
’02, Aug. 2002.

[9] P. Maymounkov and D. Mazières, “Rateless codes and big downloads,”
in Proc. 2nd International Workshop on Peer-to-Peer Systems (IPTPS),
Berkeley, CA, Feb. 2003.

[10] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “Splitstream: High-bandwidth multicast in a cooperative
environment,” in Proc. 18th ACM Symposium on Operating Systems
Principles (SOSP), Bolton’s Landing, NY, Oct. 2003.

[11] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
bandwidth data dissemination using an overlay mesh,” in Proc. 18th
ACM Symposium on Operating Systems Principles (SOSP), Bolton’s
Landing, NY, Oct. 2003.

[12] L. Rizzo, “Effective erasure codes for reliable computer communication
protocols,” ACM Computer Communication Review, vol. 27, no. 2, Apr.
1997.

[13] FIPS 180-1, Secure Hash Standard, U.S. Department of Com-
merce/N.I.S.T., National Technical Information Service, Springfield, VA,
Apr. 1995.

[14] C. Karlof, N. Sastry, Y. Li, A. Perrig, and J. Tygar, “Distillation codes
and applications to DoS resistant multicast authentication,” in Proc.
11th Network and Distributed Systems Security Symposium (NDSS), San
Diego, CA, Feb. 2004.

[15] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Advances in Cryptology—CRYPTO ’87, Santa Barbara, CA,
Aug. 1987.

[16] National Institute of Standards and Technology, “Digital Signature
Standard (DSS),” Federal Information Processing Standards Publication
186-2, U.S. Dept. of Commerce/NIST, 2000.

[17] T. P. Pedersen, “Non-interactive and information-theoretic secure veri-
fiable secret sharing,” in Advances in Cryptology—CRYPTO ’91, Santa
Barbara, CA, Aug. 1991.

[18] D. Chaum, E. van Heijst, and B. Pfitzmann, “Cryptographically strong
undeniable signatures, unconditionally secure for the signer,” in Ad-
vances in Cryptology—CRYPTO ’91, Santa Barbara, CA, Aug. 1991.

[19] M. Bellare, J. Garay, and T. Rabin, “Fast batch verification for modular
exponentiation and digital signatures,” in Advances in Cryptology—
EUROCRYPT 98, Helsinki, Finland, May 1998.

[20] M. O. Rabin, “Digitalized signatures and public key functions as
intractable as factorization,” MIT Laboratory for Computer Science,
Tech. Rep. TR-212, Jan. 1979.

[21] M. Bellare, O. Goldreich, and S. Goldwasser, “Incremental cryptogra-
phy: The case of hashing and signing,” in Advances in Cryptology—
CRYPTO ’94, Santa Barbara, CA, Aug. 1994.

[22] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas,
“Multicast security: A taxonomy and some efficient constructions,” in
Proc. IEEE INFOCOM ’99, New York, NY, 1999.

[23] R. Gennaro and P. Rohatgi, “How to sign digital streams,” in Advances
in Cryptology—CRYPTO ’97, Santa Barbara, CA, Aug. 1997.

[24] C. K. Wong and S. S. Lam, “Digital signatures for flows and multicasts,”
in Proc. IEEE International Conference on Network Protocols, Austin,
TX, Oct. 1998.

[25] P. Rohatgi, “A compact and fast hybrid signature scheme for multicast
packet authentication,” in Proc. 6th ACM Conference on Computer and
Communication Security (CCS), Singapore, Nov. 1999.

[26] P. Golle and N. Modadugu, “Authenticated streamed data in the pre-
sernce of random packet loss,” in Proc. Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2001.

[27] S. Miner and J. Staddon, “Graph-based authentication of digital
streams,” in Proc. IEEE Symposium on Security and Privacy, Oakland,
CA, May 2000.

13

[28] A. Pannetrat and R. Molva, “Efficient multicast packet authentication,”
in Proc. Network and Distributed System Security Symposium (NDSS),
San Diego, CA, Feb. 2003.

[29] J. M. Park, E. K. P. Chong, and H. J. Siegel, “Efficient multicast stream
authentication using erasure codes,” ACM Trans. Inf. Syst. Secur., vol. 6,
no. 2, 2003.

[30] S. Cheung, “An efficient message authentication scheme for link state
routing,” in Proc. 13th Annual Computer Security Applications Confer-
ence, San Diego, CA, Dec. 1997.

[31] R. Anderson, F. Bergadano, B. Crispo, J.-H. Lee, C. Manifavas, and
R. Needham, “A new family of authentication protocols,” Operating
Systems Review, vol. 32, no. 4, Oct. 1998.

[32] A. Perrig, R. Canetti, D. Song, and D. Tygar, “Efficient authentication
and signature of multicast streams over lossy channels,” in Proc. IEEE
Symposium on Security and Privacy, Oakland, CA, May 2000.

[33] ——, “Efficient and secure source authentication for multicast,” in
Proc. Network and Distributed System Security Symposium (NDSS), San
Diego, CA, Feb. 2001.

[34] A. Perrig, “The BiBa one-time signature and broadcast authentication
protocol,” in Proc. 8th ACM Conference on Computer and Communica-
tion Security (CCS), Philadelphia, PA, Nov. 2001.

[35] J. Benaloh and M. de Mare, “One-way accumulators: A decentral-
ized alternative to digital sinatures,” in Advances in Cryptology—
EUROCRYPT 93, Lofthus, Norway, May 1993.

[36] N. Barić and B. Pfitzmann, “Collision-free accumulators and fail-
stop signature schemes without trees,” in Advances in Cryptology—
EUROCRYPT 97, Konstanz, Germany, May 1997.

[37] M. Bellare and D. Micciancio, “A new paradigm for collision-free
hashing: Incrementality at reduced cost,” in Advances in Cryptology—
EUROCRYPT 97, Konstanz, Germany, May 1997.

[38] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and appli-
cation to efficient revocation of anonymous credentials,” in Advances in
Cryptology—CRYPTO 2002, Santa Barbara, CA, Aug. 2002.

[39] G. Tsudik and S. Xu, “Accumulating composites and improved group
signing,” in Advances in Cryptology—ASIACRYPT-2003, Taipei, Taiwan,
Nov. 2003.

[40] S. Micali and R. Rivest, “Transitive signature schemes,” in Progress in
Cryptology — CT-RSA 2002, San Jose, CA, Feb. 2002.

[41] S. Chari, T. Rabin, and R. Rivest, “An efficient signature scheme for
route aggregation,” Feb. 2002.

[42] R. Johnson, D. Molnar, D. Song, and D. Wagner, “Homomorphic
signature schemes,” in Progress in Cryptology — CT-RSA 2002, San
Jose, CA, Feb. 2002.

APPENDIX I
CORRECTNESS OF BATCHED VERIFICATION

Consider the batched verification algorithm given in Sec-
tion IV-D. To prove it correct (i.e., that correct check
blocks will be validated), let us examine an arbitrary hash
(G, HG(F)). For notational convenience, we write y and y′

computed in Step 4 in terms of an element g ∈ Zp of order q
and row vector r such that gr = g mod p. These elements
are guaranteed to exist, even if they cannot be computed
efficiently. Thus,

y′ =
m
∏

i=1

gzi

i =
m
∏

i=1

grizi = g
P

m
i=1

ziri = grz

By the definition of z from Step 2, we conclude y′ = grCs.
Now we examine the other side of the verification, y.

Recalling Equation 1, rewrite hashes of check blocks in terms
of a common generator g:

hG(cj) =

m
∏

i=1

grici,j = g
P

m
i=1

rici,j = grcj

As noted in Step 3, for an honest sender, γj = hG(cj).
Thus, we can write that γj = gsjrcj . Combining with the

computation of y in Step 4:

y =

t
∏

j=1

gsjrcj = g
Pt

j=1
sjrcj = grCs

Thus we have that y′ ≡ y mod p, proving the correctness of
the validator.

APPENDIX II
PROOF OF THEOREM 1

We now prove the security of the batched verification
scheme by proving Theorem 1 given in Section VI-B. Our
proof follows that from [19], with some additional complexity
due to our multi-dimensional representation of a file.

Consider the hash function family h parameterized by
(λp, λq , m). For any file size n, batch size t < n, consider an
arbitrary adversaryA′ that (τ ′, ε′)-attacks the encoding verifier
V . Based on this adversary, define a CRHF-adversary A(G)
that works as follows:

Algorithm A(G)
1) (F, X, C)← A′(G, m, n, t)
2) If F is not m × n or X is not n′ × t or C is

not m× t then Fail.
3) F ′ ← P(F)
4) If F ′X = C, then Fail

5) If V(HG(F ′), G, X, C) = Reject, then Fail.
6) If HG(F ′X) 6= HG(C), then Fail.
7) Find a column j such that F ′xj 6= cj . Return

(F ′xj , cj).

By our selection of the adversary A′, running it in Step 1 will
require time complexity τ ′ and will succeed in the experiment
given in Definition 2 with probability ε′. By construction, A
corresponds naturally to the steps of our definitional experi-
ment in Equation 5. Step 2 enforces appropriate dimensional-
ity. Step 4 enforces the requirements that 〈X, C〉 not be a legal
encoding, given in Equation 5 by F ′X 6= C. Step 5 requires
that the verifier V accepts the “forged” input. We can conclude
that the Algorithm A will arrive at Step 6 with probability ε′.

We now argue that A fails at Step 6 with probability 2−l.
To arrive at this step, the verifier V as defined in Section IV-D
must have output Accept. Using the same manipulations as
those given in Appendix I, we take the fact that V accepted
to mean that:

grF ′Xs ≡ grCs mod p (6)

Note that the exponents on both sides of the equation are
scalars. Because g has order q, we can say that these exponents
are equivalent mod q; that is rF ′Xs ≡ rCs mod q, and
rearranging,

r (F ′X − C) s ≡ 0 mod q. (7)

If the algorithm A′ fails at Step 6, then HG(F ′X) 6=
HG(C). Rewriting these row vectors in terms of the g and
r, we have that grF ′X 6≡ grC mod p. Recalling that g is order
q and that exponentiation of a scalar by a row vector is defined

14

component-wise, we can write that rF ′X 6≡ rC mod q, and
consequently:

r (F ′X − C) 6≡ 0 mod q (8)

For convenience, let the 1× t row vector u = r(F ′X−C).
Equation 8 gives us that u 6≡ 0 mod q; thus some element of
u must be non-zero. For simplicity of notation, say that u1

is the first non-zero cell, but our analysis would hold for any
index. Equation 7 gives us that us ≡ 0 mod q. Since u1 6= 0,
it has a multiplicative inverse, u−1

1 , in Z
∗
q . Therefore:

s1 ≡ −
(

u−1
1

)

t
∑

j=2

ujsj mod q (9)

Referring to Step 1 of verifier V , s1 was selected at random
from 2l possible values; consequently, the probability of its
having the particular value in Equation 9 is at most 2−l. Thus,
A can fail at Step 6 with probability at most 2−l.

Combining our results, we have that algorithm A will reach
Step 7 with probability ε′−2−l. At this point in the algorithm,
A is assured that F ′X 6= C, since execution passed Step 4.
If we consider this inequality column-wise, we conclude there
must be some j ∈ {1, ..., t} such that F ′xj 6= cj , where xj

and cj are the jth columns of X and C, respectively. Because
Step 6 guarantees that HG(F ′X) = HG(C) at this point in
the algorithm, we can use the definition of HG to claim that
for all j, hG(F ′xj) = hG(cj). Thus, (F ′xj , cj) represents a
hash collision for the hash function hG.

Analyzing the time-complexity of A, Step 1 completes with
time-complexity τ ′, the matrix multiplication F ′X in Step 4
requires mt multiplications in Zq , and the hash computations
in Step 6 each require tm/2 multiplications in Z

∗
p, assuming

the usual precomputations. Therefore,A has a time complexity
given by τ = τ ′ + mt(MultCost(q) + MultCost(p)).

Therefore, we have shown that if an adversary A′

exists that is successful in a (τ ′, ε′)-attack against V ,
then another adversary A exists that is (τ, ε)-successful
in finding collisions for the hash function h, where
τ ′ = τ −mt(MultCost(q) + MultCost(p)) and ε = ε′ + 2−l.
This completes the proof of Theorem 1.

APPENDIX III
k-ARY EXPONENTIATION

In order to speed up global hash generation, one can make
an exponential space-for-time tradeoff, using k-ary exponenti-
ation. That is, we can speed up each exponentiation by a factor
of x/2 while costing a factor of (2x − 1)/x in core memory.
For simplicity, assume that x|(λq − 1):

1) For 1 ≤ i ≤ m, for 0 < j < 2x, for 0 ≤ k < (λq−1)/x,

precompute gj2kx

i . Store each value in an array A under
the index A[i][j][k].

2) To compute gzi

i , write zi in base 2x:

zi = a0 + a12
x + a22

2x + · · ·+ a(λq−1)/x−12
λq−x

Let K = {k | ak 6= 0}. Then compute the product:

gzi

i =
∏

k∈K

A[i][ak][k]

The storage requirement for the table A is m(2x− 1)(λq −
1)λp/x bits, which is exponential in x. Disregarding the one-
time precomputation in Step 1, the computation of zi in Step 2
costs (λq − 1) MultCost(p)/x. Compared to the conventional
iterative-squaring technique, this method achieves a factor of
x/2 speed-up.

Setting x = 8, the size of the tables |A| = 510 MB, and
we can hash a 1 GB file with global parameters in less than
2 hours (of course hashing is much faster in the per-publisher
model).

15

