
The design and implementation of a policy framework for the future Internet

Jad Naous†, Arun Seehra‡, Michael Walfish‡, David Mazières†, Antonio Nicolosi§, and Scott Shenker¶

†Stanford ‡UT Austin §Stevens Institute of Technology ¶UC Berkeley, ICSI

Abstract

Policy has become an important factor in network de-
sign, and there is now a bewildering bevy of architec-
tural proposals. Each one aims at a different set of policy
goals, and we don’t know which one is right. This pa-
per’s animating assumption is that we can’t predict the
future policy requirements of the Internet so should in-
stead seek the most general policy framework we can
possibly implement. To that end, we articulate a general
policy principle and describe the design, implementation
in hardware, and evaluation of its enforcing mechanism.

1 Introduction
This paper is about the Internet’s future, but we begin
with its past. The history of network routing began as
a topological problem: how does one find the shortest
paths in a graph ([19])? However, with the advent of
domain-based Internet routing, policy became an impor-
tant consideration. In fact, policy concerns were embed-
ded in the 1989 requirements document (RFC 1126) that
set the groundwork for the first version of BGP:

Those resources used by (and available for)
routing are to be allowed autonomous con-
trol by those administrative entities which own
or operate them. Specifically, each controlling
administration should be allowed to establish
and maintain policies regarding the use of a
given routing resource. [34]

Embodying this principle, BGP allows each domain to
unilaterally decide which routes it accepts and exports
based on the full AS-level path.

Provider control is not limited to the control plane;
providers have imposed usage limits and blocked certain
types of traffic that they believe would be injurious to
their or other networks.

Moreover, ASes are not the only stakeholders in the
Internet. There have been many calls for granting sources
some control over their packets’ paths (see, for example,
[9, 20, 23, 26, 29, 41, 52, 53]). The reasons vary from
performance (letting sources find the best quality paths)
to preference (letting sources avoid providers they don’t
trust) to price (letting sources find the cheapest paths).

For exactly the same reasons, receivers too have an
interest in controlling the path of their incoming packets.
Receivers also care who is sending them packets and may

wish to allow only a subset of incoming flows (e.g., when
under attack, accept packets only from customers).

While all of the above policy considerations seem nat-
ural, it isn’t clear how to balance the concerns of the var-
ious stakeholders or which of these considerations, when
they are in conflict, should prevail. Indeed, this uncer-
tainty leads us to the question this paper tries to address:
what policy framework should we adopt in a future In-
ternet architecture? This question is one of both policy
and mechanism: what policy considerations should the
architecture support, and can we build a mechanism to
support those considerations?

1.1 The nature of policy

Judging by the bevy of architectural proposals that sup-
port policy-oriented features such as interdomain poli-
cies, source selection of routes, and interposition of mid-
dleboxes by endpoints, there appears to be consensus that
the various stakeholders have the right to exert some con-
trol over their flows, and that these considerations should
be reflected in a future Internet architecture. Table 1 lists
many, but by no means all, of these proposals. As the ta-
ble makes clear, while the union of policy considerations
is large, the intersection is small: each proposal generally
supports only a particular subset of stakeholder control.

As a community striving to design the future Internet,
we have two choices:
• Choose one subset of policy considerations and bet

that it will be sufficient to meet all policy needs for
the foreseeable future.

• Choose to support all reasonable policy considera-
tions, allowing the Internet’s policies to evolve as its
usage and organizational structure change.

The first choice, while certainly expedient, seems risky
given how unpredictable the Internet has been so far, both
in terms of the nature of traffic and the organizational
structure of its stakeholders.1 In fact, we (as a commu-
nity) have a terrible record in predicting the future of the
Internet, and opting for this choice is a gamble that we
will finally get it right this time.

Thus, on policy grounds, the second choice is more de-
sirable. However, it poses two challenges: can we iden-
tify what constitutes reasonable policy considerations,
and can we build a mechanism to support all such poli-
cies? In response to the first challenge, we offer the fol-

1Recall that the modern ISP-oriented Internet arose in the last fif-
teen years and is not at all what the Internet pioneers envisioned.

1

Policy function

Proposed approach

dest.
control of

sender

resource
attri-

bution

provider policy granularity

prefix suffix subsequence

src
route

control

MB∗
route

control

rcvr-
invoked
MBs∗

network-
invoked
MBs∗

Capabilities, filters [6, 11, 35, 50, 51, 54] x ∗ MB = middlebox
Visas [21] x
Platypus [43] x x
Pathlets [23] x x x
LSRR, Wiser [7, 36] x
MIRO [49] x
Src routing [26, 29, 52, 53] x
Byzantine routing [9, 38, 40, 41] x
NUTSS [25] x
DOA, i3 [46, 48] x
DONA [31] x

Table 1—Policy functions provided by many, but not all, network-layer proposals. Many of these proposals cannot be implemented
together. The framework in the text is intended to be flexible enough to capture all of these legitimate policy interests.

lowing principle for reasonable policies:
Policy Principle: A communication should be allowed

if, and only if, all participants approve. By participants,
we mean the sender, the receiver, the carriers, and any
other intermediaries.

This principle posits that non-participants should have
no say in whether a communication occurs. This doesn’t
mean that governments and other third-parties have no
say about the nature of communications, only that the In-
ternet architecture itself does not enforce such third-party
concerns. These third-party concerns must be addressed
by other means, such as the legal system.

Note that this principle gives every participant veto
power. This may be overkill (for instance, as in [52], one
might think that receivers should only be able to con-
trol the path of packets once they have left the Internet’s
core), but we conjecture (based on our inability to find
one) that there is no intermediate position or weaken-
ing of this policy principle that supports the desires of
all stakeholders. Moreover, just because the Internet ar-
chitecture allows such control does not mean that it will
be exercised, as economic and social pressures strongly
constrain which policies are enacted. For instance, un-
der BGP, ISPs can pick routes based on the entire AS
path, but they rarely exercise more than first-hop pref-
erences. And, the policy principle also gives endpoints
choice over paths, so ISPs that impose strict constraints
risk losing business to more accepting ISPs.

Thus, while one might fret that the policy principle im-
plies the end of network neutrality and universal connec-
tivity, one could equally expect it to create choice where
today there is none. In any case, such debates are not
new, as (almost) everything the principle expresses has
been previously proposed, in isolation; that is, the prin-
ciple is (mostly) a union of previous policy proposals.

So we did not create this tussle [17], and we cannot
end it here. Instead, we can seek an outlet for it to play
out with a mechanism that supports all reasonable policy
options. This brings us to the second challenge: can we
build a mechanism that supports such a general set of

policies? The goal of the rest of this paper is to convince
the reader that the answer is not an obvious “no”.

ICING We designed a protocol, ICING (Incorporat-
ing Consent In the Internet’s Next Generation), that ap-
pears to satisfy the policy principle as well as further re-
quirements explained in the next section. As a proof-of-
concept, we implemented a prototype ICING forwarder in
hardware. On the NetFPGA platform, the prototype runs
roughly at 4 Gbps (line rate) which is deceptively low be-
cause the hardware platform is previous-generation—on
it, IP forwarding also runs only at 4 Gbps. Indeed, our es-
timates indicate that on a custom ASIC, as would be in a
modern router, ICING forwarding would run at backbone
speeds.

A cost of ICING is packet overhead: 42 bytes per par-
ticipant. To put this in context, we note that upholding
our requirements seems to require some per-participant
cost, and considerable engineering was needed to get it
to 42. Also, we are designing for the future, and tech-
nology trends often make today’s expensive design to-
morrow’s commodity;2 jumbo frames, e.g., would make
ICING’s overhead negligible. But even without jumbo
frames, ICING’s total overhead (averaged over packet
sizes and path lengths) is 23% over today’s bandwidth
usage, which may be a fair price for its properties.

Ultimately, ICING is not perfect, but we hope it shows
that supporting the general policy principle is, today, not
implausible and, tomorrow, not impractical. We return to
these claims in §9, after describing the design in §2–§4,
the implementation in §5, evaluation results in §6, and
policy expressiveness in §7. Some related work is cov-
ered in §8, but that section is thin because we mostly ac-
knowledge ICING’s (considerable) debts as we proceed.

Before we propose ICING as a supporting mechanism
for the policy principle, we first ask: what does it actually
mean for a mechanism to support a policy?

2For example, research in TCP header compression is now obsolete.

2

1.2 The nature of mechanism

When we say that a mechanism supports a policy, we
mean that it enforces the set of policy choices agreed
to by the participants; that is, if the participants all ap-
prove then the communication should proceed, and if
one or more participants don’t approve then the commu-
nication should not happen. However, there are further
mechanism requirements. We now state several mecha-
nism principles that should guide the design of any future
Internet (and that guided our design of ICING).

Mechanism Principles:
1. The mechanism should ensure that approved commu-

nications occur as described. This means that if a
communication is described as following a particular
path and approved as such, the mechanism should en-
force that the communication in fact follows that path.

2. The mechanism should ensure that unapproved com-
munications cannot be initiated. This means that if
one or more of the participants do not approve the
communication, then no packets enter the network.
That is, the communication is blocked at the source,
before the packets consume network resources.

3. The mechanism should not rely on any central trusted
authority. No long-lived, global architecture can as-
sume the existence of a permanent, single authority.

4. The mechanism should impose fixed and feasible re-
quirements on the data plane. Clearly the mechanism
must be feasible, but it should also give router vendors
a fixed target to implement, avoiding the explosion of
options and features that force continual respinning of
router ASICs.

5. The mechanism should implement subsets of policy ef-
ficiently. This means that if only a subset of the partic-
ipants wishes to exert their control over communica-
tions, then the mechanism should be able to simplify
the control plane. In short, the mechanism should not
make the Internet pay for unused generality, at least
not on the control plane.

6. The mechanism should work even in the face of mali-
cious participants. Enforcing policy is not difficult if
all participants cooperate. A hard problem is how to
enforce policies in a non-cooperative environment.

2 Overview of ICING

This section describes ICING at a high level. §3 and §4
fill in many details.

Architecture ICING divides the network into realms.
Realms are defined by trust boundaries; no two realms
need trust each other. ICING does not change the basic
topology and peering model: today’s ASes map naturally
to realms. However, the granularity of a realm is vari-
able. For example, a host could be its own realm, and for

Figure 1—ICING architecture and communication steps. Ê The
sender S communicates with one or more path servers to get
a path to D. Ë S gets a PoC from every realm on the path
(above, R2 has delegated PoC-granting to realm R3). Ì S uses
the PoCs to construct tokens that Í each forwarder verifies and
transforms for its successors. Some of these steps are mutu-
ally recursive (e.g., the packets to contact a path server travel
over ICING so need PoCs); the text explains the bootstrapping
needed to end the recursion.

deploying ICING, it may be useful to regard the current
Internet as one realm.

Being concerned with the use and control of realms’
resources, ICING allows realms to divide their resources
into logical units of control and to name a unit with a
compact identifier, called a vnode (the term is from God-
frey et al. [23], who introduced a similar abstraction). In
the case of a provider realm, these resources are network
links and routers (with buffer space) that can prioritize
traffic over links, so a vnode refers to a subset of these
links and can optionally encode other information, in-
cluding which customer to bill, router queue priority, etc.
As an example, a vnode might include only East-coast
links and could be used to charge less for short-haul traf-
fic along this coast, versus long-haul cross-country traf-
fic, which would travel over a different vnode.

Figure 1 depicts the architecture in terms of how a
sender communicates with a destination. The sender first
exercises control plane functions. It must identify a se-
quence of (realm, vnode) pairs—a path—between it and
the destination. (The two endpoints can either be sep-
arate realms or vnodes within the first or last realm in
the sequence.) Following the policy principle, the sender
must, in the general case, get consent from each realm.
To get a realm’s consent, the sender communicates with a
general-purpose consent server physically separate from
the realm’s forwarding hardware. The sender proposes
the path. In making its decision, the server can incorpo-
rate arbitrary factors besides the proposed path (billing
relationships [43], authentication, etc.). Upon consent,
the server issues a proof-of-consent (PoC) that authen-
ticates the path. We cover how the sender gets consent to
request consent as we outline the control plane, below.

In the data plane, the sender constructs the packet,
which contains its path and cryptographic values that are
partially derived from the PoCs. The data plane proto-
col ensures that forwarders can validate both the path

3

and whether the packet has taken the path. Following the
fourth mechanism principle, the data plane’s function is
circumscribed (though technically challenging).

The control plane, in contrast, is implemented in
general-purpose servers, the outlets by which partic-
ipants express arbitrary policies. The high-speed for-
warders in the data plane are unaware of the control
plane, making the control plane modular and pluggable;
this decomposition is inspired by [13, 14, 24].

Data plane The forwarders and consent server in a
realm share two sets of cryptographic material. The first
is a public/private key pair, the realm key. A realm’s
name is its public realm key (as in [5, 39]); such self-
certifying names [37] do not require a PKI. Realms use
their public keys (but not via digital signatures) to pro-
vide each other proof that the packet is following its path.

The second is a set of per-vnode symmetric keys, the
PoC keys. The PoC keys let a realm’s consent servers
communicate decisions to the realm’s forwarders: a PoC
includes a MAC of the path, keyed by a PoC key. Be-
cause packets contain cryptographic values bound to
PoCs, a forwarder can verify that its realm issued con-
sent. Any machine that knows a vnode’s PoC key can is-
sue consent to use that vnode; if not located in the realm,
such a machine is, de facto, a delegate of the realm.

Delegation helps uphold the fifth mechanism princi-
ple: to disintermediate itself in the control plane, a realm
delegates PoC-issuing authority over a block of vnodes,
say to a paying customer. Delegation also aids bootstrap-
ping: a realm can locate its consent server on an isolated
vnode and publicly disseminate that vnode’s PoC key.

Control plane The control plane’s functions include:
• Configuration. What information is an end-host, S,

given when it attaches to a network?
• Path retrieval. Given an application-level name (e.g.,

DNS name) for a destination realm, how does S get a
path to that realm?

• PoC retrieval. Given a path to a destination, how
does S get permission to send along that path?

Note that these functions themselves require consent be-
cause control plane traffic travels in ICING packets.

For configuration, when S joins a network, it receives
bootstrap state from a local configuration server over a
link-layer configuration protocol (analogous to DHCP).
This state includes a path to a nearby path server (akin
to a DNS server). If the path server is not in S’s realm,
then this state also includes delegated PoC keys, which
allow S to mint PoCs that authorize its own traffic to
travel over particular isolated vnodes in the realms be-
tween S and the path server. Given the preceding state,
S can now communicate with the path server. The boot-
strap state can further include a set of sub-paths between
S and various upstream realms. For example, if S is at a

university, S might receive sub-paths to: a local provider
that peers with the university, the Internet2 network, the
university’s commercial ISP, and the top-tier ISP from
which the commercial ISP buys service.

For path retrieval, S submits to the path server both the
destination’s name and, optionally, upstream realms it
can reach. The path server, like the configuration server,
has network topology knowledge, gained from a routing
protocol. It uses this knowledge to return to S a path, P,
that terminates at a host, H; P travels through one of the
upstream realms that S can reach,3 and H is either the
sender’s intended destination or the next path server that
S must query, in which case this process repeats. In both
cases, to communicate with H, S exercises PoC retrieval.

For PoC retrieval, the sender must, in the general case
(which would hardly ever happen), contact the consent
servers in every realm between it and H. To contact a
realm R’s consent server, S constructs a path that trav-
els through bootstrap vnodes between it and R; a realm’s
bootstrap vnodes are connected only to its own con-
sent servers and its neighbors’ bootstrap vnodes, thereby
isolating the bootstrap traffic. The PoC keys for these
vnodes are well-known, and S receives them from the
path server during path retrieval. However, a far more
efficient option is to conflate PoC retrieval with path re-
trieval, as follows. A provider realm disintermediates it-
self by delegating consent-granting to, say, its customers
(on particular vnodes, ensuring isolation among cus-
tomers); its customers do the same with their customers,
etc. The result is that (1) S’s configuration server can give
S keys needed to mint PoCs for sub-paths between S and
upstream realms; and (2) a realm’s path server can take
on the role of consent server for that realm and upstream
realms. Now, a path server can give S not only a path to
a host H but also PoCs for a suffix of the path, with S
minting its own PoCs for the prefix of the path.

3 Detailed design of the data plane
We begin this section with the core technical problem
that ICING’s data plane protocol must solve. We then de-
scribe the protocol and show how it solves the core prob-
lem (§3.2). We next describe other aspects of ICING’s
data plane, including ICING’s handling of network fail-
ures, delegation, and revocation of consent (§3.3). We
discuss attacks and limitations in §3.4.

3.1 Problem statement

Our last mechanism principle requires that ICING enforce
policy in a non-cooperative environment. To ensure that
ICING is robust in scenarios of varying hostility, we re-

3This approach to constructing paths—concatenating sub-paths that
intersect in a common intermediate realm—is inspired by NIRA [52].
Like NIRA, it can be generalized to other approaches to path construc-
tion because the path server is a pluggable component.

4

auth
vector

...

realm (R0)
[20 bytes]

[20 bytes]
realm (Rn)

[4 bytes]

[4 bytes]vnode (rn)

vnode (r0)

vers path

path

ts1 tsn· · ·

...

[12 bytes]
Van

pkt lenproto

[12 bytes] [4 bytes]

[4 bytes]Vbn

Va0
Vb0

(1) len

payload

counter [6 bytes]
path
idx R idx

error

Figure 2—ICING packet format (to follow a 14-byte Ethernet
header). The overhead of 42 bytes/realm may seem high, but
we explain in §9 why we think that it is not outrageous, even
for small packets.

quire it to work under a strongly adversarial model of
“non-cooperative”, given immediately below.

Threat model We assume that some realms (end-hosts
and providers) are controlled by attackers. Such mali-
cious realms can deviate arbitrarily from our protocols,
including sending arbitrary packets or flooding the links
they have direct access to. We make no assumptions on
how malicious realms are implemented (they may di-
rectly connect to one another and be controlled by a sin-
gle attacker). Realms that obey the protocol we term hon-
est. The protocols that we describe below concern the be-
havior of honest realms, in particular determining when
they have carried or should carry a packet.

Requirements To uphold the policy principle and the
first mechanism principle, the data plane must ensure that
a packet transits an honest realm R only under the follow-
ing conditions:
1. [Path Validity] The path P in the packet’s header was

previously approved by R; and
2. [Provenance Verification] The packet verifiably tran-

sited all honest realms before R in P and arrived from
the realm just prior to R.

The two conditions do not explicitly constrain a packet’s
trajectory after R. But taken together, they imply:
3. [Path Adherence] A packet forking off its valid path P

by skipping an honest realm Rskip cannot traverse any
honest realm that succeeds Rskip in P. (For example,
a packet cannot skip a required deep packet inspector
and appear valid.)

The third and fourth mechanism principles induce fur-
ther requirements. The solution must not rely on a PKI,

P 〈T0, T1, T2, . . . , Tn−1, Tn〉. A packet’s path.
Ti A pair (Ri, ri). ri specifies a vnode (such as a

particular class of service) in realm Ri.
Ri A public key which is also the realm name.
xi The private key of realm Ri.
M {vers, cntr, proto, pkt-len, data}. A packet’s

end-to-end contents.
sTi A symmetric PoC key used by Ri’s forwarders to

verify packets. PoC keys are specific to pairs
(Ri, ri).

ki,j Symmetric key shared by Ri, Rj; derived from
their names through non-interactive
Diffie-Hellman key exchange.

tsi 16-bit consent expiration time.
pocP,i (PMAC (sTi , P || tsi) , tsi). Proof of consent (PoC)

to path P by realm Ri. Valid until tsi.
pmP,i Shorthand for PMAC (sTi , P || tsi), the

cryptographic material in pocP,i.
V i 〈Vai

0, Vb0, Vai
1, Vb1, . . . , Vai

n, Vbn〉. Auth vector
when pkt leaves Ri; lets downstream realms
verify provenance.

Aj PRF-96
`
pmP,j, 08 || H (P, M)

´
. Packet-specific

authenticator. For notational convenience, let
Va−1

j = Aj

Vai
j PRF-96 (ki,j, i || H (P, M))⊕ Vai−1

j . Proves to Rj

that packet has transited P through Ri. Unused if
i ≥ j.

Vbj Last four bytes of Aj. Guards forwarder slow path
from being invoked spuriously.

Figure 3—Cryptographic values in ICING protocol. PRF-96 is a
keyed pseudo-random function that maps 256-bit quantities to
96-bit quantities; it functions as a MAC. Our implementation
of PRF-96 uses two applications of AES (see Appendix A for
details). H(·) is the bottom 248 bits of CHI-256(·), which is a
SHA-3 candidate [27].

prior coordination among realms, or per-packet public
key cryptography (which would be prohibitive for per-
formance). The solution must be amenable to high-speed
implementation, such as in forwarding hardware.

We believe that the combination of the threat model
and the requirements is a new technical problem. For ex-
ample, [9, 22, 38, 40, 41] assume central coordination,
don’t enforce Path Validity, or aren’t amenable to high-
speed hardware implementation.

3.2 Response: ICING’s core data plane protocol

High-level approach Our high-level approach is as fol-
lows. (1) Realms are named by public keys, Ri, that fit
in packets. (2) Every pair of realms 〈Ri, Rj〉 implicitly
shares a symmetric key, ki,j, that either realm can derive
from the other’s name and its own private key; deriving
these keys requires public-key cryptography but only the
first time Ri’s forwarder encounters a path containing Rj

(and vice versa). (3) Realms use these symmetric keys to
provide each other with cryptographic evidence that the
packet flowed through them. (4) The sender incorporates
into the packet the PoCs that it retrieved (or minted); re-

5

1: function SENDPACKET(P, pocs, m)
// P = 〈(R0, r0), (R1, r1) . . . , (Rn, rn)〉
// pocs =

˘
pocP,i =

`
pmP,i, tsi

´
| 1 ≤ i ≤ n

¯
// pmP,i = PMAC

`
s(Ri ,ri), P || tsi

´
// m = {proto, pkt-len, [return path + PoCs,]data}
// to guard against replay attacks, init cntr per-flow
// M = vers||cntr||m

2: for (i = 1 . . . n) do
3: Ai = PRF-96

`
pmP,i, 08 || H (P, M)

´
4: Va0

i = PRF-96
`
k0,i, 08 || H (P, M)

´
⊕ Ai

5: Vbi = last 4 bytes of Ai

6: V0 = 〈0, 0, Va0
1, Vb1, . . . , Va0

n, Vbn〉
7: path-idx = 1
8: pkt = vers||path-len||path-idx||cntr||P||ts1 . . . tsn||V0||m
9: transmit pkt to R1 // may need intrarealm forwarding

10: cntr++

Figure 4—Pseudocode for packet construction. S = R0 con-
structs a packet to send payload m along path P. If the packet is
the first in a flow, m may include a return path and PoCs.

call that a PoC proves to a realm’s forwarders that the
realm consented (perhaps implicitly) to the packet.

Figure 2 depicts the packet format. The auth vector
is a sequence of digests. The source, R0, constructs the
initial values of these digests by deriving the ith digest
from: the PoC for realm Ri, the path, the packet contents,
and k0,i. Each of the remaining realms Ri checks the ith
entry in the auth vector and modifies entries i + 1, . . . , n.
Specifically, on receiving a packet, realm Ri must:
• Verify provenance and consent: Re-derive the PoC

that corresponds to this path and then check that the
ith digest (its “own” digest) derives from: the PoC;
the path; the packet contents; and successive modi-
fication by realms R0, . . . , Ri−1 under k0,i, . . . , ki−1,i,
respectively.

• Prove provenance to later realms: modify digests
i + 1, . . . , n using the shared secrets ki,i+1, . . . , ki,n.

Details Figure 3 depicts the protocol constructs. To
make public keys small, we use elliptic curve cryptog-
raphy. Every realm name, Ri, is a point on NIST’s B-163
binary-field elliptic curve group [4]. The corresponding
private key, xi, is the discrete logarithm of the public key:
gxi = Ri, where g is a globally agreed upon genera-
tor. (The elliptic curve literature uses additive notation,
but here, for readability, we use the more familiar multi-
plicative notation.) To make the protocol more amenable
to hardware implementation, we reduce the representa-
tion of Ri from 163 to 160 bits by requiring the top
three bits to equal a hash of the lower 160; the cost is
a factor of 8 in expected key generation time. The se-
curity attained is roughly 80-bit security, comparable to
that of 1,024-bit RSA keys [4]. The ki,j are generated by
non-interactive Diffie-Hellman key exchanges: Ri and Rj

share ki,j = SHA-1(Ri, Rj, gxixj).

1: function RECEIVEANDFORWARD(pkt)
// pkt = vers||path-len||path-idx||cntr||P||ts1 . . . tsn||V i−1||m
// M = vers||cntr||m

2: check that tsi is less than current time
// following line may require deriving s(Ri ,ri).

3: pmP,i = PMAC(s(Ri ,ri), P || tsi)

4: Ai = PRF-96
`
pmP,i, 08 || H (P, M)

´
// extract components in V i−1 that we need to verify

5: let 〈Vai−1
i , Vbi〉 = the ith entry in V i−1

// following line protects slow path from spurious calls
6: check that Vbi equals last 4 bytes of Ai; if not, drop

// following line may require slow path invocation
7: compute k0,i, k1,i, . . . , ki−1,i

// simulate what earlier forwarders should have done to
// the ith component of the authorization vector

8: W = Ai

9: for 0 ≤ j ≤ i− 1 do
10: W = PRF-96 (kj,i, j || H (P, M))⊕W
11: check that W = Vai−1

i : if not, drop
// following line may require slow path invocation

12: compute ki,i+1, . . . , ki,n

// construct V i

13: V i = V i−1

14: for i + 1 ≤ j ≤ n do
15: Vai

j = PRF-96 (ki,j, i || H (P, M))⊕ Vai−1
j

16: increment pkt.path-idx to i + 1
17: transmit pkt to Ri+1 // may need intrarealm fwding

Figure 5—Pseudocode for interrealm packet forwarding. Ri

validates pkt, transforms V i−1 to V i, and forwards pkt to Ri+1.

We label the source of a packet R0, the destination Rn,
and the path P = 〈T0, T1, ..., Tn〉, where Ti = (Ri, ri), and
ri is a vnode (§2).

We label realm Ri’s symmetric PoC key for vnode Ti as
sTi . A realm has 232 such keys but does not manage them
individually, as we describe in §3.3. A PoC for path P
issued by realm Ri is pocP,i = (PMAC (sTi , P || tsi) , tsi),
where tsi is the expiry time, in seconds; PMAC is a MAC
that uses a block cipher in a fully parallelizable mode-of-
operation, making it amenable to high-speed implemen-
tation in forwarding hardware [12]. Realms change their
sTi periodically to guard against chosen-message crypt-
analytic attacks and to prevent an old tsi value that has
wrapped from appearing valid (as in [54]). Realms may
also change these keys to invalidate problematic PoCs
(e.g., those issued to troublesome senders) before those
PoCs expire; such rekeying is detailed in §3.3.

Packet sending follows the pseudocode in Figure 4;
line numbers below refer to this figure. The source, R0,
is assumed to have one PoC per realm in P (PoC retrieval
is described in §2 and §4). Each Ai (line 3) is a packet-
specific authenticator that binds together the PoC for
realm Ri, the path P, and the payload; given the packet,
Ri can re-derive Ai. R0 creates the initial values in the
auth vector, deriving the ith entry from Ai and a MAC of

6

the packet contents under k0,i (lines 4–6).
Packet forwarding follows the pseudocode in Figure 5;

line numbers below refer to this figure. Note that our fo-
cus is on interrealm forwarding; the actions we describe
are not needed for intrarealm forwarding. When a realm,
Ri, receives a packet, it performs three steps. First, it con-
structs the Ai that these packet contents ought to produce
(lines 3–4). Second, it checks that the packet took the
correct path: it verifies that the ith entry in the auth vec-
tor is equal to the XOR of i + 1 terms, the terms being
Ai and i applications of PRF-96 to the packet contents,
one application each under k0,i, . . . , ki−1,i (lines 5, 7–11).
Third, it provides proof for the later realms: for each of
the remaining entries in the auth vector, it applies PRF-
96 to the packet contents (using key ki,j for the jth entry)
and XORs the result into the given entry (lines 12–15).

Note that the first time Ri encounters Rj, its forwarder
must use slow path processing to derive ki,j (lines 7, 12).4

The cost of deriving ki,j is a few msec in our experiments
(§6.4). To guard this slow path, the protocol includes Vbi,
which is verified on the fast path (lines 5–6). Without this
check, an attacker could invent realms and bogus paths to
force spurious slow path operations on forwarders. Vbi is
only 32 bits, so it does not rule out such attacks alto-
gether, but it decreases their effectiveness by a factor of
232, which is sufficient to avoid denial-of-service.

Meeting the requirements from §3.1 The condition of
Path Validity is upheld because realm Ri, given a packet
with path P, re-derives pocP,i (line 3, Figure 5) and then
checks that Vai−1

i suitably derives from pocP,i (line 11).
Similarly, Provenance Verification is upheld because a
correct value of Vai−1

i indicates that the precise packet
contents flowed along every element in P prior to Ri

in the correct order; the order is upheld by the j in the
argument “j || H(P, M)” in line 10. Also, the protocol
is amenable to high-speed implementation (see §5) and
does not incorporate a PKI, require coordination among
realms, or use per-packet public key cryptography.

3.3 Other requirements

ICING must accommodate bi-directional communica-
tion, handle network failures, permit efficient manage-
ment of PoC keys, enable delegation, and permit revoca-
tion of consent. We now describe these functions.

Return paths While a destination, Rn, can reply to a
source, R0, by resolving R0 at path servers and obtaining
its own PoCs, it is more efficient for R0 to negotiate the
return path at the same time that it negotiates the forward

4ki,j and kj,i have different purposes (one is for Ri to make statements
to Rj; the other, vice-versa). However, our implementation sets ki,j =
kj,i, but there is no loss of security because PRF-96 takes an extra bit
as input (not notated) such that PRF-96(ki,j, m) 6= PRF-96(kj,i, m). See
Appendix A for details.

one. Thus, the payload of a packet optionally begins with
a return path and return PoCs that the recipient can use
to reply. This approach offloads return path negotiation
to clients, which helps in settings where it is important
to minimize load on servers. Note that return paths are
not included in every packet; they are needed only for
the first packet in a flow and after the path changes in the
middle of a communication, a case that we discuss now.

Network failures What happens if a network failure
(from change in topology, mobility, link failure, etc.) in-
validates the path between R0 and Rn? If R0 knows of the
failure, it either re-runs path and PoC retrieval, or else
uses a backup path and PoCs that it may have obtained
during normal path retrieval. Note that using a backup
path would be much faster than BGP convergence [33],
if R0 is told of the error as soon as it happens.

To inform R0 of the failure, the realm that experiences
the error sends a signal along the reverse of the path. A
subtlety is that this signal must not violate Path Validity
or Provenance Verification. Our approach is as follows.
We assume that when a realm consents to a path P (by
issuing a PoC), it also consents implicitly to carry error
packets backwards along the reverse of any prefix of P.

When Ri experiences an error, it sets the packet’s error-
index field to i; sets the R (reverse) bit; applies PRF-96
to the packet contents under ki,j and XORs the result into
the jth component of the auth vector, i − 1 ≥ j ≥ 0;
and then forwards the packet “backwards” to Ri−1. The
packet will now flow along the reverse path to the source.

When a realm, Rj, j < i, receives a packet with the R
bit set and the error index set to i, it performs three steps,
in analogy with the forward direction. First, it constructs
Aj. Second, it checks that the jth component of the auth
vector equals the XOR of i+1 terms: Aj and i applications
of PRF-96 to the packet contents, one application each
under k0,j, k1,j, . . . , kj−1,j, ki,j, ki−1,j, . . . , kj+1,j. This check
ensures that the packet flowed from the source through
realm Rj, reached realm Ri, experienced an error there,
and flowed from Ri back to Rj. Third, it applies PRF-96
to the packet contents using kj,l and XORs the result into
the lth component of the auth vector, j − 1 ≥ l ≥ 0.
Under our assumption above, this approach upholds Path
Validity and Provenance Verification.

If our assumption—that consenting to the forward
direction implies consent to carry error packets in
reverse—does not hold, the above approach would vi-
olate Path Validity. Consider, for example, a strict net-
work that wants to receive data from a neighbor but not
to emit data to that neighbor, say because doing so would
leak information to this neighbor. To handle such cases,
a convention is that one of a realm’s vnode bits means,
“not willing to send in reverse”. A strict network Ri ex-
presses its strictness by consenting only to paths where

7

ri has this bit set. Then, if a path contains a vnode with
this bit set, and if that vnode is in the part of the path that
would have to carry an error packet backward, the realms
do not send error packets in reverse. R0 knows at the out-
set that it is sending along such a path, so it can make
other arrangements, such as timing out and/or sending
on backup paths speculatively.

PoC key derivation As mentioned above, each realm
has 232 vnodes, each of which requires a PoC key shared
across all consent servers and forwarders in the realm.
Distributing 232 PoC keys would be expensive. Instead,
we rely on a small number of shared prefix keys to gener-
ate many PoC keys. Specifically, let r/p denote the p-bit
prefix of vnode r. If r/(p−1) has prefix key mr/(p−1) and
r/p has no explicitly shared prefix key, then the prefix
key for r/p is computed as mr/p = MAC(mr/(p−1), r/p)
(a technique suggested by [43]). The per-vnode key s(R,r)
is just mr/32.

In the simplest case, all vnode keys can be derived
from a single key, m0/0. This may be done initially, but
for revocation purposes (discussed below), realms will
need to change individual PoC and prefix keys. For per-
formance, implementations can cache prefix keys to ex-
ploit vnode locality. (Our implementation currently just
caches PoC keys, pre-filling the needed portion of the
cache for simplicity.) Realms can also speed PoC key
derivation by MACing more than one bit at a time, i.e.,
mr/p = MAC(mr/(p−b), r/p), for b > 1.

Delegation It is highly convenient for realms to be able
to delegate PoC-issuing ability to other realms. Consider
a backbone provider that delegates control to a customer
(who might in turn delegate to its customer, and so on).
The backbone provider gains by avoiding the burden of
granting PoCs for every flow that crosses its network.
Customers gain because they can deny upstream PoCs
according to their own policies, stopping unwanted traf-
fic before it arrives on their or their providers’ networks.
Of course, the delegator does not usually wish to delegate
control over its entire network; rather, it needs a way to
delegate control over a portion of itself.

Given the above approach to PoC key derivation, such
controlled delegation is easy to implement. A realm can
delegate control over a block of vnodes with a common
prefix, r/p: the realm simply divulges mr/p. The dele-
gate can sub-delegate a portion of this block by divulging
mr/q, where q > p. The end result is that an entity close
to the edge, such as an end-host, can issue PoCs on be-
half of a block of vnodes inside the backbone provider.
When the provider’s forwarder verifies packets using the
appropriate per-vnode PoC key, the forwarder does not
know that the packet’s PoC was issued by a delegate.

Note that the delegator may wish to retain some con-
trol over the delegated vnode. For example, the delegator

may want the vnode to be used only for paths that travel
between two particular neighbors. Or, a realm may del-
egate a vnode to a sender but want the sender to use the
vnode only for traffic sent to a particular receiver. While
the delegator can enforce some of these policies via in-
trarealm forwarding and filtering, others require the del-
egator to audit traffic over the delegated vnode.

Revocation As so far described, realms (or their dele-
gates) are “stuck” with their PoC-issuing decisions. If
a realm (or its delegate) regrets having issued a PoC to
a troublesome sender, the realm’s forwarding hardware
will continue to carry traffic along the given path un-
til the PoC expires. Yang et al. [54] address this prob-
lem in the context of network capabilities by associating
a maximum number of bytes with a capability (they ar-
gue, and we concur, that quickly blacklisting issued per-
missions would be too difficult). While our mechanism
could be extended to take a similar approach, it only mit-
igates the problem. Instead, a realm can immediately in-
validate PoCs by rekeying the needed vnodes (and then
informing its delegates of the change). Re-keying may
cause collateral damage; specifically, all current users of
a vnode must now obtain new PoCs from the rekeying
realm, which may noticeably pause valid communica-
tions. Premature rekeying is therefore primarily appro-
priate in emergencies.

3.4 Attacks and limitations

Given our threat model, ICING must be robust to attack.
Below we consider various attacks and their defenses.
We then discuss functions that ICING cannot provide.

Replay attacks An attacker who has observed a valid
packet may inject a duplicate copy along a suffix of a
path. At low rates, such attacks are not problematic: the
layers above datagram protocols must handle duplicates
anyway. We now consider aggressive replay attacks. If
the replayed packets come from a small number of flows,
a modest-sized cache of paths and counters from re-
cently seen packets can limit replays to a small fraction
of traffic. More challenging is dealing with attackers who
can, within a single PoC validity window, amass packets
from enough different paths that they overflow the replay
cache. Defending against this case is future work; it may
require both reducing the PoC validity window and em-
ploying Bloom filters or similar techniques to maximize
the number of entries in a small replay cache.

Packet floods An attacker can try to flood a network link
or destination. If the attacker does not have valid PoCs,
this attack will be limited (§4 limits it further). Here, we
cover the case that a flooding attacker has valid PoCs.
This attack captures classic denial-of-service (directly at-
tacking a server) and “denial-of-capability” [8, 54] (at-
tacking a consent server with spurious PoC requests).

8

These attacks are the same in our context—PoC requests
travel “in-band”—so we do not differentiate them below.

If a realm housing the victimized server can identify
clients, say at the granularity of categories (e.g., “em-
ployees who need to reach the internal network”, “paying
customers”, “unknown clients who solved a CAPTCHA”,
“unknown clients, some of which are attackers”), then it
can assign each category to a different vnode. Now, when
the server is attacked and overloaded, the victim deprior-
itizes the “unknown” categories, either by not reissuing
PoCs on those vnodes after they expire; giving down-
graded service to those vnodes; or, in an emergency,
rekeying those vnodes (§3.3). A related defense is that
an organization can issue PoC keys for a distinguished
vnode to employees. If providers fair queue by vnode,
then employees are guaranteed to be able to reach their
employer, even in the face of massive packet floods.

If clients cannot be assigned to categories, we (bla-
tantly) borrow a mechanism from TVA [54]: a victimized
realm or its providers can hierarchically fair queue based
on the packet’s path, to ensure roughly fair bandwidth
consumption among senders. Note that while an attacker
can weaken this defense under TVA by faking path iden-
tifiers, ICING’s properties prevent this weakening.

Cheating providers A cheating realm R cannot vio-
late Path Validity or Provenance Verification (§3.1). For
example, R cannot short-circuit a sub-sequence of the
agreed path or inject new packets along a portion of the
path. However, R can drop packets that it consented to
carry. More generally, it can neglect to give a packet the
service level specified by the vnode (R, r) listed in the
packet (to which R consented). So far, this attack is a
limitation of ICING; defending against it is future work.

Compromised secrets ICING’s guarantees assume that
honest realms’ keys are not compromised. But what if
such a key is compromised, as will inevitably happen?
Because ICING’s data plane is off-by-default, the most
likely damage is an attacker spuriously consuming re-
sources (versus blacklisting honest participants, the main
danger in AIP [5]), or subverting control plane protocols.

To recover from key compromise, a realm must change
its keys; we discuss the consequences for each key type:

Private keys (xi). If a realm’s private key is compro-
mised, the realm must change its name (i.e., its public
key). The change is propagated through routing proto-
cols (§4) no differently from a topology change. A realm
must also update name-to-realm mappings stored in, say,
path servers. While doing so is trivial for single-host
realms, if a realm comprises many hosts (each on a sepa-
rate vnode), the large number of (potentially distributed)
mappings creates a challenge. On the other hand, A6
records [18] solve a precisely analogous problem in the
IPv6 context, and ICING can borrow this solution, though

we leave the details to future work.
Shared symmetric keys (kij). One or both of the com-

promised realms must again change names.
Per-vnode PoC keys (s(R,r), also notated as sTi and

mr/32). The enclosing realm, R, must rekey (§3.3) the
PoC or an enclosing prefix of the PoC.

Per-vnode-prefix secret (mr/p). The enclosing realm
must again rekey, as above.

Compromised secrets are a serious issue, but ICING
is not so different in this aspect from many other sys-
tems. Ultimately, ICING is designed to give guarantees to
realms whose keys are not compromised, while permit-
ting realms that discover compromises to change keys.

Limitations and non-goals We now describe what
ICING does not, and is not designed to, achieve.

Although realms can enforce policy based on where
a packet went and on where it claims it will go, they
cannot control where a packet actually will go. If, for
instance, realm B consents to path 〈A, B, C, D〉 but not to
〈A, B, C, D′〉, then A, C, and D′ can still collude to use the
latter path (which could potentially result in B charging
D for traffic that actually went to D′).

ICING also cannot meaningfully enforce negative poli-
cies against edge realms. Consider blacklisting for ex-
ample. While the Internet’s IP address scarcity makes
blacklisting bad IP addresses effective, under ICING, in
contrast, edge realms can generate new names for them-
selves. On the other hand, a bad edge realm’s provider,
and the vnodes assigned to that edge realm, may be
harder to change, which would make blacklisting the
provider, or one of its vnodes, effective.

ICING does not offer confidentiality.
Finally, ICING’s concern is network-level policy,

rather than information flow control at higher layers. For
example, an application on host A might send data to host
B via an application on host C even if A’s provider does
not approve the network-level path 〈A, C, B〉.

4 Control plane
This section fills in some details of the control plane. It
is highly abridged; Appendix B gives a more complete
description.

Consent certificates A key data structure is the con-
sent certificate, a signed statement by a realm’s private
key5 that expresses both topology and policy informa-
tion about the realm. In the simplest case, a consent cer-
tificate names three realms: the issuing realm, R, and two
neighbors, A and B, with the semantics that R is declaring
that it connects to A and B and is willing to carry traffic

5Recall that realms also use their private keys to generate the ki,j
(§3.2). Such “dual purposing” of key material is wisely discouraged by
folklore. However, a careful analysis, which is outside of our scope,
indicates that our protocols are safe.

9

from A to B, perhaps on particular vnodes. Consent cer-
tificates can express richer semantics too. The exact for-
mat, together with proposed extensions, is given in Ap-
pendix B. We say that a set of consent certificates is full
with respect to a path P if, for each realm on P, the set
contains a certificate whose expressed policy allows P.
A full set proves that all realms on P consent (at least in
principle) to P.

The second and fifth mechanism principles So far,
ICING upholds the second principle only under hon-
est senders. A dishonest sender can construct a packet
from a mix of valid and bogus PoCs, thereby consum-
ing network resources en route to the first non-consenting
realm. Put simpler, these packets are dropped later than
they ought. However, if consent servers (which, recall,
take arbitrary input) require a full set of consent certifi-
cates before issuing a PoC, then a sender cannot violate
the second mechanism principle: if one of the realms on
the path doesn’t consent—as expressed by its never hav-
ing issued an appropriate certificate—then none of the
honest realms issues a PoC. Thus, spurious traffic will be
dropped early (specifically, at the first honest realm).

But how do consent servers get consent certificates
in the first place? The answer is via routing and path
construction protocols. Below we describe several ap-
proaches to these functions. Because ICING’s control
plane is “pluggable”, these approaches can coexist.

Before describing them, we note that they uphold the
fifth mechanism principle: realms can disintermediate
themselves from PoC-issuing (e.g., under the first ap-
proach, only the sender and the destination’s path server
issue PoCs). Disintermediation happens via delegation
(realms can offload consent-granting to, e.g., customers)
and consent certificates (the absence of which help a
sender not make a PoC request that would be denied).

sIRP As briefly mentioned in §2, path and configuration
servers gain network topology knowledge by participat-
ing (perhaps through proxies) in a routing protocol. Our
implementation uses sIRP (Simple ICING Routing Proto-
col). A link state protocol, it propagates sets of consent
certificates, which function as link state advertisements.
A provider R propagates to each of its customers (1) the
messages that R itself receives; and (2) consent certifi-
cates expressing that the customer can transit R to R’s
neighbors (R’s other customers, R’s providers, and R’s
peers). The end-result is that each edge customer gets
a set of consent certificates that validate paths to well-
connected providers (e.g., the Internet core) and to in-
termediate realms (such as its provider’s peers, and its
providers’ providers). Under sIRP, all valid paths—i.e.,
those for which one can assemble a full set of consent
certificates—are valley-free. sIRP’s scalability derives
from the fact that messages flow only “downward”.

We now describe path construction under sIRP. It is
inspired by [52]. When a sender requests a path, the path
server finds an intermediate realm, I (e.g., a tier-1 ISP, In-
ternet2, etc.) for which (1) there is a valid sub-path from
the sender to I; (2) there is a valid sub-path from I to
the destination; and (3) the end-to-end path through I is
valid. The path server examines consent certificates that
the sender supplies (which the sender received from the
routing protocol, via the configuration server) and cer-
tificates relevant to the destination (which the path server
received from the routing protocol, perhaps via the des-
tination), and identifies an end-to-end path for which a
full set of certificates exists. Such a set (almost) guar-
antees PoC retrieval will succeed, avoiding costly path
retrieval retries. We say “(almost)” because a realm can
always deny to issue a PoC. In any case, the path server
returns the full set to the sender, which submits them to
consent servers (answering the question above about how
consent servers get consent certificates).

Other approaches An extreme approach to routing and
path construction is to run BGP on realm names (using
signed BGP messages as consent certificates) and to pub-
licly disseminate PoC keys allowing any participant in
the routing protocol to mint a valid path suffix. For de-
tails, see §B.5. A key point is that [5] proposes nearly
exactly this, and shows how it can scale, an analysis that
mostly applies here (this approach requires a linear fac-
tor more space to store paths, but on general-purpose
servers). Another approach to routing and path selection
is to embed pathlets [23] in consent certificates (§B.5).

5 Implementation
This section describes our implementation of the hard-
ware and software data plane, the control plane, and end-
point software. All of our software runs on Linux 2.6.25.

Data plane Our prototype forwarder accepts ICING
packets carried in Ethernet frames and implements the
protocol in Figure 5. The fast path runs on the NetFPGA
programmable hardware platform [3], which has 4 Giga-
bit Ethernet ports. When an ICING packet enters the fast
path, if the packet’s path contains one or more realms
Rj for which the forwarder, representing realm Ri, does
not have ki,j cached in hardware, the hardware sends the
packet to a software slow path over the PCI bus to an
x86 processor. The slow path, implemented in Click [30],
calculates the needed keys and installs them in the hard-
ware’s key cache, possibly evicting old keys. The Diffie-
Hellman key exchange is implemented with the MIRACL
cryptographic library [45].

We have not yet implemented PoC expiry via the ts
field (§3.2), handling packets with the reverse bit set
(§3.3), or replay prevention (§3.4).

Figure 6 shows the major hardware blocks. The hard-

10

Figure 6—Block diagram for ICING forwarder hardware fast
path showing the ICING-specific logic, not including PMAC
and AES. In parallel, the blocks in the top layer calculate H(·),
look up ki,j from an SRAM cache, and look up sTi from an
SRAM table. The results are passed as needed to modules that,
in parallel, calculate Vai

i+1, . . . , Vai
n, check Vai−1

i , and calculate
Ai.

ware image is based on, and uses support modules from,
the reference base design from the NetFPGA project. We
implemented the ICING-specific logic, including crypto-
graphic modules.

The total equivalent gate count for our NetFPGA for-
warder design is 13.4M gates; it uses 89% of the total
FPGA logic area. This area is broken down as follows:
38% to the AES, CHI, and PMAC modules, 28% to all
other ICING-specific logic, and 34% to the support mod-
ules. In comparison, the NetFPGA reference IP router
has an equivalent gate count of 8.7M; it uses 50% of
the total FPGA logic area. The hardware image is 3100
ICING-specific semicolons of Verilog (1000 for crypto
modules, 2100 for other ICING logic); the software is
1260 semicolons of C++, not including cryptographic li-
braries.

Control plane and endpoints. Our combined con-
sent and path server is embedded in a DNS-like nam-
ing hierarchy and exposes a getpath() call over XDR
RPC (which returns a path to a destination or to another
such server). These servers participate in sIRP. The con-
trol plane modules are 1500 semicolons of C++, not in-
cluding cryptographic libraries. An endpoint application
sends ICING packets by invoking a path server via a local
library function. This function installs the needed path
and PoCs in a table maintained by Click, and returns to
the application an IP address that routes to tun, which is
an interface to ICING’s packet processing code in Click.

6 Evaluation
ICING introduces space and time overhead from per-
packet cryptographic objects and operations. Our princi-
pal question in this section is whether these overheads
are practical on Internet backbone links. We begin by
estimating ICING’s total space overhead (§6.2). In §6.3
and §6.4 we present microbenchmarks that evaluate the

The average ICING overhead is 22.4% above current
bandwidth consumption. §6.2

Our prototype forwarder processes packets at be-
tween 3 and 4 Gbit/s.

§6.3

We project that an ICING forwarder could scale to
backbone speeds at tolerable hardware cost (IP itself
runs only at 4 Gbit/s on our hardware platform).

§6.5

Microbenchmarks suggest that ICING’s software
costs are tolerable.

§6.4

Table 2—Summary of main evaluation results.

Machine type CPU RAM OS

slow Intel Core 2 Duo 1.86 GHz 2 GB Linux 2.6.25
medium1 Intel Core 2 Quad 2.40 GHz 4 GB Linux 2.6.25
medium2 Intel Core 2 Duo 2.33 GHz 2 GB Linux 2.6.27
fast Intel quad Xeon 3.0 GHz 2 GB Linux 2.6.18

Table 3—Machines for measuring ICING overhead.

performance of our prototype forwarder and the support-
ing software, respectively. Finally, in §6.5, we extrapo-
late from our results to assess ICING’s future feasibility
in the Internet core. Table 2 summarizes our main results.

6.1 Setup and parameters

Table 3 lists the four machines classes that we use to
evaluate ICING. The fast machines are installed in three
Internet2 Point-of-Presence (PoP) locations: Houston,
L.A., and New York. All machines except medium2 have
NetFPGA cards. The NetFPGAs in the Internet2 nodes
connect in a full mesh by dedicated 100Mbit/s circuits.

Our experiments often vary packets’ path lengths, path
indices or sizes. Table 4 gives the fixed and variable pa-
rameters used for the forwarding latency and throughput,
and software performance measurements.

6.2 Packet overhead

The ICING header size is significant. The header fields
that do not depend on the packet’s path length use 13
bytes (see Figure 2). Each (Ri, ri) is 24 bytes, each com-
ponent of V uses 16 bytes, and the PoC expiration tsi

takes 2 bytes. Thus, if x is the size of a packet and y is
the packet’s path length, the total header overhead, as a
fraction of the packet size, is:

J(x, y) =
13 + 42 · y

x

For a packet whose path is 7 realms long—the average
length of an AS level path found in [28] but a conserva-
tively high estimate, according to [5]—the header is 307
bytes, or 20.3% of a 1514-byte packet. For small packets,
ICING’s header overhead would be far larger; we note,
however, that most bytes are carried across the Internet
in large packets, so the total contribution to ICING’s over-
head from small packets may be small. To get a sense of

11

Varied
parameter Range

Fixed parameters

Path len Path idx Pkt size

Path length {3, 7, 10, 20, 30, 37} — 1 1514
Path index {1, 5, 10, 15, 18} 20 — 831
Packet size {311, 567, 823, 1335} 7 3 —

Table 4—Parameters used throughout experiments. Packet size
includes header.

how much overhead ICING’s headers would impose on
Internet-like traffic, we look both at the expected over-
head of a randomly selected packet, and at the expected
overhead of a randomly selected byte. The latter statis-
tic captures the total cost of ICING, namely how many
total bytes it would add to data plane traffic, assuming
today’s packet size distributions (this statistic is the one
that accounts for the fact that most bytes travel in large
packets).

Per-packet overhead The expected overhead of a ran-
dom packet is given by E(J(X, Y)), where X, Y are ran-
dom variables for the packet size and the path length,
respectively. Assume that the size of a packet and the
length of its path are independent, and bound the aver-
age path length by 7 (a conservative estimate, accord-
ing to [5]). The sought average can then be computed
as EX(J(X, 7)), i.e., the average of ICING’s header over-
head for various packet sizes, weighted by their propor-
tion over typical Internet traffic. Using packet size data
from a 1-hour long trace of a mid-West to West Coast
OC192 backbone link of a US Tier-1 ISP [47], ICING’s
header overhead for a random packet is 45.4%.

Total overhead from ICING The preceding statistic
captured ICING’s overhead for a randomly selected
packet. But we expect that statistic to overstate ICING’s
true cost because most bytes travel in large packets (in-
tuitively, the outsized cost of an ICING header on a small
packet is not incurred often, relative to the total amount
of data traveling). Thus, we now examine ICING’s effect
on overall bandwidth consumption.

We’re interested in (total-ICING-header-bytes / total-
data-bytes-sent), which equals:

total-ICING-hdr-bytes
total-num-pkts-sent

/
total-data-bytes-sent
total-num-pkts-sent

= avg-ICING-header-bytes-per-pkt/avg-pkt-size

or J(E(X), E(Y)), the reason being that the numerator
above is simply the number of bytes added by ICING
for a randomly selected packet, which depends only on
average path length. If we (conservatively) take the av-
erage path length, E(Y), as equal to 7, and if we take
X as distributed according to the dataset in [47], then
J(E(X), E(Y)) equals 307/1370, or 22.4% above current
bandwidth consumption.

We discuss the import of this statistic in §9.

0 500 1000 1500
2

3

4

Payload Size (bytes)

T
hr

ou
gh

pu
t

(G
bi

t/s
)

5 10 15 20 25 30 35 40
2

3

4

Path Length (realms)

T
hr

ou
gh

pu
t

(G
bi

t/s
)

5 10 15
2

3

4

Path Index

T
hr

ou
gh

pu
t

(G
bi

t/s
)

Figure 7—Average throughput as the payload size and path
length. Standard deviation was less than 0.2 per thousand of
the mean at each measurement point. The minimum throughput
was 3 Gbit/s and payload size had the most impact on average
throughput when the packet size is constant.

6.3 ICING forwarder

From Figure 5, one might expect the cost of processing a
packet to depend on the number of applications of PRF-
96 that must be performed. However, because the PRF-
96 results are XORed, they can be parallelized. On the
other hand, as the ratio of payload size to path length in a
packet increases, the number of auth vector entries (that
are not hashed) decreases and the hash function becomes
the bottleneck. To validate, we measure our prototype’s
fast path throughput by connecting the four ports of an
ICING forwarder to a NetFPGA packet generator that
sends ICING packets at line rate. We measure throughput
over 5 10-second samples, using the measurement points
in Table 4. The ICING forwarder loops ingress packets
back to the packet generator, which measures the aver-
age bit rate.

Figure 7 plots the measured throughput. Note that
we do not report goodput; instead we acknowledge that
ICING has a 22.4% overhead, as analyzed in §6.2. The
minimum aggregate throughput was 3 Gbit/s. The path
index has no effect on performance because it doesn’t af-
fect the number of PRF-96 applications or the number of
bits hashed.

6.4 Software performance

We now measure the performance of ICING software, in-
cluding the forwarder’s slow path. We focus on calculat-
ing shared keys, generating PoCs, and packet handling.
Table 5 summarizes.

Shared key (ki,j) calculation. We measure the cost of
the ICING forwarder’s slow path by running 3000 itera-

12

Action Processing time Throughput (1/Proc. time)

Calculate ki,j 4 ms (σ = .043 ms) 250 keys/s
Generate PoC 0.4l + 1.3 µs 2.6 · 106/(l + 3.5) PoC/s
Create packet 2.6l + 40.1 µs 3.9 · 105/(l + 15.4) pkt/s
Verify packet 2.6l + 24.4 µs 3.9 · 105/(l + 9.5) pkt/s

Table 5—Processing time and throughput for software opera-
tions, where l is the path length. Each entry in the path increases
packet creation and verification times by 2.6 µs, the cost of two
AES encryptions. For the last three rows, processing time is
derived by linear regression, and R2 > 0.99 in all three cases.

tions of the calculation function in a tight loop on a slow
machine. On average, a single key calculation takes 4 ms.

PoC creation. To represent the hardware that runs
ICING control plane servers, we use fast Internet2 ma-
chines to benchmark the consent server. To measure the
cost of generating a PoC, we run the calculation func-
tion in a tight loop, varying the path length per Table 4.
Our results show that the cost is proportional to the path
length, as expected from the definition of pocP,i.

End-host. An end-host must also perform crypto-
graphic operations: senders initialize the auth vector and
receivers validate Vn. To understand these costs, we seek
a linear function from path length to processing time.
To infer such a function, we vary path length per Ta-
ble 4, take packet size to be 1514 bytes, and collect 1000
samples per path length. We record total processing cost
(of either packet generation or verification, depending on
sender or receiver; in both cases, they retrieve the needed
ki,j from a cache so as not to count the shared key cost),
and then use ordinary least squares linear regression. The
inferred coefficients (R2 > 0.99) are in Table 5.

Note that an end-host takes longer to generate a packet
than to verify one. This is because senders are so far
unoptimized and compute H(P, M) twice The receiver
hashes the packet only once (to verify Vn) but incurs a
cost that sender does not, namely computing its PoC.

6.5 Scaling

Here, we do some back-of-the-envelope estimates to get
a rough sense for whether an ICING forwarder could
scale to backbone speeds.

Before delving into more detail, we just note that while
our ICING forwarder might seem slow in absolute terms,
it runs at almost the same speed as the reference IP
router [3] built on this platform (i.e., FPGAs are slow).
Since production IP can run at backbone speeds on an
ASIC, we believe that there is no fundamental obsta-
cle to running ICING at these speeds on an ASIC. Of
course, forwarding an ICING packet requires more per-
packet processing than forwarding an IP packet, which
is reflected in ICING’s requiring 78% more FPGA logic
than the reference IP router (as mentioned in §5). Be-
yond the fact that this difference might be an acceptable
price for ICING’s properties, we note that it is precisely

such differences—factors of two in area cost—that are
the subject of Moore’s Law.

We now go into more detail, answering two questions:
• Can we build a forwarder that can handle future Inter-

net backbone traffic at a reasonable hardware cost?
• Is the amount of state that an ICING forwarder needs

to store reasonable?

6.5.1 Throughput and cost

Current backbone links are 40 Gbit/s (OC-768). For now,
we set a target of over 100 Gbit/s.

Because we have been unable to find die sizes for
ASICs in commercial networking products from vendors
such as Cisco, Juniper, and Broadcom, our comparison
is relative to the FPGA chip (Virtex-II pro 50) that we
are using. Measurements from [32] suggest that the ratio
of chip area consumed by an FPGA to that consumed by
an ASIC for the same design varies between 12 and 70,
depending on the types of hard macro blocks used and
the type of logic implemented by the FPGA design. Our
design uses only Block RAM hard macros. Thus, accord-
ing to Table II in [32], the average ratio is 33. Moreover,
the Virtex-II pro uses 0.13 µm technology while today’s
ASICs use 40 nm technology, so area reduces by an ad-
ditional (130/40)2, or a little over a factor of 10, giving
a factor of roughly 330 altogether.

Moving to an ASIC also allows higher clock speeds
from reduced combinational and routing delay. The aver-
age delay reduction found in [32] is 3.5 times. And, mov-
ing to a smaller technology can further increase clock
rates, but we are conservatively disregarding this effect.

Applying the above estimates literally would mean
that an ASIC implementing our ICING forwarder design
would be at least 330 times smaller than the Virtex-II pro
50 and would run 3.5 times faster—roughly 10 Gbit/s
(i.e., 3.5 times faster than the minimum speed of our im-
plementation, which is 3 Gbit/s, from Figure 7). We can
now “spend” some of that factor of 330 to replicate pro-
cessing logic by a factor of 10 to reach our goal of 100
Gbit/s. The end result is still a trivial amount of area at
the 40 nm technology.

Looking ahead, we expect ICING to keep pace with in-
creases in backbone link speeds. The reason is that back-
bone link speeds have roughly followed Moore’s Law,
and ICING’s main bottleneck is one hash calculation per
packet, the speed of which will also track Moore’s Law,
assuming current trends continue.

Our conclusion is that an ICING forwarder could, in
throughput terms, achieve current backbone speeds with-
out being too expensive. However, we must also consider
goodput: ICING’s 22.4% average overhead means that an
ICING forwarder must run at 122.4 Gbps to meet a target
goodput of 100 Gbps. This extra required speed would
have one of two effects, depending on the bottleneck. If

13

packet processing logic is the bottleneck, then the 22.4%
overhead would add proportional cost to our estimates.
On the other hand, if interconnect or I/O (or pin) band-
width is the bottleneck, then for ICING to achieve the
same goodput as IP might require an ICING forwarder
to have more pins, which might translate into needing
more chips, in which case the cost of an ICING forwarder
would rise non-proportionately.

6.5.2 State

An ICING forwarder stores three kinds of state: a table of
its directly connected neighbors; a symmetric key cache
to store the ki,j; and the PoC key cache to store precal-
culated PoC keys or prefix keys. The first kind is negli-
gible. In the remainder of this section, we focus on the
latter two, asking whether the required state can fit in a
commodity SRAM or CAM.

Symmetric key cache To ensure high speed forward-
ing in all cases, a forwarder’s symmetric key cache must
hold the ki,j for all realms in all packet paths that pass
through the forwarder. Assuming that the number of
realms will be, roughly, the number of autonomous sys-
tems, we can set an upper bound on the maximum size
of the key cache by looking at the number of advertised
Autonomous System Numbers (ASNs). As of October 6,
2009 this number is less than 33k and growing at less
than 3.2k/year [1], so the key cache size for an ICING
forwarder that can handle today’s traffic and the traffic
for at least the next 5 years—assuming the growth rate
remains constant—is less than 100k entries. Note that a
forwarder will almost certainly never be receiving flows
passing through every realm on the Internet, so the actual
required number is far less.

Our ICING forwarder already has a hash table that can
fit 32k entries, and current IP routers and switches al-
ready have tables on the order of hundreds of thousands
of entries [2]. Thus, our rough estimate is that the key
cache can be implemented easily in SRAM. For further
analysis of a nearly identical question, see [5, §4].

PoC key cache As described in §3.3, a forwarder de-
rives the PoC key for a vnode by successively MACing
a prefix key. While our implementation uses only 16 bits
of the vnode, allowing us to fit all of the PoC keys in
SRAM, we must ask whether arbitrary implementations
have the needed storage and processing power to cache
or derive keys. An extended analysis is outside of our
scope, so we just note the following. 32 MB of SRAM
that runs at the speeds that we are targeting is not an
unreasonably large and fast SRAM. PoC prefix keys are
32 bytes, so with 32 MB of SRAM, an ICING forwarder
can cache 220 prefix keys. Thus, the forwarder must ei-
ther cache commonly used PoC keys or perform enough
MACs (which are AES encryptions in our implementa-

tion) to go from a 20-bit prefix key to a 32-bit prefix key
(which is the PoC key itself). We do not believe that ei-
ther is a fundamental obstacle. For example, if PoC key
derivation occurred at 12 bit boundaries (see §3.3), and
if the forwarder cached all 220 prefix keys, then only one
AES invocation is needed per packet processed.

Of course, as SRAMs become denser and AES invo-
cations faster, the PoC key cache will become even less
burdensome.

7 Expressiveness
How much policy expressiveness does ICING give? In-
formally, ICING’s mechanisms can express the high-level
policies of many prior works, including those in Table 1
(making this claim precise would require a formalism
that is outside of our scope). A second indication of
ICING’s expressiveness is that it enables new functions.
We now give several examples.

Sink routing. The literature on source routing is vast,
yet almost no proposals give receivers analogous control
(an exception is NIRA [52]), even though they have the
same interests as senders, as noted in §1. Thus, we pro-
pose sink routing, in which the destination chooses, or
approves of, the entire interdomain path. ICING’s mech-
anisms naturally enable sink routing.

Security applications. VPNs can be implemented un-
der ICING (an organization gives PoCs only to employ-
ees), with the bonus that unauthorized traffic is stopped
far upstream. Similarly, an end-host can make firewall-
like decisions but see them enforced in or before the In-
ternet core (by naming applications with vnodes). Today
many organizations use deep packet inspectors (DPIs);
ICING can also enhance these functions, as follows.

Off-path middleboxes. Under ICING, an end-host can
direct traffic headed to it through off-path middleboxes.
However, unlike in previous work (e.g., [46, 48]), the in-
vocation can be selective and enforced. Thus, a destina-
tion domain can require traffic from unknown sources
to go through a third-party DPI or DDoS mitigator
(e.g., [42]) but let sensitive traffic travel directly to it.

More exotic policies. Under ICING, a provider can set
arbitrary conditions for packet carriage. For example, it
can require that all traffic on a particular local vnode
has flowed through friendly countries. It can also ex-
press analogous policy for the remainder of the path (as
in [49]) and mostly (but not completely; see §3.1,§3.4)
enforce that policy. It can also issue consent based on fac-
tors like whether another entity on the path is a customer
and has paid its bill, whether resources are available, etc.

8 Related work
ICING borrows much from many [5, 13, 14, 23, 24, 37,
39, 43, 52, 54], and we have noted those debts through-
out. Here, we briefly mention some broader research cur-

14

rents from which ICING has emerged. First, PoCs are re-
lated to network capabilities [6, 43, 50, 54] and Visas
[21]. These mechanisms allow receivers to authorize
senders but do not fully uphold the principles in §1. (One
might wonder if source-routed connection service [44]
upholds the principles; unfortunately not: no mechanism
constrains packets to follow the agreed path.) Second,
the years have seen many routing proposals, from earlier
policy frameworks such as [15, 22] to, more recently, the
work cited in Table 1. Taken individually, these proposals
do not uphold the principles in §1, but taken collectively,
they motivated our work. Finally, “clean slate” is now a
fashionable trend. Much of this work concerns the appli-
cation layer, naming, etc. [10, 16, 31, 46] so is orthogonal
to our network-layer focus.

9 Discussion and summary
Overhead and feasibility §6 addressed forwarding
speed and packet overhead. As noted in the introduction,
while ICING’s forwarding speed may not seem high in
absolute terms, one must calibrate to the hardware plat-
form (on which it runs at almost the same speed as IP
forwarding). As for space overhead, it is significant un-
der ICING. But as noted in the introduction, compared to
a naive solution, ICING’s 42 bytes per participant is a ma-
jor improvement. And, under jumbo frames, the absolute
overhead is negligible. And, even without jumbo frames,
our (crude) analysis in §6 indicates that ICING would in-
crease total bandwidth consumption on the Internet only
by 22.6%, which might be a fair price for its properties.

Thus, we don’t mean to minimize these costs, but our
original question was whether ICING is plausible. We be-
lieve, tentatively, that it is.

Deployment ICING offers incremental gain if deployed
in an edge network or organization. An example is as
follows. Today, firewalls’ perimeter-based security fails
completely once an attacker compromises a single ma-
chine on an internal network. With ICING deployed lo-
cally, operators can filter traffic not just at the perimeter
but between any two hosts, even when they are at dif-
ferent sites, communicating over the legacy Internet. An-
other question is how to deploy incrementally in the core.
Here, we can (again) borrow from Platypus [43]: ICING
realms can treat IP as the link layer, rewriting IP source
and destination addresses at each ICING hop.

Veto power?! One concern is that ICING shifts away
from the Internet’s hallowed “default-on” paradigm so
would lead to diminished connectivity, network neutral-
ity violations, and unpleasant political consequences, as
providers use fine-grained vetoes (or threats of them)
to bend communications to their political and commer-
cial wills. On the other hand, connectivity is a pow-
erful economic driver, and ICING also empowers end-

points—endpoint control is inherent in the policy princi-
ple, and path selection happens in commodity servers—
potentially creating competition where today monopoly
reigns. In any case, ICING did not create this dialectic,
as its control features are not new but merely a union of
what has been previously proposed. As noted in our in-
troduction, we think it premature for our community to
predict which subset of control features will eventually
emerge as dominant, and unwise to embed that prediction
in a long-lived architecture, so for now we think it best to
provide a neutral platform on which the tussle [17] can
play out. This is the role ICING is intended to play.

Future work and summary Our near-term future work
is to enhance our evaluation, particularly estimates of
ICING on production hardware (§6.5); to implement the
unimplemented pieces (§5); and to design a compre-
hensive replay prevention solution (§3.4). Longer term,
our work is to handle providers that cheat by neglecting
agreed service levels (§3.4) and to examine how ICING
cohabitates with other Internet architecture proposals.

To summarize, we began with the principles in §1
(which really did predate the proposal’s particulars!) and
sought a feasible architecture to uphold them. We were
led to a mechanism that is not perfect: it has some
cost and some complexity, though we project technology
trends will make it cheaper and better-performing over
time. Yet, even if these conjectures are wrong, ICING’s
properties may be worth its price. Moreover, what we
have presented here is not intended to be the last word
but rather an existence proof, ripe for optimizations and
improvements, that it is feasible to uphold the principles.
Indeed, all policy considerations, policy frameworks, and
policy functions aside, that our design and hardware im-
plementation upholds the principles means that we have
a solution to a formerly unaddressed technical problem:
binding a packet to its path with no central authority, in
an adversarial environment. This is our most significant
technical contribution.

Acknowledgments
Insightful comments and careful reading by Andrew
Blumberg, Steve Keckler, and Josh Leners improved this
draft.

References
[1] The 32-bit autonomous system number report.

http://www.potaroo.net/tools/asn32/index.html.
Last accessed on 3/2/2009.

[2] Integrated device technology (IDT) quick reference guide.
http:

//www.idt.com/products/getDoc.cfm?docID=18640144.
Last accessed on 1/30/2009.

[3] NetFPGA: Programmable networking hardware.
http://netfpga.org.

[4] Digital signature standard (DSS). Federal Information

15

http://www.potaroo.net/tools/asn32/index.html
http://www.idt.com/products/getDoc.cfm?docID=18640144
http://www.idt.com/products/getDoc.cfm?docID=18640144
http://netfpga.org

Processing Standards Publication, November 2008. DRAFT
FIPS PUB 186-3.

[5] D. Andersen, H. Balakrishnan, N. Feamster, T. Koponen,
D. Moon, and S. Shenker. Accountable Internet protocol. In
SIGCOMM, Aug. 2008.

[6] T. Anderson, T. Roscoe, and D. Wetherall. Preventing Internet
denial-of-service with capabilities. In HotNets, Nov. 2003.

[7] K. Argyraki and D. R. Cheriton. Loose source routing as a
mechanism for traffic policies. In Proc. SIGCOMM Workshop
on Future Directions in Network Architecture, Sept. 2004.

[8] K. Argyraki and D. R. Cheriton. Network capabilities: The
good, the bad and the ugly. In HotNets, Nov. 2005.

[9] I. Avramopoulos, H. Kobayashi, R. Wang, and
A. Krishnamurthy. Highly secure and efficient routing. In
INFOCOM, Mar. 2004.

[10] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy,
S. Shenker, I. Stoica, and M. Walfish. A layered naming
architecture for the Internet. In SIGCOMM, Aug. 2004.

[11] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and
S. Shenker. Off by default! In HotNets, Nov. 2005.

[12] J. Black and P. Rogaway. A block-cipher mode of operation for
parallelizable message authentication. In Advances in
Cryptology - EUROCRYPT 2002. Lecture Notes in Computer
Science, pages 384–397. Springer-Verlag, 2002.

[13] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe. Design and implementation of a routing
control platform. In NSDI, May 2005.

[14] M. Casado, M. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker. Ethane: Taking control of the enterprise. In
SIGCOMM, Aug. 2007.

[15] D. Clark. Policy routing in internet protocols. RFC 1102, May
1989.

[16] D. Clark, K. Sollins, J. Wroclawski, and T. Faber. Addressing
reality: An architectural response to demands on the evolving
Internet. In Proc. SIGCOMM Workshop on Future Directions in
Network Architecture, Aug. 2003.

[17] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden. Tussle
in cyberspace: defining tomorrow’s Internet. In SIGCOMM,
Aug. 2002.

[18] M. Crawford and C. Huitema. DNS extensions to support IPv6
address aggregation and renumbering. RFC 2874, Network
Working Group, July 2000.

[19] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1(1):269–271, Dec. 1959.

[20] D. Estrin, T. Li, Y. Rekhter, K. Varadhan, and D. Zappala.
Source demand routing: Packet format and forwarding
specification (version 1). RFC 1940, May 1996.

[21] D. Estrin, J. Mogul, and G. Tsudik. VISA protocols for
controlling inter-organizational datagram flow. IEEE JSAC,
7(4), May 1989.

[22] D. Estrin and G. Tsudik. Security issues in policy routing. In
Proc. IEEE Symposium on Security and Privacy, May 1989.

[23] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica. Pathlet
routing. In SIGCOMM, Aug. 2009.

[24] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean slate
4D approach to network control and management. ACM CCR,
35(5), Oct. 2005.

[25] S. Guha and P. Francis. An end-middle-end approach to
connection establishment. In SIGCOMM, Aug. 2007.

[26] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy,
and D. Wetherall. Improving the reliability of Internet paths with
one-hop source routing. In OSDI, Dec. 2004.

[27] P. Hawkes and C. McDonald. Submission to the SHA-3
competition: The CHI family of cryptographic hash algorithms.
Submission to NIST, 2008. http://ehash.iaik.tugraz.
at/uploads/2/2c/Chi_submission.pdf.

[28] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley.

Measurement and classification of out-of-sequence packets in a
Tier-1 IP backbone. In INFOCOM, 2003.

[29] H. T. Kaur, A. Weiss, S. Kanwar, S. Kalyanaraman, and
A. Gandhi. BANANAS: An evolutionary framework for explicit
and multipath routing in the internet. In Proc. SIGCOMM
Workshop on Future Directions in Network Architecture, Aug.
2004.

[30] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The Click modular router. ACM Trans. on Computer Systems,
Aug. 2000.

[31] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H.
Kim, S. Shenker, and I. Stoica. A data-oriented (and beyond)
network architecture. In SIGCOMM, Aug. 2007.

[32] I. Kuon and J. Rose. Measuring the gap between fpgas and asics.
Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 26(2):203–215, Feb. 2007.

[33] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed
Internet routing convergence. ACM/IEEE Transactions on
Networking, 9(3):293–306, June 2001.

[34] M. Little. Goals and functional requirements for
inter-autonomous system routing. RFC 1126, October 1989.

[35] X. Liu, X. Yang, and Y. Lu. To filter or to authorize:
Network-layer DoS defense against multimillion-node botnets.
In SIGCOMM, Aug. 2008.

[36] R. Mahajan, D. Wetherall, and T. Anderson. Mutually controlled
routing with independent ISPs. In NSDI, Apr. 2007.

[37] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel.
Separating key management from file system security. In SOSP,
Dec. 1999.

[38] A. T. Mizrak, Y.-C. Cheng, K. Marzullo, and S. Savage. Fatih:
Detecting and isolating malicious routers. In IEEE DSN, June
2005.

[39] R. Moskowitz and P. Nikander. Host identity protocol (HIP)
architecture. RFC 4423, May 2006.

[40] R. Perlman. Network layer protocols with Byzantine robustness.
PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA, 1988.

[41] R. Perlman. Routing with Byzantine robustness. Technical
Report TR-2005-146, Sun Microsystems, Aug. 2005.

[42] Prolexic Technologies, Inc. http://www.prolexic.com.
[43] B. Raghavan and A. C. Snoeren. A system for authenticated

policy-compliant routing. In SIGCOMM, Sept. 2004.
[44] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label

switching. RFC 3031, Network Working Group, Jan. 2001.
[45] M. Scott. Miracl library.

https://www.shamus.ie/index.php?page=Downloads.
[46] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.

Internet Indirection Infrastructure. In SIGCOMM, Aug. 2002.
[47] The Cooperative Association for Internet Data Analysis

(CAIDA). Packet size distribution comparison between internet
links in 1998 and 2008.
http://www.caida.org/research/traffic-analysis/

pkt_size_distribution/graphs.xml.
[48] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris,

and S. Shenker. Middleboxes no longer considered harmful. In
OSDI, Dec. 2004.

[49] W. Xu and J. Rexford. MIRO: Multi-path interdomain routing.
In SIGCOMM, Sept. 2006.

[50] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless Internet flow
filter to mitigate DDoS flooding attacks. In Proc. IEEE
Symposium on Security and Privacy, May 2004.

[51] A. Yaar, A. Perrig, and D. Song. StackPi: New packet marking
and filtering mechanisms for DDoS and IP spoofing defense.
IEEE JSAC, 24(10):1853–1863, Oct. 2006.

[52] X. Yang, D. Clark, and A. W. Berger. NIRA: A new
inter-domain routing architecture. ACM/IEEE Transactions on
Networking, 15(4), Aug. 2007.

[53] X. Yang and D. Wetherall. Source selectable path diversity via

16

http://ehash.iaik.tugraz.at/uploads/2/2c/Chi_submission.pdf
http://ehash.iaik.tugraz.at/uploads/2/2c/Chi_submission.pdf
http://www.prolexic.com
https://www.shamus.ie/index.php?page=Downloads
http://www.caida.org/research/traffic-analysis/pkt_size_distribution/graphs.xml
http://www.caida.org/research/traffic-analysis/pkt_size_distribution/graphs.xml

routing deflections. In SIGCOMM, Sept. 2006.
[54] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting

network architecture. In SIGCOMM, Aug. 2005.

A Implementation of PRF-96
The dataplane protocol in §3 relies on pseudo-random di-
gests at several places, notably in the computation of the
cryptographic material in PoCs, and in the derivation of
the components that get aggregated in the entries of the
authentication vector V i. In principle, our design could
employ a single, variable-input-length pseudo-random
function (PRF) family like PMAC [12] to compute all
digests. To maximize forwarding rates and minimize the
number of entries necessary in the hardware cache, how-
ever, it is expedient to adopt different PRF constructions
at different places.

Specifically, the cryptographic material in a PoC is
calculated using PMAC as soon as the (variable-length)
path and timestamp information are read from the packet
header. The authentication vector components, instead,
depend on the (longer) packet’s payload, and are com-
puted based on the hash-then-MAC paradigm.

Because the same hash function is used in conjunc-
tion with different keys for the MAC stage, it is im-
portant that the hash function be collision resistant. As
collision-resistant hash function, we use CHI [27]. CHI
is a Round-1 SHA-3 candidate that can produce a 256-bit
hash. We chose CHI because it featured both fast evalu-
ation in hardware (by virtue of its highly parallel design)
and promise of strong security (by virtue of its adher-
ence to the best practices in hash function design). CHI
was not selected for Round-2 of the SHA-3 competition.
While no significant cryptoanalytic attack has been dis-
covered against CHI, we intend to stay current with the
SHA-3 competition, and replace CHI in our system with
one of the standing SHA-3 candidates in the next proto-
col version.

Our fixed-input-length PRFs are summarized in
pseudo-code in Figure 8. We chose as our workhorse two
rounds of CBC-MAC with the AES block cipher. To save
packet space, the resulting 128 bits are chopped down to
96 bits, which is believed to provide full 96-bit security.

Note that while §3 refers to “PRF-96”, the ICING
protocol actually uses two separate PRF-96 functions:
PRF1-96, which the realms use to calculate the Ai, and
PRF2-96, which the realms use to construct, verify, and
transform V i. The notation in §3 does not depict the true
parameters to the call to PRF2-96. The true parameters
reflect a slight technical complication resulting from the
need to minimize the cache requirements on the forward-
ing hardware. Namely, rather than having two keys, one
for each direction (the two directions being Ri proving
provenance to Rj and Rj proving provenance to Ri), each
pair of realms (Ri, Rj) shares a single MAC key ki,j = kj,i

function CBC2MAC128(k, blk[0..255])
X = AESENC(k, blk[0..127])
Tag = AESENC(k, X ⊕ block[128..255])
return Tag

function PRF1-96(k, blk[0..255])
Tag = CBC2MAC128(k, blk)
return Tag[0..95]

function PRF2-96(Rprover, Rverifier, kprover,verifier, blk[0..254])
t = (Rprover < Rverifier) ? 1 : 0
return PRF1-96(k, t||blk)

Figure 8—Pseudocode for the fixed-input-length PRFs used to
compute pseudo-random hashes in the dataplane protocol of
§3. CBC2MAC128 consists of two rounds of CBC-MAC with
the AES block cipher; PRF1-96 is derived from CBC2MAC128
by chopping its output to the bottom 96 bits; and PRF2-96 is
derived from PRF1-96 via domain separation.

that they use as input to PRF2-96 in both directions. To
prevent hashes computed for one direction from interfer-
ing with those of the other direction, we employ a “do-
main separation” trick: realms prepend a bit that encodes
the direction to the value being MACed (which is the out-
put of a hash function). Although this requires adjusting
the output of the hash stage by one bit, the bit security
of the collision resistance property remains comfortably
large (127-bit security).

B Control plane details
This appendix details ICING’s control plane, filling in de-
tails that were omitted from §2 and §4. In §B.1 we detail
client configuration. We then detail sIRP (§B.2) and path
finding under sIRP (§B.3). We also discuss extensions
to sIRP (§B.4) and other approaches to routing and path
construction (§B.5).

B.1 Client configuration

Before a client device can start sending traffic on ICING
networks, it must discover paths and gain permission to
use those paths. Specifically, a client needs to find out
which realm it has connected to and which vnodes it can
access. A client also needs a path to a local path server
and permission to use that path. This path server is used
as a gateway through which the client negotiates paths
to other path servers and hosts outside its own realm.
Clients receive this information by using a service simi-
lar to DHCP.

When a client connects to a network, it contacts an
ICING configuration server. The server sends the client
the realm’s public and private keys, a vnode to use and a
path to a local path server. This path is accompanied by
either the PoCs that correspond to the path or PoC-keys
so that the client can build PoCs on its own.

If the client has declared a qualified name, it passes
this name to the configuration server, which in turn

17

passes it on to the realm’s path servers, so that other hosts
can discover it. The configuration server also notifies lo-
cal sIRP servers that the client has connected and which
vnode it is using, so that topology updates (§B.2) can be
forwarded to the client.

B.2 sIRP

This section describes how path servers and clients use
sIRP to discover subsets of the network topology.

B.2.1 Approach

sIRP (the simple ICING routing protocol) is a link-state
routing protocol that pushes updates downward, from
transit providers to customers. It restricts routes to those
that are valley-free. While this goal may seem restric-
tive, sIRP is meant to be only an existence proof; the data
structures that we use can be extended in order to enforce
more complex policies, as we briefly cover in §B.4 and
§B.5.

sIRP update messages are composed of statements that
expose who is authorized to send traffic via the realm.
For example, realm A is permitted to send traffic to realm
C via realm B. sIRP uses consent certificates (detailed in
§B.2.2) to express these authorization statements. Each
certificate is signed. sIRP update messages are composed
of the certificates that a realm builds along with the cer-
tificates that were received from the realm’s neighbors.

Each sIRP server is configured so that, for each neigh-
bor, it knows the neighbor’s public key and whether the
neighbor is a provider, peer or customer of the realm.
This information ensures that only valley-free routes are
built: sIRP sends routing updates only to neighbors that
are customers. As a result, for a packet to flow through
a realm, it must be destined for, or originate from, a cus-
tomer (or a customer’s customer, etc.).

By pushing certificates down the provider chain, sIRP
gives each realm the ability to reach the network “core”.
We assume that, like today’s Tier-1 ISPs, the realms in
the core are well-connected to each other. As a result, any
two edge networks will have certificates that permit them
to send traffic to each other via a common realm in the
core. Moreover, this path is guaranteed to be valley-free.
The reason is that a realm constructs consent certificates
expressing that traffic travels between a customer and a
provider of the realm, or a peer and a customer of the
realm. A realm never creates certificates consenting to
traffic that transits over the realm between a provider and
a peer or between a peer and another peer. Thus, routes
that are not valley-free will not have a full set of consent
certificates and hence will not appear legitimate.

B.2.2 Data structures

Consent certificates The consent certificate, shown in
Figure 9, is the key data structure of the ICING control

struct realm_vnode_mask {

key_t public_key;

uint vnode;

uint mask;

};

struct certificate {

realm_vnode_mask issuer;

realm_vnode_mask previous;

realm_vnode_mask next;

time_t created;

time_t expiry;

uint metric;

sig_t signature; // uses issuer’s private key

};

Figure 9—The representation of an ICING consent certificate.
Either previous or next may have a public key made up of
all ones, signifying that it is a membership certificate.

plane. It encapsulates the policies that a realm maintains.
A certificate names three realms: the issuing realm, the
previous hop, and the next hop. A certificate can be in-
terpreted as permitting traffic to flow from the previous
hop to the next hop via the issuing realm.

A sIRP certificate also contains a metric, which can be
used when evaluating sets of possible paths, and a cre-
ation and expiration time. Each certificate is signed using
the realm’s private key.

Reducing the number of signatures As an optimiza-
tion, sIRP uses vnodes to reduce the number of certifi-
cates that it needs to issue. Instead of issuing consent
certificates for each pair of neighbor realms, a realm is-
sues a membership certificate that authorizes the neigh-
bor to use a range of vnodes. By assigning all neigh-
bors in a given class the same membership certificate,
a realm need only issue a number of certificates linear in
the number of neighbors (instead of quadratic).

A membership certificate has the same format as a
consent certificate, except that either the previous or next
hop public key field is all ones. The issuer field indicates
which vnodes the neighbor is authorized to use through
the use of a mask. When two membership certificates
are taken together, vnodes that are shared are permitted
to transit traffic between the two realms. For example,
a realm can issue a customer a membership certificate
permitting it to use vnodes 64–256, and issue a provider
a certificate permitting it to use vnodes 128–512. These
two certificates, taken together, are interpreted to mean
that traffic can flow from the customer to the provider
(and vice versa) on the common vnodes, namely vnodes
128–256.

18

1: function BUILDCERTIFICATES(Customers, Peers,
Providers)

2: Certificates = {}
3: for each c ∈ Customers do
4: if c is UP then
5: for each t ∈ Providers do
6: if t is UP then
7: cert = new Certificate(c, t)
8: Certificates += cert
9: end if

10: for each p ∈ Peers do
11: if p is UP then
12: cert = new Certificate(c, p)
13: Certificates += cert
14: end if
15: end if
16: return Certificates

Figure 10—Pseudocode that builds sIRP consent certificates
for each neighbor realm. This is run when a sIRP participant
starts up, and whenever a neighbor connects or disconnects.
The pseudocode uses only basic consent certificates, but mem-
bership certificates can be used as an optimization.

B.2.3 Pseudocode

Building certificates A sIRP participant in a realm (a
general-purpose server) is configured with a list of the
realm’s neighbors. Each neighbor is classified as a cus-
tomer, peer, or provider. The sIRP participant runs the
pseudocode in Figure 10 to create the consent certifi-
cates that make up sIRP update messages. BUILDCER-
TIFICATES is also run when a neighbor goes down or
comes back up. While the pseudocode uses only basic
consent certificates, membership certificates can be used
to reduce the number of certificates that must be created.

Sending updates A realm sends updates to its cus-
tomers at regular intervals. Updates are also sent when-
ever a neighbor disconnects or reconnects. This ensures
that customers are aware when a link is no longer avail-
able. Realms use the pseudocode in Figure 11 to send up-
dates to their customers. Each update includes all the cer-
tificates received from neighbors, along with the certifi-
cates the realm builds itself using BUILDCERTIFICATES.

B.3 Path construction under sIRP

In this section we discuss how senders identify paths
under sIRP. We begin with the requirements for a path
server, and then detail our approach.

B.3.1 Requirements

An ICING path server is a host’s primary method for find-
ing paths. A path sever takes some set of sub-paths from
a client, along with a destination realm, and should return
at least one path to that destination. A path server should
also ensure that the paths returned do not conflict with

1: function UPDATE(Customers, Peers, Providers)
2: Update = BuildCertificates(Customers, Peers,

Providers)
3: for each n ∈ (Customers ∪ Peers ∪ Providers) do
4: if n is UP then
5: u = n.mostRecentUpdate
6: Update += u
7: end if
8: for each c ∈ Customers do
9: if c is UP then

10: Send Update to c
11: end if

Figure 11—Pseudocode that sends sIRP update messages. Up-
dates are only sent to customers of a realm, but incorporate
certificates received from any neighbor.

other realms’ published policies, for instance, by using
available consent certificates. While not strictly neces-
sary, doing so will help prevent requests for PoCs from
being sent for paths that are not permitted by realms on
the path.

Path servers do not only find paths. They can also act
as name servers; if they do, path servers must maintain
mappings from qualified names to realms. Path servers
may also perform the role of consent servers for a realm,
returning both the path and some of the PoCs for the path.
Realms may choose to delegate their PoC issuing respon-
sibilities to a path server in another realm to speed up re-
quests for paths (such delegated PoCs are analogous to
DNS’s glue records). For this reason, path servers must
be made aware of the remote realm’s policies to ensure
that PoCs are only issued for paths that agree with the
realm’s policies.

B.3.2 Approach

In our implementation, path servers find paths and act
as name and consent servers. Path servers are configured
with mappings from names to realms, and receive topo-
logical data from sIRP. So that path servers can issue
PoCs, they are also configured with PoC keys.

Path server hierarchy Path servers do not necessarily
exist in every realm. Path servers are organized in a hi-
erarchy based on the names that they serve. As there are
root name servers in DNS today, so too are there root
path servers. Non-root path servers are configured with
paths to root servers, as well as PoC keys for the paths.

When a client wishes to contact a destination, the
client contacts its local path server, providing the desti-
nation’s qualified name. If the path server does not know
the domain of the destination, it instead returns a path
and PoCs that enable the client to reach a root path server.
The client then queries the root server, working its way
down the hierarchy. §B.3.3 details how the client navi-

19

1: function GETPATHTOHOSTBYNAME(name, partial -
paths)

2: ps = PS0
3: repeat
4: (fullpath, fullcerts, pocs, ps) = ps.GetPath(name,

partial paths)
5: until ps is null
6: return fullpath, fullcerts

Figure 12—Pseudocode for GETPATHTOHOSTBYNAME.
This function is called by a client in order to perform a name-
to-path lookup. The call ps.GetPath() is an remote procedure
invocation that uses the function SEND.

gates this hierarchy.

Client interface Clients interact with path servers using
a remote procedure call, GETPATH (described in detail
in §B.3.3). GETPATH returns paths to a host H; H is ei-
ther the requested destination or the next path server in
the hierarchy. The call also returns a subset of the PoCs
necessary to reach H.

Clients query a path server using the qualified name
of a destination. A path server consults its mapping from
names to realms to see if it knows the destination. If the
destination is known, the server attempts to find a path to
the destination’s realm. If, however, the path server ad-
ministers the domain but does not know the destination,
it returns a failure code to the client. If the server does
not administer the domain, it finds and returns a set of
paths (and PoCs) to a root server.

Our approach to path finding, taken from [52], requires
a path server to find an intersection between the set of
realms that the client can reach and those that the des-
tination can reach. A client therefore provides a path
server with a set of partial paths, along with matching
consent certificates (§B.2.2). The server then constructs
candidate paths using this information. The algorithm for
building candidate paths is given in Figure 13.

After constructing candidate paths, the path server
uses consent certificates to verify whether all realms
along the path will consent to it. If the path is not valid,
the path server simply discards it and continues to the
next candidate path. If the path is valid, however, the path
server can then proceed to issue PoCs for some of the
realms on the path. It returns to the client the path, PoCs,
and certificates.

Reaching the core We refer to the “core” of the Inter-
net as the set of strongly connected realms, similar to
Tier-1 ISPs. This definition is taken from [52]. We now
argue that for any two realms A and B, there is some
realm C in the core of the Internet that both A and B can
reach and that the process of path construction will iden-
tify this realm. sIRP ensures that each realm has a path
to the Internet core: every realm creates consent certifi-

1: function GETPATH(dest, cpartials)
2: if dest is known then

//cpartials are the partial paths supplied by the client
3: dpartials = GetPartialPaths(dest)
4: intersect = FindIntersection(cpaths, dpaths)
5: for each d, dcertificate ∈ dpartials[intersect] do
6: for each c, ccertificate ∈ cpartials[intersect] do
7: path = c‖d
8: certificates = ccertificate‖dcertificate

9: if VerifyPath(path, certificates) is True then
10: pocs = GetPoC (path, certificates)
11: Paths += (path, certificates, pocs)
12: end if
13: return Paths
14: else if dest is known then
15: return DestinationUnknown
16: else
17: return GetPath(root server, cpartials)
18: end if

Figure 13—Pseudocode builds paths from partial paths. An in-
tersection realm is found from set of partial paths provided by
the client and those from the destination. The two sets of par-
tial paths are combined; if the path verifies, it is returned to the
client with PoCs.

cates between its providers and its customers, and pushes
these certificates to customers. Their customers to do the
same, etc. As a result, every realm gets a chain of cer-
tificates that reach at least one realm in the core. Since
core realms connect to each other (by assumption) there
is such a realm C. Meanwhile, a path server is guaranteed
to identify this realm because it examines all legitimate
paths from sender to destination.

B.3.3 Pseudocode

Navigating the path server hierarchy A client uses
GETPATHTOHOSTBYNAME to query path servers. The
pseudocode for the function is shown in Figure 12. A
client uses the remote procedure call GETPATH on a lo-
cal path server, querying on the qualified name of the
host. The path server either returns paths and PoCs to the
destination, or paths and PoCs to a path server that may
know the mapping. The client queries each successive
path server until a path to the destination is returned.

Path building The pseudocode for the remote proce-
dure call GETPATH is shown in Figure 13. GETPATH
finds a realm that both the client and the destination can
reach, and constructs a path by concatenating both paths
to the common realm. The path server then verifies that
the path is valid by using consent certificates in the par-
tial path data structures. If the path is valid, the path
server returns the path, the certificates that accompany
the path, and PoCs for some of the realms on the path.

20

B.4 Extensions

sIRP implements a single simple forwarding policy for
all realms. In this section we describe how consent cer-
tificates can express more complex policies.

Path filters A path filter can be added to a consent cer-
tificate in order to restrict the use of a consent certifi-
cate to paths of a specific form. Using a filter allows a
realm to express policies that concern the entire end-to-
end path. A path filter field of a consent certificate is a
regular expression: it is made up of public keys and wild
cards (such as ∗). If a path does not match the filter, the
consent certificate may not be used to obtain a PoC for
the path.

Required vnodes Realms may want to express policies
that involves realms that are not on the path the packet
takes. For example, a research center’s ISP may want to
restrict traffic to that coming from universities and ma-
chines that a university “vouches for.” In order to ac-
complish this, a realm R can require a client to provide
a membership certificate for a different realm S. R adds
the pair (S, v), where v is a vnode, to its own consent cer-
tificates’ required vnode field. Unless this consent cer-
tificate is accompanied by a membership certificate that
entitles a realm on the path to use the pair (S, v), R will
not issue a PoC for the path.

B.5 Other approaches

At the end of §4, we briefly mentioned alternatives to
sIRP. Here we go into slightly more detail.

ICING-BGP-AIP ICING permits a routing and path con-
struction protocol that is equivalent to BGP in terms of
policies expressed and policy privacy but, as a bonus,
binds the data plane to the control plane. We now cover
the high-level approach, first describing topology propa-
gation, then path selection, and then enforcement.

For topology propagation (and implicit route selec-
tion), realms run BGP between themselves, signing their
messages (as in [5]); these signed messages are equiva-
lent to consent certificates. While scalability of routing
might seem to be a concern because there are no pre-
fixes to aggregate, the authors of [5] show that running
BGP on a flat namespace of AS identifiers is feasible.
One subtlety under ICING is that a realm, in the general
cause, uses a separate vnode for each (prev hop, path -
suffix) pair and discloses the PoC key for that vnode in
the BGP advertisement.

The local path server in a realm is a BGP participant
and, for every destination realm, stores the (realm,vnode)
sequence needed to reach that destination, along with the
disclosed PoC keys. Observe that the state required in
commodity path servers is only a linear factor more than
AIP [5] requires in routers: under AIP, each router stores

a map from all destination realms to next hops. And, AIP
has already shown that this state is feasible in routers, so
a linear factor more should not be overly burdensome in
commodity servers.

Path selection works as follows. When the sender
makes a request for a destination, the local path server
identifies the needed AS path and uses the disclosed PoC
keys to mint the PoCs needed to use the path. Observe
that this approach upholds the fifth mechanism principle:
in using BGP’s policies, ICING does not make clients or
intermediate realms pay for PoC retrieval and other con-
trol plane costs.

We now cover enforcement. Under this scheme, a
realm’s policies consist of bindings between previous
hops and path suffixes (i.e., an adversarial sender should
not be able to use a given realm for arbitrary transit be-
tween arbitrary neighbors). Because the path is manifest
in the packet, and because the packet is bound to the path,
an adversarial sender cannot force a realm to violate its
own policies—even though a realm’s PoC keys are pub-
licly known. Moreover, because a realm, in the general
case, gives each binding a separate vnode, the realm can
give different classes of service to each binding. An ad-
versarial sender cannot cheat this process by using the
wrong vnode to transit the provider because the provider
knows which vnodes connect which pairs of neighbors.

ICING-Pathlets Using a similar approach to the one
above, ICING can provide the equivalent of Pathlet rout-
ing [23]: realms embed pathlets in consent certificates.
Indeed, ICING borrowed vnodes from Pathlet routing in
the first place, so ICING can naturally express the policies
that Pathlet routing can. The arguments about the fifth
mechanism principle and enforcement are similar to the
approach given just above, and to avoid further tedium,
we omit them.

21

	1 Introduction
	1.1 The nature of policy
	1.2 The nature of mechanism

	2 Overview of icing
	3 Detailed design of the data plane
	3.1 Problem statement
	3.2 Response: icing's core data plane protocol
	3.3 Other requirements
	3.4 Attacks and limitations

	4 Control plane
	5 Implementation
	6 Evaluation
	6.1 Setup and parameters
	6.2 Packet overhead
	6.3 icing forwarder
	6.4 Software performance
	6.5 Scaling
	6.5.1 Throughput and cost
	6.5.2 State

	7 Expressiveness
	8 Related work
	9 Discussion and summary
	A Implementation of PRF-96
	B Control plane details
	B.1 Client configuration
	B.2 sIRP
	B.2.1 Approach
	B.2.2 Data structures
	B.2.3 Pseudocode

	B.3 Path construction under sIRP
	B.3.1 Requirements
	B.3.2 Approach
	B.3.3 Pseudocode

	B.4 Extensions
	B.5 Other approaches

