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Abstract

We propose a new cryptographic technique, Acknowledg-
ment Compression, permitting senders of multicast data
to verify that all interested parties have either received
the data or lost network connectivity. Joining the system
and acknowledging messages both require bandwidth and
computation logarithmic in the size of a multicast group.
Thus, the technique is well-suited to large-scale, peer-to-
peer multicast groups in which neither the source nor any
single peer wishes to download a complete list of partic-
ipants. In the event that a high percentage of nodes are
malicious, a message may fail to verify. However, in such
cases the source learns the real network address of a num-
ber of malicious nodes.

1 Introduction

Peer-to-peer (P2P) multicast systems are a promising
technology for inexpensively distributing information to
large numbers of nodes. Traditional, centralized distri-
bution schemes consume prohibitive amounts bandwidth,
transmiting data repeatedly from a handful of sources.
In contrast, P2P schemes can exploit the high aggregate
bandwidth of all peers to disseminate data without requir-
ing any particularly high-bandwidth nodes. Indeed, sev-
eral P2P multicast systems have already been built, based
on trees [4], forests [5], meshes [8], and other topologies.

Unfortunately, current P2P multicast schemes provide
no way to confirm the reliable delivery of information. Yet
for many applications, a data source might like to know if
all interested parties have received messages. For exam-
ple, a publisher might wish to confirm the receipt of a mul-
ticast invalidation for widely-cached popular data before
considering a modification operation complete. Alterna-
tively, the maintainers of an operating system distribution
might like to know that everyone who wants security-
critical updates has received the latest one.

In the P2P setting, multicast message acknowledgment
is complicated by the open nature of the systems. Not
only might many of the nodes in a multicast group be ma-
licious, but the source of a message has no way of even
knowing precisely who wants to receive the data. In large-
scale P2P systems, even just transmitting a complete list
of all nodes in a multicast group might consume unde-
sirable amounts of bandwidth. Fortunately, it is reason-
able to assume malicious nodes cannot subvert the routing
structure of the Internet itself. Thus, particularly given the
number and diversity of participants that P2P systems are
designed for, a good node is likely to be able to communi-
cate with almost any other honest node given that node’s
network address.

In this paper, we propose a new cryptographic mech-
anism, Acknowledgment Compression, that enables con-
firmation of messages delivered to large numbers of par-
ticipants in an open network. Using this new primitive,
a node that joins a multicast group receives a signed re-
ceipt from the data source acknowledging its entry into
the system. For efficiency, arbitrarily many such join op-
erations can be aggregated; no matter how many people
join, the maximum computation and bandwidth required
at any node is logarithmic in the total size of the multi-
cast group. In particular, a join receipt does not explicitly
name each new node, as no single node may even wish
to consume the bandwidth necessary to download such a
list.

Once a node has joined the system, it must acknowl-
edge any messages sent to the multicast group. When a
node fails to produce an acknowledgment, the multicast
source can likely uncover its network address and contact
that node directly, or else delegate the task—for instance
to a probabilistically chosen subset of another part of a
multicast tree. In an unlucky case, it may be impossible
to recover the address of an unreachable participant, but
then the multicast source will learn the network address
of malicious or faulty nodes who are blocking proper op-
eration of the system.



2 Our Scheme

In this section, we define a model for Acknowledge-
ment Compression, and present an efficient instantiation
based on the cryptographic properties of special algebraic
groups. Our scheme provides cryptographic proof of mes-
sage deliver at the cost of consuming a small (logarithmic
in the number of users in the system) amount of storage,
computing time, and upstream/downstream bandwidth at
each node.

2.1 The Model

An Acknowledgment Compression scheme comprises
four protocols—Init, Join, Leave and Collect—with the
following operational semantics. The content provider (or
source) uses the Init protocol to carry out an initialization
phase, at the end of which a public key for a secure digi-
tal signature scheme is produced and made widely avail-
able as a public parameter of the just-created multicast
group. After the initial setup, the system grows by al-
lowing batches of multiple user additions at discrete time
instants, handled by the Join protocol. Normally, users
would leave gracefully by invoking the Leave protocol,
but some robustness mechanism is provided to recover
from unanticipated node departures (or crashes). The fun-
damental operation of our scheme is the Collect protocol,
which allows the source to specify a payload message m

(e.g., an acknowledgment for the last multicast message)
and to obtain a compact proof that every unfailed user in
the group saw and endorsed the message m. As a side-
effect, Collect also purges the system of failed users.

2.2 A Cryptographic Construction

This Section presents a specific construction within the
framework of Section 2.1, based on cryptographic groups
known as Gap Diffie-Hellman (GDH) groups. We address
the related cryptographic literature in Section 4. Briefly, a
GDH group G = 〈g〉 is an algebraic group of prime order
q for which no efficient algorithm can compute gab for
random ga, gb ∈ G, but such that there exists an efficient
algorithm D(ga, gb, h) to decide whether h = gab.

Digital signatures can be obtained from such groups as
follows. A user secret key is a random value x ∈ Zq; the
corresponding public key is y ← gx. The signature on
a message m is computed as σ ← H(m)x, where H is
some cryptographic hash function (e.g., SHA-1). The va-
lidity of a putative signature σ on a message m under the
public key y is tested by checking that D(y,H(m), σ) =
1. The key property of this signature scheme that we
will exploit in our construction is that the product of

two signatures of the same message m under two dif-
ferent public keys y1, y2 yields a signature of m under
the combined public key y ← y1y2 = g(x1+x2), since
H(m)x1H(m)x2 = H(m)(x1+x2).

We now describe an Acknowledgment Compression
scheme for the case that nodes don’t crash abruptly; in
Section 2.3 we discuss how to make the construction ro-
bust against node failures.

For the sake of clarity, we detail the case in which the
communication happens via an (almost) balanced mul-
ticast tree with bounded maximum branching factor k

(which most P2P multicast schemes strive to achieve any-
way); however, our techniques can easily be adapted
to the case of multiple multicast trees [5, 9], or other
application-level multicast schemes and information dis-
persal algorithms.

Notation. In describing the protocols, we will make use
of the following notation. 1G denotes the identity element
in G. For a node i, let yi denote its public key, Loci denote
its location (e.g, its network address), and Ti denote the
subtree rooted at i. We will refer to the quantity:

Yi
def
=

∏

j∈Ti

yj

as the combined public key for the subtree Ti. Further-
more, we will denote i’s children with i1, . . . , ik, and i’s
parent with i1; more generally, let id denote node i’s dth

ancestor—i.e., the node sitting d levels above i in the tree.
Many of the quantities associated with the system (most
notably, the combined public key Yi associated with each
subtree Ti) evolve during the lifetime of the system as a
consequence of members joining and leaving the multi-
cast tree. To distinguish between old and new values, we
will use a prime notation for old values e.g., Y ′

i refers to
the value of the combined public key for Ti before the user
additions of the current execution of Join.

The Init protocol. Init starts by choosing a cryptographic
hash function H and a GDH group G = 〈g〉, along with a
secret key/public key pair (xs, ys ← gxs) for the source.
It then initializes a variable Ys ← ys, which will al-
ways hold the value of the combined public key Ys for the
whole multicast tree, Ts. This will be guaranteed by the
Join and Leave protocols, which will update Ys in such a
way that the source, as well as every user of the system,
can verify that the new value of Ys is indeed the product
of the public keys of all the users in the multicast tree.

The Collect protocol. Before detailing how the Join and
Leave protocols each manage to fulfill their pledge, we
show how, assuming that Ys actually embodies the pub-
lic keys of all users in the system, the Collect protocol
can produce a compressed acknowledgment for a payload
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message m specified by the source.1 First, the source pre-
pares and signs a collect request message:

CollectReq
def
= {“CollectReq”,m}

and sends this signature to all its children. Internal nodes
forward such signature to their children; when the signed
CollectReq message gets to a leaf j, node j verifies the
source’s signature, signs the payload message m as σj ←
H(m)xj , and replies to its parent with a collect message:

CollectMsgj

def
= {“CollectMsg”,m, σj}.

Upon receiving a reply from each of its k children
i1, . . . , ik, an internal node i combines its signature
σi ← H(m)xi with the multi-signatures Σi1 , . . . ,Σik

contributed by its children as:

Σi ← σi ·
k∏

l=1

Σil

and then it replies to its parent with the message:

CollectMsg i

def
= {“CollectMsg”,m,Σi}.

Eventually, the source will get a collect message from
each of its children. After combining their signatures
with its own, the source obtains what should be a multi-
signature Σs on the message m, bearing the endorsement
of each user in the system. To check this, the source tests
whether Σs verifies correctly as a signature of m under
the current combined public key Ys, at which point the
Collect operation terminates. Since, under standard cryp-
tographic assumptions [1], no adversary can forge a multi-
signature for a fresh message m, the source can infer that
all the users whose public keys have been included in Ys

must have signed m. Finally, by the correctness of the
Join protocol, this guarantees that each user in the sys-
tem endorses the message m, as required of the Collect

protocol.
The Join protocol. We now describe the details of the
Join protocol in terms of a distributed computation carried
out by the source together with all the (unfailed) nodes in
the multicast tree. Figure 1 defines the format of the mes-
sages that will be exchanged during the protocol, as well
as the state information maintained at each node, which
requires O(k + logk n) space for a system with n users,
assuming a (roughly) balanced multicast tree with fan-out
factor at most k at each node.

The protocol starts with the source executing the dis-
tributed algorithm REPORTJOINS described in Figure 2.
REPORTJOINS initiates a post-order traversal of the mul-
ticast tree that gathers information about user additions
since the last execution of Join.

1For security, the payload message m should be different across all
executions of Collect; it is up to the application to provide such a guar-
antee, for instance by including a sequence number in each message.

Messages exchanged in the Join protocol

CertReq i

def
= {“CertReq”, Y ′

i , Yi,Loci,Loci1}

Cert i
def
= {CertReq i}(Yi)

−1

Ci,j
def
= {CertReq i}(Yj)

−1 // j descendent of i

ci,j
def
= {CertReq i}(yj)

−1 // j descendent of i

State information stored at node i

Certi :: current self-certificate for Ti

Cert′i :: previous self-certificate for Ti

for each ancestor id:
yid :: public key yid of node id

Yid :: current value of combined public key Yid

for each child il:
Certil

:: current self-certificate for Til

Cert′il
:: previous self-certificate for Til

Figure 1: Join protocol—Messages exchanged during the
protocol and state information for node i.

The actual computation begins once the recursion has
reached the leaves of the multicast tree. Pre-existing
leaves simply report that they don’t have any change,
whereas a newcomer j finalizes its ingress into the system
by returning to its parent a signed message containing its
public key yj and its location information Locj .

An internal node i whose children have all reported no
changes reports to its parent that it has no changes. Other-
wise, if at least one child il has reported changes (meaning
that some user(s) just joined the subtree Til

), then i must
update the combined public key Yi to reflect the presence
of the newcomers in the subtree Ti, as nodes in Til

belong
to Ti, too. In order to report such a change to its par-
ent, node i must construct a self-certificate Cert i, crypto-
graphically justifying the evolution of Yi.

To obtain a self-certificate, node i has to get the sig-
nature on a certificate request CertReq i (cfr. Figure 1)
from all its descendents—a self-certificate for a subtree
is only valid if all nodes in that subtree endorse it. To
achieve this goal, i puts its signature on CertReq i, and in-
vokes the SIGNCERT distributed algorithm (described in
Figure 2), which recursively pushes the request down to
all descendents.

Node i’s descendents, however, do not blindly sign
whichever message they get to see—they need to be
convinced of the legitimacy of the certificate request
CertReq i. For this reason, node i attaches two self-
certificates for each child il who has reported changes:
a cached version Cert ′il

from the previous execution of
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i.REPORTJOINS() j.SIGNCERT(i, ci,i, Ai1 , . . . , Aik
)

1. if i is a pre-exisiting leaf return ⊥ 1. CheckCerts(Ai1 , . . . ,Aik
)

2. else if i is a new leaf then 2. look up i among j’s ancestors; let i = jd

3. Cert′i ← 1G 3. verify the signature on ci,i

4. Certi ← ci,i 4. check that ci,i is consistent with Ai1 , . . . , Aik

5. return Certi 5. update Yjd (= Yi) according to Ai1 , . . . , Aik

6. else 6. if i is a leaf then
7. for each child il of i (l = 1, . . . , k) 7. Ci,j ← ci,j

8. Cert′il
← Certil

8. else
9. Certil

← il.REPORTJOINS() 9. for each child jl of j (l = 1, . . . , k)
10. Ail

← 〈Cert′il
, Certil

〉 10. Ci,jl
← jl.SIGNCERT(i, ci,i,Ai1 , . . . ,Aik

)
11. if (∀l = 1, . . . , k)[Certil

= ⊥] return ⊥ 11. Ci,j ← ci,j · Ci,j1 · . . . · Ci,jk

12. CheckCerts(Ai1 , . . . ,Aik
) 12. return Ci,j

13. Y′i ← Yi CheckCerts(Ai1 , . . . ,Aik
)

14. update Yi according to Ai1 , . . . , Aik
1. for l = 1, . . . , k

15. Cert′i ← Certi 2. parse Ail
as 〈Cert′il

, Certil
〉

16. for each child il of i (l = 1, . . . , k) 3. if Certil
6= ⊥ then

17. Ci,il
← il.SIGNCERT(i, ci,i,Ai1 , . . . ,Aik

) 4. verify the signatures on Cert′il
and Certil

18. Certi ← ci,i · Ci,i1 · . . . · Ci,ik
5. if new PK in Cert′il

6= old PK in Certil
then

19. return Certi 6. throw InvalidCertsException

Figure 2: Join protocol—Pseudo-code for the distributed algorithms REPORTJOINS (as run by node i) and SIGNCERT

(as run by node j, a descendent of i). Exception handlers for consistency check failures are not shown.

Join, and the current version Cert il
that il just provided.

Given such accompanying documentation, each de-
scendent j of node i can test the legitimacy of the certifi-
cate request sent by node i (cfr. the CheckCerts() proce-
dure, Figure 2); after this check, j affixes its signature on
CertReq i and forwards the execution of the SIGNCERT

invocation down to its own children j1, . . . , jk.
Upon hearing back from its children, j will obtain the

partial signatures Ci,j1 , . . . , Ci,jk
relative to their subtrees

Tj1 , . . . , Tjk
. Then, j will piece all the parts together as:

Ci,j = ci,j ·
k∏

l=1

Ci,jl

and will reply to its parent with the partial signature Ci,j

on CertReq i relative to subtree Tj .
Eventually, node i will obtain partial signatures from

all its children, which will enable i to compute the ac-
tual self-certificate Cert i. At this point, node i will have
enough information to justify the evolution of the com-
bined public key for subtree Ti from its old value Y ′

i to
the new value Yi, thus being able to finally complete its
part in the REPORTJOINS by sending Cert i to its parent.

As the recursion of REPORTJOINS climbs up the tree,
it will eventually reach the source. Then, as part of the
SIGNCERT call invoked by the source, every node in the
tree will get the source’s signature on the message:

CertReqs

def
= {“CertReq”, Y ′

s , Ys,Locs,Locs}.

This, together with all the consistency checks per-
formed during each step of the protocol, guarantees each
new user that its public key has been included into the
new value Ys of the system’s combined public key, and
each old user that its public key has not been factored out.
The Leave protocol. The Leave protocol develops simi-
larly to the Join protocol. In particular, a distributed algo-
rithm REPORTLEAVES (akin to the distributed algorithm
REPORTJOINS from Figure 2; not shown) traverses the
multicast tree in post-order, collecting signed leave mes-
sages of the form:

{“LeaveMsg”, yj , 1G,Locj ,Locj1}(yj)
−1

for each departing user j.
Such messages are then forwarded up the tree, and in

the process, the combined public key of each subtree that
contained a departing node is updated, and the neces-
sary self-certificates are constructed to provide evidence
supporting the evolution of the affected combined public
keys. We omit the details.

2.3 Dealing with Unanticipated Failures

During normal operation, the users of the system are of-
ten required to sign messages. Due to the cryptographic
consistency checks performed by all the other users, a
malicious user j cannot deviate from the protocol ex-
cept by refusing to cooperate, thus preventing its ances-
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tors from successfully completing subsequent Collects or
Joins. However, a user j that crashes without executing
the Leave protocol would cause its parent, node j1, to ex-
perience a similar refusal, which creates a troublesome
ambiguity.

Simply allowing node j1 to drop its non-cooperating
child, as is often done in multicast systems, would under-
mine the main goal of Acknowledgement Compression.
Such a policy, in fact, would expose the system to a pos-
sible abuse, based on the difficulty of distinguishing the
case that node j didn’t want to release its signature from
the case that j’s parent, node j1, pretended to have been
unable to obtain a signature from j to make j look bad.

Instead, we deal with this problem by requiring j1 to
produce j’s self-certificate, which contains j’s network
address. Thus, either j1 can fail to cooperate and be
ejected from the system, or else other nodes can obtain
j’s address and attempt to deliver the message to j. In
this way, a list of unreachable network addresses can be
compiled and forwarded up the tree. If none of the an-
cestors of these unreachable nodes can reach them to ob-
tain the missing component of the acknowledgment, the
source will obtain the list of network addresses.

3 Discussion

One limitation of Acknowledgment Compression is the
bandwidth required to deal with crashes. As described in
the previous section, the source node receives a list of net-
work addresses of all nodes that have failed to acknowl-
edge a message, so as either to deliver the message di-
rectly or to confirm each node’s unreachability. Though
the list could conceivably be partitioned between a small
set of well-known, trusted nodes, if the churn is too high,
it may simply require too much bandwidth for each trusted
node to receive its portion of the list. Thus, the technique
may be ill-suited to networks in which many nodes could
exit ungracefully, unless the lifetime of a multicast group
is considerably less than the half-life of nodes. For infras-
tructure nodes, however, such as news servers and routers,
it seems reasonable to expect long uptimes and graceful
exits.

There are two possible approaches to handling large
numbers of crashed nodes, though the problem is future
work—we do not have a complete solution along the lines
of either approach. First, there may be ways of obtaining
large numbers of effectively trusted nodes, so as to par-
tition the work of downloading crashed nodes’ locations
and probing them. This might, for instance, be achieved
through some PGP-like web-of-trust overlay. Second,
verification could be probabilistically farmed out to large-

enough subgroups of multicast peers that at least one of
them is likely to be honest. Subgroups can confirm the
results of their probes by supplying a product of missing
acknowledgment components (for nodes they managed to
deliver the message to), plus a compressed acknowledg-
ment on the product of public keys of unreachable nodes.

A final, related issue is that while Acknowledgment
Compression confirms reliable multicast, it is not in itself
a multicast protocol. Much work exists on fault-resilient
P2P infrastructures, but of course malicious nodes may
still succeed in partitioning or otherwise subverting the
P2P system, rendering honest nodes that are routable at
the network layer unreachable in the overlay network.
Acknowledgment Compression cannot prevent such at-
tacks, but at least it exposes the network address of ma-
licious nodes who can then potentially be excluded from
the system. The reason is that any node unable to pro-
duce some necessary component of an acknowledgment
signature must instead be able to show a signed CertReq

containing the Location (e.g., network address) of the
missing contact that is its child node. To avoid report-
ing the network address of an isolated honest node, all
nodes through which the missing contact is supposed to
be routable must fail to return the CertReq certificate,
thereby exposing themselves as malicious or unreliable.

4 Related Work

Recently, there has been much promising work on P2P
multicast and data distribution, which can be combined
with Acknowledgment Compression to obtain confirmed
message delivery. Space limitations preclude an enumer-
ation of P2P multicast projects.

GDH groups have been the focus of much crypto-
graphic research [6, 7, 2]. The basic GDH signature
scheme we use for a single node signature was proposed
by Boneh et al. [3]. The idea of combining such sig-
natures and public keys by multiplication was used by
Boldyreva [1] to construct multi-signatures—a variation
of digital signatures in which a group of users, each hold-
ing a unique signing key, produce signed documents that
can later be verified to bear the endorsement of every
signer in the group.

5 Summary

Acknowledgment Compression is a new cryptographic
primitive useful for verifying message delivery in open,
P2P multicast systems. Acknowledgment Compression
allows senders to learn the network address of nodes that
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fail to acknowledge messages, yet without ever having to
download a complete list of all participants. We propose
an instantiation based on Gap Diffie-Hellman groups, and
briefly discuss some usage issues for the technique.
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