SPEEDEX
A Scalable, Parallelizable, and Economically Efficient Decentralized Exchange

Geoff Ramseyer, David Mazières, Ashish Goel

Stanford University
Digital Currency Interoperability

- Digital currencies are on the horizon
- Interoperability will be a crucial challenge
 - Anyone should be able to pay anyone seamlessly, regardless of currencies
- Need efficient infrastructure to trade currencies
- Shared infrastructure should be jointly operated, not centrally controlled
 - Replicated state machine with decentralized consensus layer

Is blockchain a good basis for an asset exchange?
Requirements for an Ideal Decentralized Exchange

Computational Performance

- **No! Not if you look at existing blockchains**
 - Dozens of transactions per second

Current Blockchains on Real Traffic
(Source: realtps.net)
Computational Performance

- **No! Not if you look at existing blockchains**
 - Dozens of transactions per second
- **State of the art systems not sufficiently scalable**
 - Even just for payments

Block-STM [GSXDLM22] on a payments-only workload
Requirements for an Ideal Decentralized Exchange

Computational Performance

- **No! Not if you look at existing blockchains**
 - Dozens of transactions per second
- **State of the art systems not sufficiently scalable**
 - Even just for payments
- **SPEEDEX gets linear scalability**
- **Exchange is a much harder problem than just payments**

SPEEDEX on a *payments-only* workload
Requirements for an Ideal Decentralized Exchange

Computational Performance

Economic Performance

- Efficient Liquidity Usage
- Fair, Open Access

SPEEDEX on a payments-only workload
Every offer modifies the orderbook
Every trade can happen at a different price
Decentralized Exchanges Today
Bad in Both Categories

Computational Performance

- Read-Modify-Update on shared data structures
- Worst-case for Optimistic Concurrency Control

Economic Performance

- Front-Running
 - High-Frequency Trading
 - Sell @ $9
- Suboptimal Liquidity, Cyclic Arbitrage
 - (next slide)
Decentralized Exchanges Today
Bad in Both Categories

Computational Performance

- Read-Modify-Update on shared data structures
- Worst-case for Optimistic Concurrency Control

Economic Performance

- Front-Running
 - High-Frequency Trading

- Suboptimal Liquidity, Cyclic Arbitrage
 - (next slide)
Suboptimal Liquidity and Cyclic Arbitrage
Suboptimal Liquidity and Cyclic Arbitrage
SPEEDEX: Batch Trading

- Input: Block of Offers

1. Compute Valuations
2. Trade with SPEEDEX at Valuation Quotients
 - Meaningless units
 - No pairwise matching!

- “Clearing” if no surplus or debt

Trade 10 USD for EUR
\[
\text{min } \frac{9 \text{ EUR}}{10 \text{ USD}}
\]

Trade 9 EUR for JPY
\[
\text{min } \frac{140 \text{ JPY}}{\text{EUR}}
\]

Trade 1350 JPY for USD
\[
\text{min } \frac{1 \text{ USD}}{135 \text{ JPY}}
\]

Trade 10000 USD for EUR
\[
\text{min } \frac{1000 \text{ EUR}}{\text{USD}}
\]

Theorem (Arrow and Debreu, 1954)

There always exists a unique* set of valuations \(\{p_A\} \) that clears the market.
SPEEDEX: Batch Trading

- **Input:** Block of Offers
- **1. Compute Valuations**
- **2. Trade with SPEEDEX at Valuation Quotients**
 - Meaningless units
 - No pairwise matching!
- “Clearing” if no surplus or debt

Theorem (Arrow and Debreu, 1954)

There always exists a unique* set of valuations \(\{p_A\} \) that clears the market.

\[
\begin{align*}
\text{Trade 10 USD for EUR} & \quad \text{min} \quad 9 \frac{EUR}{USD} \\
\text{Trade 9 EUR for JPY} & \quad \text{min} \quad 140 \frac{JPY}{EUR} \\
\text{Trade 1350 JPY for USD} & \quad \text{min} \quad \frac{1}{135} \frac{USD}{JPY} \\
\text{Trade 10000 USD for EUR} & \quad \text{min} \quad 1000 \frac{EUR}{USD}
\end{align*}
\]
Why Uniform Clearing Valuations?

Computational Performance

- **Commutative Trades**
 - Almost entirely hardware atomics

- **Linear Scalability**
 - Scalable Commutativity Rule [CKZMK13]

Economic Performance

- **No In-Batch Front-Running**
 - No need to hyperoptimize limit prices and network latency
 - Everyone gets the same rates

- **No Cyclic Arbitrage / Optimal Liquidity Usage**
 - No need to specify intermediate assets
Prior Work

- 2-Asset Batch Trading
 - Response to High-Frequency Trading [BCS15]
 - NYSE Opening/Closing Auction
- Many-Asset Batch Trading [CoWSwap]
 - Unscalable, Low Throughput

Our Contribution

1. Compute Valuations at Scale
2. Feasibility of Many-Asset Batch Trading
3. High-Performance System Design
Equilibria Computation

- **2-asset case**
 - Binary search

- **Many-asset case**
 - Find simultaneous intersection point of many high-dimensional manifolds over a high-dimensional simplex

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Clearing Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>18</td>
</tr>
</tbody>
</table>

\[p_A/p_B \]
Fast Equilibria Computation
Use Market Structure to Simplify Problem

All Prior Known Algorithms
- **Runtime** \(\text{poly}(\#\text{offers}) \)

Our Design
- **Iterative (based on Tâtonnement [CMV05])**
 - Economics 101 Price Adjustment
- **Iteration runtime** \(O(\#\text{assets}^2 \lg(\#\text{offers})) \)
 - Incrementally sort offers by limit price

Empirical Results
\(\sim 100 \mu s \) per iteration, \(\sim 1000 \) iterations
Approximate Equilibria Computation
Two Types of Acceptable Approximation

- Most literature algorithms are approximate
 - Too many bits to even write down exact equilibria

- These approximations will do nasty things!
 - × Mint money
 - × Invalid trades
 - × ...

$$\frac{p_A}{p_B}$$

Quantity

Clearing Price

p_A/p_B
Approximate Equilibria Computation
Two Types of Acceptable Approximation

- Smooth limit price thresholds
 - Reduces iterative oscillation
- Trade partially if limit price is close to (and below) market rate
 - Experiments use $2^{-10} \approx 0.1\%$
Approximate Equilibria Computation
Two Types of Acceptable Approximation

- **Charge small, fixed fee**
 - Relaxes “market clearing” to allow surplus, not debt
 - Experiments use $2^{-15} \approx 0.003\%$

- **Range of approximate clearing prices**
 - For computational efficiency, rather than for profit

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Range of Clearing Prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_A/p_B</td>
<td>14 / 18</td>
</tr>
</tbody>
</table>
Accurate Equilibria Computation

- Linear program turns prices into trades
 - Efficient to solve (using market structure decomposition)
- Guarantees approximations take acceptable forms

\[
\begin{align*}
\text{max} & \quad \sum_{A,B} p_A x_{AB} \\
\text{s.t.} & \quad p_A L_{AB}(\frac{p_A}{p_B}) \leq p_A x_{AB} \leq p_A U_{AB}(\frac{p_A}{p_B}) \quad \forall A, B \\
& \quad p_A \sum_{B \in [N]} x_{AB} \geq (1 - \text{fee}) \sum_{B \in [N]} p_B x_{BA} \quad \forall A
\end{align*}
\]
Accurate Equilibria Computation

- Linear program turns prices into trades
 - Efficient to solve (using market structure decomposition)
- Guarantees approximations take acceptable forms

\[
\begin{align*}
\max & \quad \text{Trade Volume} \\
\text{s.t.} & \quad \text{Correct (Smoothed) Offer Execution} \\
& \quad \text{Assets Conserved (after fees)}
\end{align*}
\]
Overall Performance

- 48-CPU replicas
- Linear Scalability
 - Contention with background work (logging)
- Scalability enables adding features but maintaining throughput
 - 50 assets, 10M accounts, Hashing, Logging,...
- Log Dependence on \#offers
• Self-contained SPEEDEX
 - https://github.com/scslab/speedex
 - \(\sim 30,000\) LOC C++

• Prototyped in Stellar (Layer-1 Blockchain)
 - https://github.com/gramseyer/stellar-core
 - Adds \(\sim 2000\) LOC C++ to Stellar
 - Commutative semantics, not parallel performance
 - This is the only piece that needs a “hard fork”
 ▶ Parallelization does not require coordinated upgrades
• Is blockchain a good basis for an asset exchange?
 - Not for traditional order matching

• Yes, if you solve more problems at the same time
 - Linear scalability via commutativity
 - Eliminate (a common type of) front-running, improve liquidity

• Scalability can require letting go of traditional semantics, and this can be a good thing in many other ways!

• SPEEDEX handles more than **200,000 trades/second** on 48-core commodity hardware, with 10s of millions of open offers

Thank You!