Midterm

- Median: 59.5, Mean: 57.3, Stdev: 26.2
Questions on Midterm

• Problem 1: See Andrea
• Problem 2: See Matt
• Problem 3: See Ali
• Problem 4: See Kiyoshi
• Problem 5: See Juan
• Problem 6: See Ali or Matt
• Problem 7: See Kiyoshi
• Problem 8: See David
Administrivia

• Recall we will have a resurrection final
 - As long as you took the midterm
 - Don’t panic if you didn’t do well on midterm
 - But make sure you understand all the answers
 - There may be questions on same topics on the final

• Final grade based on rank and thresholds
 - Rank based on Projects + max(Final, (Midterm + Final)/2)
 (Assuming you took the midterm)

• Reminder: Project 3 section tomorrow
 - 3:15pm Skilling
Memory and I/O buses

- CPU accesses physical memory over a bus
- Devices access memory over I/O bus with DMA
- Devices can appear to be a region of memory
Realistic PC architecture

- CPU
- CPU
- Advanced Programable Interrupt Controller bus
- Front-side bus
- North Bridge
- Main memory
- South Bridge
- I/O APIC
- PCI IRQs
- USB
- ISA bus

*Newest CPUs don’t have North Bridge memory controller integrated into CPU
What is memory?

- **SRAM – Static RAM**
 - Like two NOT gates circularly wired input-to-output
 - 4–6 transistors per bit, actively holds its value
 - Very fast, used to cache slower memory

- **DRAM – Dynamic RAM**
 - A capacitor + gate, holds charge to indicate bit value
 - 1 transistor per bit – extremely dense storage
 - Charge leaks—need slow comparator to decide if bit 1 or 0
 - Must re-write charge after reading, and periodically refresh

- **VRAM – “Video RAM”**
 - Dual ported, can write while someone else reads
What is I/O bus? E.g., PCI

[Diagram showing components connected to a PCI bus, such as monitor, processor, cache, memory, disk controllers, keyboard, expansion bus, and port interfaces.]
Communicating with a device

- Memory-mapped device registers
 - Certain physical addresses correspond to device registers
 - Load/store gets status/sends instructions – not real memory

- Device memory – device may have memory OS can write to directly on other side of I/O bus

- Special I/O instructions
 - Some CPUs (e.g., x86) have special I/O instructions
 - Like load & store, but asserts special I/O pin on CPU
 - OS can allow user-mode access to I/O ports with finer granularity than page

- DMA – place instructions to card in main memory
 - Typically then need to “poke” card by writing to register
 - Overlaps unrelated computation with moving data over (typically slower than memory) I/O bus
- Include list of buffer locations in main memory
- Card reads list then accesses buffers (w. DMA)
 - Descriptions sometimes allow for scatter/gather I/O
Example: Network Interface Card

- **Link interface talks to wire/fiber/antenna**
 - Typically does framing, link-layer CRC

- **FIFOs on card provide small amount of buffering**

- **Bus interface logic uses DMA to move packets to and from buffers in main memory**
Example: IDE disk read w. DMA

1. device driver is told to transfer disk data to buffer at address X
2. device driver tells disk controller to transfer C bytes from disk to buffer at address X

3. disk controller initiates DMA transfer
4. disk controller sends each byte to DMA controller
5. DMA controller transfers bytes to buffer X, increasing memory address and decreasing C until C = 0
6. when C = 0, DMA interrupts CPU to signal transfer completion
Driver architecture

• Device driver provides several entry points to kernel
 - Reset, ioctl, output, interrupt, read, write, strategy …

• How should driver synchronize with card?
 - E.g., Need to know when transmit buffers free or packets arrive
 - Need to know when disk request complete

• One approach: Polling
 - Sent a packet? Loop asking card when buffer is free
 - Waiting to receive? Keep asking card if it has packet
 - Disk I/O? Keep looping until disk ready bit set

• Disadvantages of polling?
Driver architecture

- Device driver provides several entry points to kernel
 - Reset, ioctl, output, interrupt, read, write, strategy …

- How should driver synchronize with card?
 - E.g., Need to know when transmit buffers free or packets arrive
 - Need to know when disk request complete

- One approach: *Polling*
 - Sent a packet? Loop asking card when buffer is free
 - Waiting to receive? Keep asking card if it has packet
 - Disk I/O? Keep looping until disk ready bit set

- Disadvantages of polling?
 - Can’t use CPU for anything else while polling
 - Or schedule poll in future and do something else, but then high latency to receive packet or process disk block
Interrupt driven devices

• Instead, ask card to interrupt CPU on events
 - Interrupt handler runs at high priority
 - Asks card what happened (xmit buffer free, new packet)
 - This is what most general-purpose OSes do

• Bad under high network packet arrival rate
 - Packets can arrive faster than OS can process them
 - Interrupts are very expensive (context switch)
 - Interrupt handlers have high priority
 - In worst case, can spend 100% of time in interrupt handler and never make any progress – receive livelock
 - Best: Adaptive switching between interrupts and polling

• Very good for disk requests

• Rest of today: Disks (network devices in 1.5 weeks)
Anatomy of a disk

[Next few slides based on Ruemmler]

- **Stack of magnetic platters**
 - Rotate together on a central spindle @3,600-15,000 RPM
 - Drive speed drifts slowly over time
 - Can’t predict rotational position after 100-200 revolutions

- **Disk arm assembly**
 - Arms rotate around pivot, all move together
 - Pivot offers some resistance to linear shocks
 - Arms contain disk heads–one for each recording surface
 - Heads read and write data to platters
Disk
Disk
Disk
Storage on a magnetic platter

- Platters divided into concentric *tracks*
- A stack of tracks of fixed radius is a *cylinder*
- Heads record and sense data along cylinders
 - Significant fractions of encoded stream for error correction
- Generally only one head active at a time
 - Disks usually have one set of read-write circuitry
 - Must worry about cross-talk between channels
 - Hard to keep multiple heads exactly aligned
Cylinders, tracks, & sectors

track t

spindle

sector s

cylinder c

platter

read-write head

arm

rotation

arm assembly
Disk positioning system

- Move head to specific track and keep it there
 - Resist physical shocks, imperfect tracks, etc.

- A *seek* consists of up to four phases:
 - *speedup*–accelerate arm to max speed or half way point
 - *coast*–at max speed (for long seeks)
 - *slowdown*–stops arm near destination
 - *settle*–adjusts head to actual desired track

- Very short seeks dominated by settle time (∼1 ms)
- Short (200-400 cyl.) seeks dominated by speedup
 - Accelerations of 40g
Seek details

- Head switches comparable to short seeks
 - May also require head adjustment
 - Settles take longer for writes than for reads – Why?

- Disk keeps table of pivot motor power
 - Maps seek distance to power and time
 - Disk interpolates over entries in table
 - Table set by periodic “thermal recalibration”
 - But, e.g., ~500 ms recalibration every ~25 min bad for AV

- “Average seek time” quoted can be many things
 - Time to seek 1/3 disk, 1/3 time to seek whole disk
Seek details

• Head switches comparable to short seeks
 - May also require head adjustment
 - Settles take longer for writes than for reads
 If read strays from track, catch error with checksum, retry
 If write strays, you’ve just clobbered some other track

• Disk keeps table of pivot motor power
 - Maps seek distance to power and time
 - Disk interpolates over entries in table
 - Table set by periodic “thermal recalibration”
 - But, e.g., ~500 ms recalibration every ~25 min bad for AV

• “Average seek time” quoted can be many things
 - Time to seek 1/3 disk, 1/3 time to seek whole disk
Sectors

• Disk interface presents linear array of *sectors*
 - Generally 512 bytes, written atomically (even if power failure)

• Disk maps logical sector #s to physical sectors
 - *Zoning*—puts more sectors on longer tracks
 - *Track skewing*—sector 0 pos. varies by track (why?)
 - *Sparing*—flawed sectors remapped elsewhere

• OS doesn’t know logical to physical sector mapping
 - Larger logical sector # difference means larger seek
 - Highly non-linear relationship (*and* depends on zone)
 - OS has no info on rotational positions
 - Can empirically build table to estimate times
Sectors

• **Disk interface presents linear array of sectors**
 - Generally 512 bytes, written atomically (even if power failure)

• **Disk maps logical sector #s to physical sectors**
 - *Zoning*—puts more sectors on longer tracks
 - *Track skewing*—sector 0 pos. varies by track (sequential access speed)
 - *Sparing*—flawed sectors remapped elsewhere

• **OS doesn’t know logical to physical sector mapping**
 - Larger logical sector # difference means larger seek
 - Highly non-linear relationship (*and* depends on zone)
 - OS has no info on rotational positions
 - Can empirically build table to estimate times
Disk interface

• Controls hardware, mediates access
• Computer, disk often connected by bus (e.g., SCSI)
 - Multiple devices may contend for bus
• Possible disk/interface features:
• Disconnect from bus during requests
• Command queuing: Give disk multiple requests
 - Disk can schedule them using rotational information
• Disk cache used for read-ahead
 - Otherwise, sequential reads would incur whole revolution
 - Cross track boundaries? Can’t stop a head-switch
• Some disks support write caching
 - But data not stable—not suitable for all requests
SCSI overview

• **SCSI domain** consists of devices and an SDS
 - Devices: host adapters & SCSI controllers
 - *Service Delivery Subsystem* connects devices—e.g., SCSI bus

• **SCSI-2 bus (SDS) connects up to 8 devices**
 - Controllers can have > 1 “logical units” (LUNs)
 - Typically, controller built into disk and 1 LUN/target, but “bridge controllers” can manage multiple physical devices

• **Each device can assume role of initiator or target**
 - Traditionally, host adapter was initiator, controller target
 - Now controllers act as initiators (e.g., COPY command)
 - Typical domain has 1 initiator, ≥ 1 targets
SCSI requests

- **A request** is a command from initiator to target
 - Once transmitted, target has control of bus
 - Target may disconnect from bus and later reconnect
 (very important for multiple targets or even multitasking)

- **Commands contain the following:**
 - *Task identifier*—initiator ID, target ID, LUN, tag
 - *Command descriptor block*—e.g., read 10 blocks at pos. N
 - Optional *task attribute*—SIMPLE, ORDERD, HEAD OF QUEUE
 - Optional: output/input buffer, sense data
 - *Status byte*—GOOD, CHECK CONDITION, INTERMEDIATE, ...
Executing SCSI commands

- Each LUN maintains a queue of *tasks*
 - Each task is DORMANT, BLOCKED, ENABLED, or ENDED
 - SIMPLE tasks are dormant until no ordered/head of queue
 - ORDERED tasks dormant until no HoQ/more recent ordered
 - HOQ tasks begin in enabled state

- **Task management commands available to initiator**
 - Abort/terminate task, Reset target, etc.

- **Linked commands**
 - Initiator can link commands, so no intervening tasks
 - E.g., could use to implement atomic read-modify-write
 - Intermediate commands return status byte INTERMEDIATE
SCSI exceptions and errors

- After error stop executing most SCSI commands
 - Target returns with CHECK CONDITION status
 - Initiator will eventually notice error
 - Must read specifics w. REQUEST SENSE

- Prevents unwanted commands from executing
 - E.g., initiator may not want to execute 2nd write if 1st fails

- Simplifies device implementation
 - Don’t need to remember more than one error condition

- Same mechanism used to notify of media changes
 - I.e., ejected tape, changed CD-ROM
Disk performance

- Placement & ordering of requests a huge issue
 - Sequential I/O much, much faster than random
 - Long seeks much slower than short ones
 - Power might fail any time, leaving inconsistent state

- Must be careful about order for crashes
 - More on this in next two lectures

- Try to achieve contiguous accesses where possible
 - E.g., make big chunks of individual files contiguous

- Try to order requests to minimize seek times
 - OS can only do this if it has a multiple requests to order
 - Requires disk I/O concurrency
 - High-performance apps try to maximize I/O concurrency

- Next: How to schedule concurrent requests
Scheduling: FCFS

- “First Come First Served”
 - Process disk requests in the order they are received

- Advantages

- Disadvantages
Scheduling: FCFS

• “First Come First Served”
 - Process disk requests in the order they are received

• Advantages
 - Easy to implement
 - Good fairness

• Disadvantages
 - Cannot exploit request locality
 - Increases average latency, decreasing throughput
FCFS example

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
Shortest positioning time first (SPTF)

- Shortest positioning time first (SPTF)
 - Always pick request with shortest seek time

- Advantages

- Disadvantages
Shortest positioning time first (SPTF)

- Shortest positioning time first (SPTF)
 - Always pick request with shortest seek time

- Advantages
 - Exploits locality of disk requests
 - Higher throughput

- Disadvantages
 - Starvation
 - Don’t always know what request will be fastest

- Improvement: Aged SPTF
 - Give older requests higher priority
 - Adjust “effective” seek time with weighting factor:
 \[T_{\text{eff}} = T_{\text{pos}} - W \cdot T_{\text{wait}} \]

- Also called Shortest Seek Time First (SSTF)
SPTF example

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
“Elevator” scheduling (SCAN)

• Sweep across disk, servicing all requests passed
 - Like SPTF, but next seek must be in same direction
 - Switch directions only if no further requests

• Advantages

• Disadvantages
“Elevator” scheduling (SCAN)

• Sweep across disk, servicing all requests passed
 - Like SPTF, but next seek must be in same direction
 - Switch directions only if no further requests

• Advantages
 - Takes advantage of locality
 - Bounded waiting

• Disadvantages
 - Cylinders in the middle get better service
 - Might miss locality SPTF could exploit

• CSCAN: Only sweep in one direction
 Very commonly used algorithm in Unix

• Also called LOOK/CLOOK in textbook
 - (Textbook uses [C]SCAN to mean scan entire disk uselessly)
CSCAN example

queue 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
VSCAN(r)

- **Continuum between SPTF and SCAN**
 - Like SPTF, but slightly changes “effective” positioning time
 - If request in same direction as previous seek: \(T_{\text{eff}} = T_{\text{pos}} \)
 - Otherwise: \(T_{\text{eff}} = T_{\text{pos}} + r \cdot T_{\text{max}} \)
 - when \(r = 0 \), get SPTF, when \(r = 1 \), get SCAN
 - E.g., \(r = 0.2 \) works well

- **Advantages and disadvantages**
 - Those of SPTF and SCAN, depending on how \(r \) is set

- See [Worthington](#) for description and evaluation of various disk scheduling algorithms
Flash memory

• Today, people increasingly using flash memory

• Completely solid state (no moving parts)
 - Remembers data by storing charge
 - Lower power consumption and heat
 - No mechanical seek times to worry about

• Limited # overwrites possible
 - Blocks wear out after 10,000 (MLC) – 100,000 (SLC) erases
 - Requires flash translation layer (FTL) to provide wear leveling, so repeated writes to logical block don’t wear out physical block
 - FTL can seriously impact performance
 - In particular, random writes very expensive [Birrell]

• Limited durability
 - Charge wears out over time
 - Turn off device for a year, you can easily lose data
Types of flash memory

- **NAND flash (most prevalent for storage)**
 - Higher density (most used for storage)
 - Faster erase and write
 - More errors internally, so need error correction

- **NOR flash**
 - Faster reads in smaller data units
 - Can execute code straight out of NOR flash
 - Significantly slower erases

- **Single-level cell (SLC) vs. Multi-level cell (MLC)**
 - MLC encodes multiple bits in voltage level
 - MLS slower to write than SLC
NAND Flash Overview

- Flash device has 2112-byte *pages*
 - 2048 bytes of data + 64 bytes metadata & ECC

- **Blocks contain 64 (SLC) or 128 (MLC) pages**

- Blocks divided into 2–4 *planes*
 - All planes contend for same package pins
 - But can access their blocks in parallel to overlap latencies

- **Can read one page at a time**
 - Takes 25 μs + time to get data off chip

- **Must erase whole block before programming**
 - Erase sets all bits to 1—very expensive (2 msec)
 - Programming pre-erased block requires moving data to internal buffer, then 200 (SLC)–800 (MLC) μs
Flash Characteristics [Caulfield]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SLC</th>
<th>MLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density Per Die (GB)</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Page Size (Bytes)</td>
<td>2048+32</td>
<td>2048+64</td>
</tr>
<tr>
<td>Block Size (Pages)</td>
<td>64</td>
<td>128</td>
</tr>
<tr>
<td>Read Latency (μs)</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Write Latency (μs)</td>
<td>200</td>
<td>800</td>
</tr>
<tr>
<td>Erase Latency (μs)</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>40MHz, 16-bit bus Read b/w (MB/s)</td>
<td>75.8</td>
<td>75.8</td>
</tr>
<tr>
<td>Program b/w (MB/s)</td>
<td>20.1</td>
<td>5.0</td>
</tr>
<tr>
<td>133MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read b/w (MB/s)</td>
<td>126.4</td>
<td>126.4</td>
</tr>
<tr>
<td>Program b/w (MB/s)</td>
<td>20.1</td>
<td>5.0</td>
</tr>
</tbody>
</table>