Outline

• Overview
• IDE Disk Driver
• Physical Disks
• Disk Scheduling
• Flash Memory
PC Architecture

- Processor
 - CPU Core
 - CPU Core
- North Bridge
- South Bridge
 - CPU Core
- RAM
 - PCIeExpress
 - APIC bus
 - SATA
 - USB
 - Audio
 - ISA
What is memory?

- **SRAM – Static RAM**
 - Two NOT gates in a circular loop
 - 4 or 6 MOSFETs per bit
 - Fast used for caches

- **DRAM – Dynamic RAM**
 - 1 Capacitor + 1 MOSFET per bit
 - High density used for main memory
 - Requires periodic refresh to recharge

- **VRAM – Video RAM**
 - Multiported: Multiple readers/writers
What is an IO bus?

• Interconnect between devices
• Many kinds of busses: PCI, USB, SMBUS, etc.
• Bridges or Bus Controllers convert one to another
• Single Master (e.g. ISA)
 • North bridge can issue reads/writes/DMA to devices
• Multi-master (e.g. PCI)
 • Any device can issue reads/writes to main memory
Device Communication

• Port IO (in/out instructions in x86)
• Memory Mapped IO (PCI, PCIExpress)
• Interrupt Controller
• Direct Memory Access
Port IO

• Using `in/out` instructions
 • `uint8_t inb(uint16_t port);` // Read Byte
 • `void outb(uint16_t port, uint8_t data);` // Write Byte
 • Can read or write 1, 2, or 4 bytes

• Bulk transfer with `rep` prefix
 • `void insw(uint16_t port, void *buf, int len);`

• Older mechanism used for legacy devices
Memory Mapped IO

- Devices can map memory in for control and/or data
- 0xF00000-0xFFFFFFFF: ISA Memory Hole
- 0xC0000000-0xFFFFFFFF: PCI Memory Hole
- PCI Express creates a memory hole above 4 GiB

- Reads/Writes to this memory must be uncached
Interrupts

• Advanced Programmable Interrupt Controller
• Local APIC: Per-CPU
 • Deliver interrupts
 • APIC Timer provide timer interrupts
 • Starting up extra cores
 • Delivery of Inter-processor Interrupts (IPIs)
• IO APIC: Per-Machine (typically)
 • Routing interrupts to Local APIC
 • Global interrupt masking
 • Usually 24 interrupts
Direct Memory Access (DMA)

- ISA Device
 - Programmed by the OS
 - Limited to 4 or 8 DMA channels

- PCI Devices
 - Every device can DMA no central control
 - Control structures often read from main memory

- IOAT (Intel’s IO Acceleration Technology)
 - New dedicated DMA engine for bulk data copy
 - Used by the OS often for network acceleration
 - Other vendors have supported extra features
Device Driver Architecture

- Driver provides several entry points to kernel
 - Reset, ioctl, read/write/strategy, interrupt, ...
- OS provides callback to entry points
 - Device File System
 - Interrupt Handlers
 - Storage IO Stack
Polling vs Interrupts

- **Polling**
 - Periodically check device for data
 - Uses CPU when device is idle or not doing much
 - Higher latency depending on poll interval

- **Interrupts**
 - A small handler is called on a CPU interrupt
 - Lower latency as CPU notified instantly
 - Uses less CPU for idle or low throughput devices

- **Downside: Interrupts can block the entire OS**
 - Receive Livelock
 - Interrupt Coalescing helps mitigate this
 - Dynamic switching between polling/interrupt mode
IDE Disk Driver
IDE Driver

- IDE or PATA is the older parallel driver interface
- IDE Controllers usually accessed through port IO
- Data transfer through DMA or PIO
- Used with or without interrupts
- Two disks per-controller
PIO IDE Driver

IDE_ReadSector(int disk, int off, void *buf) {
 outb(0x1F6, disk == 0 ? 0xE0 : 0xF0); // Select Drive
 IDEWait();
 outb(0x1F2, 512); // Read length (512 B)
 outb(0x1F3, off); // LBA Low
 outb(0x1F4, off >> 8); // LBA Mid
 outb(0x1F5, off >> 16); // LBA High
 outb(0x1F7, 0x20); // Read Command
 insw(0x1F0, buf, 256); // Read 256 Words
}
PIO IDE Driver Con’t

void IDEWait() {
 // Discard status 4 times
 inb(0x1F7); inb(0x1F7);
 inb(0x1F7); inb(0x1F7);
 // Wait for status BUSY flag to clear
 while (((inb(0x1F7) & 0x80) != 0)
 {

}
ATA Commands

• ATA Commands
 • PIO READ (0x20), PIO WRITE (0x30)
 • DMA READ/WRITE
 • FLUSH: Flush disk cache
 • IDENTIFY: Return device specification/features
 • SMART: Drive Diagnostics/Statistics
 • SLEEP/STANDBY: Power Management

• ATAPI Commands:
 • PACKET, IDENTIFY PACKET: For other devices (CDs)
Serial ATA (SATA)

- Serial ATA is the modern disk interface
- Disks compatible with Serial Attached SCSI (SAS)
- Introduces new useful features
 - NCQ, Hotplug, Port Multipliers (PM)
- One device per-port, or multiplexed with PM
- AHCI (Most common controller standard)
 - PCI Device
 - Uses memory mapped IO for issuing IOs
 - Up to 32 ports (no current device has more than 8)
Physical Disks
Anatomy of Disk [Ruemmler]

• Magnetic Platters
 • Multiple magnetic platters
 • Rotate together between 3600-15000 RPM
 • Drive speed not constant, position not certain

• Disk arm
 • Rotates around a pivot together
 • One disk head per recording surface (2xPlatters)
 • Head flying height 3 nm over disk surface
 • Air creates a natural cushion
 • Sensitive to motion and vibration
Disks
Storage Addressing

- Platters divided into concentric *tracks*
- Tracks of a fixed radius form a *cylinder*
- Tracks contain many sectors
- Heads read/write data along cylinders
 - Head adjustment requires reading one platter at a time
 - Significant space for synchronization/error correction
 - Per-sector data previously 512 B, now usually 4 KB
- CHS Addressing: Cylinder-Head-Sector
- LBA Addressing: Logical Block Address
Cylinders, tracks, and sectors

- track t
- sector s
- cylinder c
- platter
- arm
- spindle
- arm assembly
- rotation
- read-write head
Disk Latency

• **Seek Time**
 • Time to move head into position
 • Depends on head mechanism

• **Rotational Latency**
 • Time it takes for disk platter to rotate into position
 • Depends on rotational speed

• **Transfer Time**
 • Time to read/write actual data
 • Depends on interface, rotational speed, etc

• **Average Latency:** 2 ms (server) – 15 ms (laptops)

• **Other Sources**
 • OS/Controller add additional latency
 • Usually small except for flash storage!
Noise and Drive Latency

Disk: I/O operations per second taking at least 521740 microseconds broken down by disk

Range average:

1 2029QTFO802GCK 21
1 2029QTFO802GCK 9
1 2029QTFO802GCK 5

Show hierarchy
58 ops per second

Disk: I/O bytes per second broken down by disk

Range average:

14.2G 2029QTFO802GCK 8
13.6G 2029QTFO802GCK 0
13.5G 2029QTFO802GCK 17

Show hierarchy
1.08G per second
Failures/Bad Sectors

- Drives detect bad sectors based on read issues
- Logical sector may be reallocated elsewhere
- If too many occur, drive errors visible to OS
- SMART allows you to see relocation events

Bad Reads:
- Data may decay (bit-rot)
- Disk will retry reading IO many times
- May take as long as 15 Minutes!
Disk Scheduling
Optimizing Disk Performance

- Disks involve physical movement and are slow
- Average seek time: 2 ms (server) – 15 ms (mobile)

- File Systems optimize layout (more next week)
 - Reading a file laid out linearly on disk
 - Placing fragments of files near each other

- Operating Systems often schedule IOs for speed
- Disks/Controllers reorder outstanding IOs
Disk Scheduling: FCFS

• First Come First Served (FCFS)
 • Process request in order received

• Advantages:
 • Easy to implement
 • Good fairness

• Disadvantages
 • Cannot exploit request locality
 • Increases average latency, decreasing throughput
FCFS Example

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
Disk Scheduling: SSTF

- Shortest Seek Time First (SSTF)
 - Always pick request with shortest seek time
 - Also called shortest positioning time first (SPTF)

- Advantages:
 - Exploits locality of disks
 - Higher throughput

- Disadvantages:
 - Poor fairness/Starvation
 - Don’t alwys know what request will be fastest
SSTF Example

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
Disk Scheduling: SCAN

• Elevator Scheduling (SCAN)
 • Pick request with shortest seek time
 • Switch direction at end of disk (or CSCAN loops linearly)

• Advantages:
 • Exploits locality of disks
 • Bounded waiting

• Disadvantages:
 • Might miss locality SPTF could exploit
CSCAN Example

queue 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
SATA NCQ/SCSI TCQ

• Native/Tagged Command Queueing
• Allows 32 outstanding commands (queue length)
• Drive can reorder requests for performance
 • Using scheduling algorithms like we previously discussed
• NCQ is important for SSDs!
 • NCQ enables better hardware pipelining
• SCSI TCQ enables queue modes
 • Insert into Head of Queue, Enforce Order, Simple
Flash Memory
Flash Memory

• No moving parts
 • Stores data using charge
 • No mechanical seek times

• Limited writes
 • Blocks wear out after 10000 (MLC) – 100000 (SLC) erases
 • Requires flash translation layer (FTL) for wear leveling
 • FTL can impact performance and reliability!

• Limited durability
 • Charges wear out over time (10 – 100 years at SATP)
Types of Flash

• NAND flash
 • High Density
 • Faster erase/write

• NOR flash
 • Faster reads
 • Slower erases

• Single-level cell (SLC) vs. Multi-level cell (MLC)
 • MLC encodes multiple bits in voltages
 • MLC is slower to write
 • MLC has shorter durability (bits decay faster)
Flash Characteristics [Caulfield’09]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SLC</th>
<th>MLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density Per Die</td>
<td>4 GB</td>
<td>8 GB</td>
</tr>
<tr>
<td>Page Size</td>
<td>2048+32 Bytes</td>
<td>2048+64 Bytes</td>
</tr>
<tr>
<td>Block Size</td>
<td>64 Pages</td>
<td>128 Pages</td>
</tr>
<tr>
<td>Read Latency</td>
<td>25 us</td>
<td>25 us</td>
</tr>
<tr>
<td>Write Latency</td>
<td>200 us</td>
<td>800 us</td>
</tr>
<tr>
<td>Erase Latency</td>
<td>2000 us</td>
<td>2000 us</td>
</tr>
<tr>
<td>40 MHz read</td>
<td>75.8 MB/s</td>
<td>75.8 MB/s</td>
</tr>
<tr>
<td>40 MHz program</td>
<td>20.1 MB/s</td>
<td>5.0 MB/s</td>
</tr>
<tr>
<td>133 MHz read</td>
<td>126.4 MB/s</td>
<td>126.4 MB/s</td>
</tr>
<tr>
<td>133 MHz program</td>
<td>20.1</td>
<td>5.0 MB/s</td>
</tr>
</tbody>
</table>