My tutorial and take on C+420 coroutines

David Mazieres

February, 2021

Introduction

Over the last 25 years, I've written a lot of event-driven code in C++. A typical example of
event-driven code is registering a callback that gets invoked every time a socket has data to
be read. Once you have read an entire message, possibly after many invocations, you parse
the message and invoke another callback from a higher layer of abstraction, and so forth.
This kind of code is painful to write because you have to break your code up into a bunch of
different functions that, because they are different functions, don’t share local variables.

As an example, here’s a subset of the methods on the smtpd class of Mail Avenger, my SMTP
server written in C+403:

void cmd_rcpt (str cmd, str arg);

void cmd_rcpt O (str cmd, str arg, int, in_addr *, int);
void cmd_rcpt_2 (str addr, int err);

void cmd_rcpt_3 (str addr, str errmsg);

void cmd_rcpt_4 (str addr, str errmsg, int local);

void cmd_rcpt_5 (str addr, str errmsg, str err);

void cmd_rcpt_6 (str addr, str err);

Step 1, cmd_rcpt, seems like a reasonable function, called in response to a client issuing an
SMTP “RCPT” command. Processing the RCPT command depends on certain information
being cached about the client. If the information if not cached, it launches an asynchronous
task to probe the client and returns. The asynchronous task, when it completes, goes
“back” to step 0, cmd_rcpt_0, which just calls cmd_rcpt again, but needs to be a different
function because the client-probing code expects a callback to which it can provide additional
arguments. Various other things then may need to happen asynchronously, and every possible
return point from an asynchronous call needs to be its own method. Pretty gross.

C++11 made the situation considerably better by introducing lambda expressions. Now you
only need one cmd_rcpt method on the class, and can use nested lambda expressions for the
remaining ones. Better yet, lambdas can capture local variables from enclosing functions.
Nonetheless, you still need to break your code into many functions. It’s clumsy to skip
multiple steps or support situations where the order of issuing asynchronous events may
change at runtime. Finally, you often end up fighting the right-hand margin of your text

http://www.mailavenger.org/
https://en.cppreference.com/w/cpp/language/lambda

editor as your nested lambda expressions get further and further indented.

I was super excited to see that C++20 supports coroutines, which should hugely improve
the process of writing event-driven code. Now that someone has finally published a book
(or at least a draft of a book) on C+4-20, I eagerly got a copy a few days ago and read it.
While I found the book did a reasonable job on concepts (the language feature) and other
C+-+20 improvements, I sadly found the explanation of coroutines utterly incomprehensible.
Same for almost every other explanation I found on the web. Hence, I had to dig through
the specification and cppreference.org to figure out what was really going on.

This blog post represents my attempt to explain coroutines—basically the tutorial I wish I'd
had 48 hours ago when I just wanted to figure this stuff out.

Tutorial

Roughly speaking, coroutines are functions that can invoke each other but do not share a
stack, so can flexibly suspend their execution at any point to enter a different coroutine. In
the true spirit of C++, C++420 coroutines are implemented as a nice little nugget buried
underneath heaps of garbage that you have to wade through to access the nice part. Frankly,
I was disappointed by the design, because other recent language changes were more tastefully
done, but alas not coroutines. Further obfuscating coroutines is the fact that the C++
standard library doesn’t actually supply the heap of garbage you need to access coroutines,
so you actually have to roll your own garbage and then wade through it. Anyway, I'll try to
save any further editorializing for the end of this blog post. ..

One other complication to be aware of is that C++ coroutines are often explained and even
specified using the terms future and promise. These terms have nothing to do with the
types std: :future and std: :promise available in the C++ <future> header. Specifically,
std: :promise is not a valid type for a coroutine promise object. Nothing in my blog post
outside this paragraph has anything to do with std: :future or std: :promise.

With that out of the way, the nice little nugget C++20 gives us is a new operator called
co_await. Roughly speaking, the expression “co_await a;” does the following:

1. Ensures all local variables in the current function—which must be a coroutine—are
saved to a heap-allocated object.

2. Creates a callable object that, when invoked, will resume execution of the coroutine at
the point immediately following evaluation of the co_await expression.

3. Calls (or more accurately jumps to) a method of co_await’s target object a, passing
that method the callable object from step 2.

Note that the method in step 3, when it returns, does not return control to the coroutine.
The coroutine only resumes execution if and when the callable from step 2 is invoked. If
you've used a language supporting call with current continuation, or played with the Haskell
Cont monad, the callable in step 2 is a bit like a continuation.

https://leanpub.com/c20
https://timsong-cpp.github.io/cppwp/n4861/dcl.fct.def.coroutine
https://en.cppreference.com/w/cpp/language/coroutines
https://en.cppreference.com/w/cpp/header/future
https://en.wikipedia.org/wiki/Call-with-current-continuation

Compiling code using coroutines

Since C++4-20 is not yet fully supported by compilers, you’ll need to make sure your compiler
implements coroutines to play with them. I'm using GCC 10.2, which seems to support
coroutines so long as you compile with the following flags:

g++ —-fcoroutines -std=c++20
Clang’s support is less far along. You need to install llvm libc++ and compile with:
clang++ -std=c++20 -stdlib=libc++ -fcoroutines-ts

Unfortunately, with clang you also need to include the coroutine header as <experimental/coroutine>
rather than <coroutine>. Moreover, a number of types are named std: : experimental: : xxx

instead of std: :xxx. Hence, as of this writing, the examples below won’t compile out-of-the

box with clang, but ideally should with a future release.

If you want to play around, all the demos in this blog post are available in a single file
corodemo.cc.

Coroutine handles

As previously mentioned, the new co_await operator ensures the current state of a function
is bundled up somewhere on the heap and creates a callable object whose invocation continues
execution of the current function. The callable object is of type std: :coroutine_handle<>.

A coroutine handle behaves a lot like a C pointer. It can be easily copied, but it doesn’t have a
destructor to free the memory associated with coroutine state. To avoid leaking memory, you
must generally destroy coroutine state by calling the coroutine_handle: :destroy method
(though in certain cases a coroutine can destroy itself on completion). Also like a C pointer,
once a coroutine handle has been destroyed, coroutine handles referencing that same coroutine
will point to garbage and exhibit undefined behavior when invoked. On the plus side, a
coroutine handle is valid for the entire execution of a coroutine, even as control flows in and
out of the coroutine many times.

Now let’s look more specifically at what co_await does. When you evaluate the expres-
sion co_await a, the compiler creates a coroutine handle and passes it to the method
a.await_suspend(coroutine handle).! The type of a must support certain methods, and
is sometimes referred to as an “awaitable” object or an “awaiter.”

Now let’s look at a complete program that uses co_await. For now, ignore the ReturnObject
type—it’s just part of the garbage we have to get through to access co_await.

#include <concepts>
#include <coroutine>
#include <exception>

!Note that if a has an operator co_await, or if the so-called promise type (discussed later) has an
await_transform method, it’s possible that you end up executing o.await_suspend for some awaitable
object o different from a.

./corodemo.cc
https://timsong-cpp.github.io/cppwp/n4861/expr.await

#include <iostream>

struct ReturnObject {
struct promise_type {
ReturnObject get_return object() { return {}; }
std: :suspend_never initial suspend() { return {}; }
std: :suspend_never final suspend() noexcept { return {}; }
void unhandled_exception() {}
I
s

struct Awaiter {
std::coroutine_handle<> x*hp_;
constexpr bool await_ready() const noexcept { return false; }
void await_suspend(std::coroutine_handle<> h) { *hp_ = h; }
constexpr void await_resume() const noexcept {}

};

ReturnObject
counter(std: :coroutine handle<> *continuation_out)
{
Awaiter a{continuation_out};
for (unsigned i = 0;; ++i) {
co_await a;

std::cout << "counter: " << i << std::endl;
}
}
void
maini ()
{
std::coroutine_handle<> h;
counter (&h) ;

for (int i = 0; i < 3; ++i) {
std::cout << "In mainl function\n";
h();
}
h.destroy();
+

Output:

In mainl function
counter: O
In mainl function
counter: 1

In mainl function
counter: 2

Here counter is a function that counts forever, incrementing and printing an unsigned integer.
Even though the calculation is stupid, what’s exciting about the example is that the variable
i maintains its value even as control switches repeatedly between counter and the function
mainl that invoked it.

In this example, we call counter with a std::coroutine_handle<>*, which we stick into
our Awaiter type. In its await_suspend method, this type stores the coroutine handle
produced by co_await into mainl’s coroutine handle. Each time mainl invokes the coroutine
handle, it triggers one more iteration of the loop in counter, which then suspends execution
again at the co_await statement.

For simplicity, we store the coroutine handle every time await_suspend is called, but the
handle does not change across invocations. (Recall the handle is like a pointer to the coroutine
state, so while value of i may change in this state, the pointer itself remains the same.) We
could just as easily have written:

void
Awaiter::await_suspend(std::coroutine_handle<> h)
{
if (hp_) {
*hp_ = h;
hp_ = nullptr;
}
+

You will note that there are two other methods on Awaiter, because these are required by
the language. await_ready is an optimization. If it returns true, then co_await does not
suspend the function. Of course, you could achieve the same effect in await_suspend, by
resuming (or not suspending) the current coroutine, but before calling await_suspend, the
compiler must bundle all state into the heap object referenced by the coroutine handle, which
is potentially expensive. Finally, the method await_resume here returns void, but if instead
it returned a value, this value would be the value of the co_await expression.

The <coroutine> header provides two pre-defined awaiters, std: :suspend_always and
std: :suspend_never. As their names imply, suspend_always::await_ready always returns
false, while suspend_never: :await_ready always returns true. The other methods on these
classes are empty and do nothing.

The coroutine return object

In the previous example, we ignored the return type of counter. However, the language
restricts the allowable return types of coroutines. Specifically, the return type of a corou-
tine—call it R—must be an object type with a nested type R::promise_type.”? Among

2Note, you can override the promise_type by specializing std: : coroutine_traits.

https://en.cppreference.com/w/cpp/coroutine/suspend_always
https://en.cppreference.com/w/cpp/coroutine/suspend_never
https://en.cppreference.com/w/cpp/coroutine/coroutine_traits

other requirements, R: :promise_type must include a method R get_return_object () that
returns an instance of the outer type R. The result of get_return_object() is the return
value of the coroutine function, in this case counter (). Note that in many discussions of
coroutines, the return type R is referred to as a future, but for clarity I'll just call it the
return object type.

Instead of passing a coroutine handle<>* into counter, it would be nicer if we could just
return the handle from counter (). We can do that if we put the coroutine handle inside the
return object. Since promise_type::get_return_object computes the return object, we
simply need that method to stick the coroutine handle into the return object. How can we
get a coroutine handle from within get_return_object? As it happens, the coroutine state
referenced by a coroutine_handle contains an instance of promise_type at a known offset,
and so std: :coroutine_handle allows us to compute a coroutine handle from the promise
object.

Thus far, we've glossed over the template argument to coroutine handles, which are actually
declared like this:

template<class Promise = void> struct coroutine_handle;

A std::coroutine_handle<T> for any type T can be implicitly converted to a
std::coroutine_handle<void>. Either type can be invoked to resume the corou-
tine with the same effect. However, the non-void types allow you to convert back and
forth between a coroutine handle and the promise_type sitting in the coroutine state.
Specifically, within the promise type, we can get the coroutine handle using the static method
coroutine_handle::from_pomise:

// from within a method of promise_type
std::coroutine_handle<promise_type>::from_promise (*this)

We now have everything we need to stick the coroutine handle inside the return object of our
new function counter2. Here’s the revised example:

struct ReturnObject2 {
struct promise_type {
ReturnObject2 get_return_object() {
return {
// Uses C++20 designated initializer syntax
.h_ = std::coroutine_handle<promise_type>::from_promise(*this)
s
3
std: :suspend_never initial suspend() { return {}; }
std: :suspend_never final suspend() noexcept { return {}; }
void unhandled_exception() {}
I

std::coroutine_handle<promise_type> h_;
operator std::coroutine_handle<promise type>() const { return h_; }

https://en.cppreference.com/w/cpp/coroutine/coroutine_handle
https://en.cppreference.com/w/cpp/coroutine/coroutine_handle/from_promise
https://en.cppreference.com/w/cpp/coroutine/coroutine_handle/from_promise

// A coroutine_handle<promise_type> converts to coroutine_handle<>
operator std::coroutine_handle<>() const { return h_; }

+;

ReturnObject2
counter2()
{
for (unsigned i = 0;; ++i) {
co_await std::suspend_always{};
std::cout << "counter2: " << i << std::endl;

void
main2 ()
{
std::coroutine_handle<> h = counter2();
for (int i = 0; i < 3; ++i) {
std::cout << "In main2 function\n";
h();
}
h.destroy();
+

Output:

In main2 function
counter2: 0
In main2 function
counter2: 1
In main2 function
counter2: 2

A few things to note about the above code. First, since we no longer need our awaiter to
save the coroutine handle (as we’ve already put the handle into the return object), we just
run co_await std::suspend_always{}. Second, note that the return object goes out of
scope and is destroyed in the fist line of main2. However, a coroutine_handle is like a C
pointer, not like an object. It doesn’t matter that we've destroyed the object containing
ReturnObject2: :h_, because we've copied the pointer into h. On the other hand, somebody
needs to reclaim the space pointed to by h, which we do at the end of main2 by calling
h.destroy(). In particular, if any code calls counter2() and ignores the return value (or
otherwise fails to destroy the handle in the ReturnObject2 object), it create a memory leak.

https://en.cppreference.com/w/cpp/coroutine/suspend_always

The promise object

Our examples thus far are a bit unsatisfactory in that even though we can pass control back
and forth between a main function and a coroutine, we have not passed any data. It would
be great if our counter function, instead of writing to standard output, just returned values
to main, which could then either print them or use them in calculations.

Since we know the coroutine state includes an instance of promise_type, we can add a field
value_to this type and use that field to transmit values from the coroutine to our main
function. How do we get access to the promise type? In the main function, this isn’t too hard.
Instead of converting our coroutine handle to a std: :coroutine_handle<> we can keep it
as a std::coroutine_handle<ReturnObject3: :promise_type>. The method promise()
on this coroutine handle will return the promise_type& that we need.

What about within counter—how can a coroutine obtain its own promise object? Recall the
Awaiter object in our first example, and how it squirreled away a copy of the coroutine handle
for mainl. We can use a similar trick to get the promise within the coroutine: co_await
on a custom awaiter that gives us the promise object. Unlike our previous type Awaiter,
however, we don’t want this new custom awaiter to suspend the coroutine. After all, until we
get our hands on the promise object, we can’t stick a valid return value inside it, so wouldn’t
be returning anything valid from the coroutine.

Even though previously our Awaiter: :await_suspend method returned void, that method
is also allowed to return a bool. In that case, if await_suspend returns false, the coroutine
is not suspended after all. In other words, a coroutine isn’t actually suspended unless first
await_ready returns false, then await_suspend (if it returns type bool instead of void)
returns true.

We thus define a new awaiter type GetPromise that contains a field promise_type *p_. We
have its await_suspend method store the address of the promise object in p_, but then return
false to avoid actually suspending the coroutine. Until now, we have only seen co_await
expressions of type void. This time, we want our co_await to return the address of the
promise object, so we also add an await_resume function returning p_.

template<typename PromiseType>
struct GetPromise {
PromiseType *p_;
bool await_ready() { return false; } // says yes call await_suspend
bool await_suspend(std::coroutine_handle<PromiseType> h) {
p_ = &h.promise();
return false; // says mno don't suspend coroutine after all

}

PromiseType *await_resume() { return p_; }

+;

In addition to void and bool, await_suspend may also return a coroutine_handle,
in which case the returned handle is immediately resumed. Instead of returning false,
GetPromise: :await_suspend could alternatively have returned the handle h to resume the

coroutine immediately, but presumably this would be less efficient.

Here’s our new counter code, in which the main function prints out the counter values
returned by the coroutine:

struct ReturnObject3 {
struct promise_type {
unsigned value_;

ReturnObject3 get_return_object() {
return ReturnObject3 {
.h_ = std::coroutine_handle<promise type>::from_ promise(*this)
s
}
std: :suspend _never initial suspend() { return {}; }
std: :suspend_never final suspend() noexcept { return {}; }
void unhandled_exception() {}

};

std: :coroutine_handle<promise_type> h_;
operator std::coroutine_handle<promise_type>() const { return h_; }

s
ReturnObject3
counter3()
{
auto pp = co_await GetPromise<ReturnObject3::promise type>{};
for (unsigned i = 0;; ++i) {
pp—>value_ = 1i;
co_await std::suspend_always{};
}
+
void
main3()
{
std::coroutine_handle<ReturnObject3: :promise_type> h = counter3();
ReturnObject3: :promise_type &promise = h.promise();
for (int i = 0; i < 3; ++i) {
std::cout << '"counter3: " << promise.value_ << std::endl;
h(Q);
b
h.destroy();
+

Output:

counter3: O
counter3: 1
counter3: 2

One thing to note is that our promise object transmits i’s value from the coroutine to the
main function by copying it into promise_type: :value_. Somewhat counterintuitively, we
could also have made value_ an unsigned * and returned a pointer to the variable i inside
counter3. We can do this because the coroutine’s local variables live inside the coroutine
state object in the heap, so their memory remains valid across invocations of co_await until
someone invokes destroy () on the coroutine handle. It would be even more convenient to
stick &i inside the return object, but unfortunately there’s no elegant way to do this given
the way return objects are constructed.?

The co_yield operator

The reason it’s so clunky for a coroutine to get its own promise object is that the C++
designers had one particular use case in mind and designed for the specific case instead of
the general one. However, the specific case is a useful one, namely returning values from
coroutines. To that end, the language contains another operator, co_yield.

If p is the promise object of the current coroutine, the expression “co_yield e;” is equivalent
to evaluating “co_await p.yield_value(e);” Using co_yeild, we can simplify the previous
example by adding a yield_value method to the promise_type inside our return object.
Since yield_value is a method on promise_type, we no longer need to jump through hoops
to get our hands on the promise object, it’s just this. Here’s what the new code looks like

struct ReturnObjectd {
struct promise_type {
unsigned value_;

ReturnObject4d get_return_object() {
return {
.h_ = std::coroutine_handle<promise type>::from_promise (*this)
s
}
std: :suspend_never initial_suspend() { return {}; }
std: :suspend_never final suspend() noexcept { return {}; }
void unhandled_exception() {}
std: :suspend_always yield_value(unsigned value) {
value = value;
return {7};

30kay, you could use a global-scope thread_local unsigned **coroutine_resultp for
get_return_object to store the address of an unsigned *value_ field inside the current coroutine
return object, then have the coroutine use this pointer to initialize *coroutine_resultp = &i before the
first call to co_await. Pretty gross, though.

10

by

¥
std::coroutine_handle<promise_type> h_;
s
ReturnObject4
counter4 ()
{
for (unsigned i = 0;; ++i)
co_yield i; // co yield © => co_await promise.yield_value (i)
}
void
maind ()
{
auto h = counter4d().h_;
auto &promise = h.promise();
for (int i = 0; i < 3; ++i) {
std::cout << "counter4: " << promise.value_ << std::endl;
h(Q;
}
h.destroy();
}
Output:

counter4: O
counter4d: 1
counter4d: 2

The co_return operator

So far our coroutines have produced an infinite stream of integers, and our main function has
simply destroyed the coroutine state after reading the first three integers. What if instead our
coroutine only wants to produce a finite number of values before signaling an end-of-coroutine
condition?

To signal the end of a coroutine, C++ adds a new co_return operator. There are three ways
for a coroutine to signal that it is complete:

1. The coroutine can use “co_return e;” to return a final value e.

2. The coroutine can use “co_return;” with no value (or with a void expression) to end
the coroutine without a final value.

3. The coroutine can let execution fall off the end of the function, which is similar to the
previous case.

11

https://timsong-cpp.github.io/cppwp/n4861/stmt.return.coroutine

In case 1, the compiler inserts a call to p.return_value(e) on the promise object p. In cases
2-3, the compiler calls p.return_void(). To find out if a coroutine is complete, you can
call h.done () on its coroutine handle h. (Do not confuse coroutine_handle: :done() with
coroutine_handle: :operator bool(). The latter merely checks whether the coroutine
handle contains a non-null pointer to coroutine memory, not whether execution is complete.)

Here is a new version of counter in which the counter function itself decides to produce
only 3 values, while the main function just keeps printing values until the coroutine is done.
There’s one more change we need to make to promise_type::final_suspend(), but let’s
first look at the new code, then discuss the promise object below.

struct ReturnObject5 {
struct promise_type {
unsigned value_;

~promise_type() {
std::cout << "promise_type destroyed" << std::endl;

}
ReturnObject5 get_return_object() {
return {
.h_ = std::coroutine_handle<promise_type>::from_promise(*this)
s
}

std: :suspend_never initial_ suspend() { return {}; }

std: :suspend_always final_suspend() noexcept { return {}; }
void unhandled_exception() {}

std: :suspend_always yield value(unsigned value) {

value_ = value;
return {7};
}
void return void() {}
+;
std::coroutine_handle<promise_type> h_;
s
ReturnObjectb
counter5 ()
{
for (unsigned i = 0; 1 < 3; ++i)
co_yield 1i;
// falling off end of function or co_return; => promise.return_void();
// (co_return value; => promise.return_value(value);)
}
void

12

mainb()

{
auto h = counter5().h_;
auto &promise = h.promise();
while ('h.done()) { // Do NOT use while(h) (which checks h mon-NULL)
std::cout << "counterb5: " << promise.value_ << std::endl;
h();
+
h.destroy() ;
+
Output:

counterb: O
counterb: 1
counterb: 2
promise_type destroyed

There are a couple of things to note about co_return. Notice that in previous examples,
we didn’t have a return void() method on our promise object. That’s okay as long as
we didn’t use co_return. Otherwise, if you use co_return but don’t have the appropriate
return_void or return_value method, you will get a compilation error about the missing
method. That’s the good news. The bad news is that if you fall off the end of a function and
your promise_type lacks a return_void method, you get undefined behavior. T'll have more
to say about that in the editorial below, but suffice it to say that undefined behavior is really,
really bad—Iike use-after-free or array-bounds-overflow bad. So be careful not to drop off the
end of a coroutine whose promise object lacks a return_void method!

The other thing to note about co_return is that promise_type::return_void() and
promise_type::return_value(v) both return void; in particular they don’t return await-
able objects. This is presumably out of a desire to unify handling of return values and
exceptions (which we’ll discuss further down). Nonetheless, there’s an important question
about what to do at the end of a coroutine. Should the compiler update the coroutine state
and suspend the coroutine one final time, so that even after evaluating co_return, code in the
main function can access the promise object and make sane use of the coroutine _handle?
Or should returning from a coroutine automatically destroy the coroutine state, like an
implicit call to coroutine_handle: :destroy()?

This question is resolved by the final suspend method on the promise_type. The C++ spec
says says that a coroutine’s function-body is effectively wrapped in the following pseudo-code:

{
promise-type promise promise-constructor-arguments ;
try {
co_await promise.initial_suspend() ;
function-body
Y catch (...) {
if (!initial-await-resume-called)

13

https://timsong-cpp.github.io/cppwp/n4861/stmt.return.coroutine#3
https://timsong-cpp.github.io/cppwp/n4861/dcl.fct.def.coroutine#5

throw ;
promise.unhandled_exception() ;

+
final-suspend :

co_await promise.final_suspend() ;
i
// "The coroutine state is destroyed when control flows
// off the end of the coroutine”

When a coroutine returns, you implicitly co_await the result of promise.final_suspend().
If final suspend actually suspends the coroutine, then the coroutine state will be updated
one last time and remain valid, and code outside of the coroutine will be responsible for freeing
the coroutine object by calling the coroutine handle’s destroy() method. If final suspend
does not suspend the coroutine, then the coroutine state will be automatically destroyed.

If you never plan to touch the coroutine state again (maybe because the coroutine just updated
some global variable and/or released a semaphore before co_return, and that’s all you care
about), then there’s no reason to pay for saving state one last time and worry about manually
freeing the coroutine state, so you can have final suspend() return std::suspend_never.
On the other hand, if you need to access the coroutine handle or promise object after a
coroutine returns, you will need final _suspend() to return std: :suspend_always (or some
other awaitable object that suspends the coroutine).

To make the point more concrete, here’s what happens if we change ReturnObject5: :promise_type: :final
to return std: :suspend_never instead of std::suspend_always:

Output:

counterb5: 0

counterb: 1

counterb5: 2
promise_type destroyed
counterb: 2
Segmentation fault

The first co_yield (before the loop in mainb even starts) yields 0. The second and third
co_yields, which correspond to the first and second times we resume h in main5, yield 1
and 2 without issue. The third time we resume h, however, execution falls off the end of the
coroutine, destroying the coroutine state. We see that the promise_type gets destroyed at
this point, leaving h effectively a dangling pointer. Yet we call h.done() on this dangling
pointer, provoking undefined behavior. On my machine, the undefined behavior happens to
be h.done () returning false. That causes main5 to stay in the loop and call h() once again,
only this time it is resuming garbage instead of a valid coroutine state. Not surprisingly,
resuming garbage doesn’t update promise.value_, which remains 2. Also not surprisingly,
since we are provoking more and more undefined behavior, our program soon crashes.

14

Generic generator example

Now we have almost all of the pieces to build a generic generator type, which is the most
popular example of C++ coroutines you will find on the web. There are just a couple of
remaining topics to cover.

First, up to this point I have been glossing over exceptions. Once a coroutine has been
suspended, so you are no longer waiting for the initial call (e.g., counter()) to return,
resuming a coroutine no longer automatically throws an exception in the main function.
Instead, it calls the unhandled_exception() method of the promise object. Arguably, we
should have been calling std: :terminate() in that function all along for our examples. (As
it is, we suppress any exceptions with an empty function, which makes throwing an exception
in a coroutine equivalent to co_return;.)

If we want to build a generic generator return object type to help people write corou-
tines, the most useful approach to exceptions is arguably to re-throw them in the main
routine that invokes the generator. We can do that by having unhandled_exception() call
std::current_exception to obtain a std::exception_ptr that it stores in the promise ob-
ject. When this execption_ptr is non-NULL, the generator uses std: :rethrow_exception
to propagate the exception in the main function.

Another important point is that up until now, our coroutines have been computing the first
value (0) as soon as they are invoked, before the first co_await, and hence before the return
object is constructed. There are two reasons you might want to defer computation of the first
value until after the first coroutine suspension. First, in cases where values are expensive
to compute, it may be better to save work in case the coroutine is never resumed (perhaps
because of an error in a different coroutine). Second, because of the need to destroy coroutine
handles manually, things can get awkward if a coroutine throws an exception before the first
time it has been suspended. Take the following example:

void
£0
{
std::vector<std::coroutine_handle<>> coros =
{ mkCoroutineA(), mkCoroutineB() J;
try {
for (int i = 0; i < 3; ++i)
for (auto &c : coros)
if (!c.done())
cO);
+
catch (...) {
for (auto &c : coros)
c.destroy();
throw;
+

for (auto &c : coros)

15

https://en.cppreference.com/w/cpp/error/current_exception
https://en.cppreference.com/w/cpp/error/exception_ptr
https://en.cppreference.com/w/cpp/error/rethrow_exception

c.destroy();
+

In the example above, suppose mkCoroutineA() returns a coroutine handle while
mkCoroutineB() throws an exception before its first co_await. In that case, the coroutine
created by mkCoroutineA() will never be destroyed. Of course, you could restructure the
code to wrap mkCoroutineB in it’s own try-catch block, but you can see this would quickly
get unwieldy when creating many coroutines.

To address these issues, the method promise_type::initial_suspend() can return
std: :suspend_always, thereby suspending mkCoroutineB immediately on entry, before any
code in the coroutine has executed (and hence before said code may throw an exception).
We use this technique in our example generator below. It simply means we have to resume
the coroutine once before returning the first value from our generator.

So here is our generic generator. A generator producing type T must return a Generator<T>.
The main function uses operator bool to determine if the Generator still has an output
value, and operator () to obtain the next value.

template<typename T>
struct Generator {
struct promise_type;
using handle_type = std::coroutine_handle<promise_type>;

struct promise_type {
T value_;
std: :exception_ptr exception_;

Generator get_return object() {
return Generator (handle_type::from_promise(*this));
}
std: :suspend_always initial suspend() { return {}; }
std: :suspend_always final_suspend() noexcept { return {}; }
void unhandled_exception() { exception_ = std::current_exception(); }
template<std::convertible_to<T> From> // C++20 concept
std: :suspend_always yield_value(From &&from) {

value = std::forward<From>(from) ;
return {7};

}

void return void() {}

¥
handle_type h_;
Generator(handle type h) : h_(h) {}

Generator(const Generator &) = delete;
~Generator() { h_.destroy(); }

16

explicit operator bool() {

£i110);
return 'h .done();
}
T operator() () {
£ill(Q);

full = false;
return std::move(h_.promise().value);

private:
bool full = false;

void £i11() {
if (1full) {
h_O;
if (h_.promise().exception_)
std: :rethrow_exception(h_.promise().exception_);
full_ = true;
}
}
s

Generator<unsigned>
counter6 ()

{
for (unsigned i = 0; i < 3;)
co_yield i++;
}
void
mainé ()
{
auto gen = counter6();
while (gen)
std::cout << "counter6: " << gen() << std::endl;
}
Output:

counter6: 0
counter6: 1
counter6: 2

One final point to note here is that we now destroy the coroutine_hande inside the destructor
for Generator, since in our specific use case we know the coroutine handle is no longer needed

17

once the Generator is gone.

Editorial

You probably already got the sense that I'm happy to see coroutines in C++, but sad that
the design was so clunky. I think the co_await operator is reasonably well thought out,
but the return object design is a complete mess. All you really need is something simple:
simultaneous access to local variables in the coroutine and the coroutine handle while creating
the return object. Yet the interfaces are both convoluted and prevent you from accessing all
the necessary variables at the same time.

Obviously I've only thought about C++ coroutines for a couple of days, but it seems to
me that the fundamental interface should have been two operators, co_await (more or
less as-is) and co_init for allocating the coroutine handle and creating the return object.
std: :coroutine_handle should not even need to be a template, as any notion of a promise

object should just be layered on top of whatever primitives the language provides. Something
like:

template<typename T>
struct Yield {

T *target_;

Yield(T &t) : target_(&t) {}

std: :suspend_always operator() (const T &t) { *target_ = t; }

std: :suspend_always operator () (T &&t) { *target_ = std::move(t); }
s

template<typename T, bool Suspend = true>
struct ResumeWith {
T value_;
ResumeWith(const T &v) : value (v) {}
ResumeWith(T &&v) : value (std::move(v)) {}
constexpr bool await_ready() const noexcept { return !Suspend; }
void await_suspend(std::coroutine_handle) {}
T await_resume() { return std::move(value); }

+;

struct HypotheticalReturnObject {
std::coroutine_handle h;
bool done = false;
unsigned val;

ResumeWith<Yield<unsigned>> operator co_init(std::coroutine_handle hh) {
h = hh;
return ResumeWith(Yield(val));

}

18

std: :suspend_always operator co_return() {
done = true;
return {7};

}
+;

HypotheticalReturnObject &
hypothetical_counter()

{
auto yield = co_init HypotheticalReturnObject{};
for (unsigned i = 0; i < 3; ++i)
co_await yield(i);
}

But with this design, you’d have more flexibility. For instance you could alternatively declare
unsigned i first, and stick the address &i inside the return object, because everything is in
scope when you are constructing the return object.

Obviously this isn’t perfect, as I just started looking at C++ coroutines and am ignorant of
the design history. The hypothetical design doesn’t tell you what to do about exceptions. Still,
I have a hard time believing it’s not possible to do a lot better than the current design, and
come up with something involving fewer and simpler low-level concepts that are nonetheless
more expressive.

Another source of clunkiness that really baffles me is the undefined behavior when falling off
the end of a coroutine without a return_void() method on the promise object. Undefined
behavior is incredibly bad. Why would you do this to programmers? The only justification
I can think of is cases where the programmer knows execution will not fall off the end of
a function, but the compiler can’t figure it out. In those cases, the compiler might need
to generate a few bytes of dead code to handle the impossible case. But even if it’s so
important to optimize that fringe case, don’t make undefined behavior the default! For
example, why not allow the [[noreturn]] tag on coroutines, or allow a coroutine to end
with a [[fallthrough]]; statement, and say the behavior is undefined only when you fall
off the end of a coroutine and one of these tags is present? That would satisfy the tiny
minority of people who need to optimize this case without creating easy opportunities for the
vast majority of programmers to shoot themselves in the foot.

Big picture, of course, clunky coroutines are still a lot better than no coroutines. I anticipate
C++20 coroutines will significantly change the way I program going forward, and may prove
an even bigger deal than lambda expressions.

19

	Introduction
	Tutorial
	Compiling code using coroutines
	Coroutine handles
	The coroutine return object
	The promise object
	The co_yield operator
	The co_return operator
	Generic generator example

	Editorial

